Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1448919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234542

RESUMO

Microorganisms in lakes are sensitive to salinity fluctuations. Despite extensive prior research on bacterial communities, our understanding of their characteristics and assembly mechanisms in lakes, especially in desert lakes with different salinities. To address this issue, we collected three samples from freshwater lakes, six from brackish lakes, and five from salt lakes in the Badanjilin Desert. The 16S rRNA gene sequencing was applied to investigate the bacterial interactions with rising salinity, community coexistence patterns, and assembly mechanisms. Our findings suggested that the increased lake salinity significantly reduces the bacterial community diversity and enhanced the community differentiation. Significant variations were observed in the contribution of biomarkers from Cyanobacteria, Chloroflexi, and Halobacterota to the composition of the lake bacterial communities. The bacterial communities in the salt lakes exhibited a higher susceptibility to salinity limitations than those in the freshwater and brackish lakes. In addition, the null modeling analyses confirmed the quantitative biases in the stochastic assembly processes of bacterial communities across freshwater, brackish, and saline lakes. With the increasing lake salinity, the significance of undominated and diffusion limitation decreased slightly, and the influence of homogenizing dispersal on community assembly increased. However, the stochasticity remained the dominant process across all lakes in the Badanjilin Desert. The analysis of co-occurring networks revealed that the rising salinity reduced the complexity of bacterial network structures and altered the interspecific interactions, resulting in the increased interspecies collaboration with increasing salinity levels. Under the influence of salinity stress, the key taxon Cyanobacteria in freshwater lakes (Schizothrix_LEGE_07164) was replaced by Proteobacteria (Thalassobaculum and Polycyclovorans) in brackish lakes, and Thermotogota (SC103) in salt lakes. The results indicated the symbiotic patterns of bacterial communities across varying salinity gradients in lakes and offer insights into potential mechanisms of community aggregation, thereby enhancing our understanding of bacterial distribution in response to salinity changes.

2.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38839598

RESUMO

Rhizosphere microbial communities play a substantial role in plant productivity. We studied the rhizosphere bacteria and fungi of 51 distinct potato cultivars grown under similar greenhouse conditions using a metabarcoding approach. As expected, individual cultivars were the most important determining factor of the rhizosphere microbial composition; however, differences were also obtained when grouping cultivars according to their growth characteristics. We showed that plant growth characteristics were related to deterministic and stochastic assembly processes of bacterial and fungal communities, respectively. The bacterial genera Arthrobacter and Massilia (known to produce indole acetic acid and siderophores) exhibited greater relative abundance in high- and medium-performing cultivars. Bacterial co-occurrence networks were larger in the rhizosphere of these cultivars and were characterized by a distinctive combination of plant beneficial Proteobacteria and Actinobacteria along with a module of diazotrophs namely Azospira, Azoarcus, and Azohydromonas. Conversely, the network within low-performing cultivars revealed the lowest nodes, hub taxa, edges density, robustness, and the highest average path length resulting in reduced microbial associations, which may potentially limit their effectiveness in promoting plant growth. Our findings established a clear pattern between plant productivity and the rhizosphere microbiome composition and structure for the investigated potato cultivars, offering insights for future management practices.


Assuntos
Bactérias , Microbiota , Rizosfera , Microbiologia do Solo , Solanum tuberosum , Solanum tuberosum/microbiologia , Solanum tuberosum/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/crescimento & desenvolvimento , Fungos/classificação , Fungos/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento
3.
Environ Res ; 253: 119154, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754616

RESUMO

Lakes serve as heterogeneous ecosystems with rich microbiota. Although previous studies on bacterioplankton have advanced our understanding, there are gaps in our knowledge concerning variations in the taxonomic composition and community assembly processes of bacterioplankton across different environment conditions. This study explored the spatial dynamics, assembly processes, and co-occurrence relationships among bacterioplankton communities in 35 surface water samples collected from Hulun Lake (a grassland-type lake), Wuliangsuhai Lake (an irrigated agricultural recession type lake), and Daihai Lake (an inland lake with mixed farming and grazing) in the Inner Mongolia Plateau, China. The results indicated a significant geographical distance decay pattern, with biomarkers (Proteobacteria and Bacteroidota) exhibiting differences in the contributions of different bacteria branches to the lakes. The relative abundance of Proteobacteria (42.23%) were high in Hulun Lake and Wuliangsuhai Lake. Despite Actinobacteriota was most dominant, Firmicutes accounted for approximately 17.07% in Daihai Lake, suggested the potential detection of anthropogenic impacts on bacteria within the agro-pastoral inland lake. Lake heterogeneity caused bacterioplankton responses to phosphorus, chlorophyll a, and salinity in Hulun Lake, Wuliangsuhai Lake, and Daihai Lake. Although bacterioplankton community assembly processes in irrigated agricultural recession type lake were more affected by dispersal limitation than those in grassland-type lake and inland lake with mixed farming and grazing (approximately 52.7% in Hulun Lake), dispersal limitation and undominated processes were key modes of bacterioplankton community assembly in three lakes. This suggested stochastic processes exerted a greater impact on bacterioplankton community assembly in a typical Inner Mongolia Lake than deterministic processes. Overall, the bacterioplankton communities displayed the potential for collaboration, with lowest connectivity observed in irrigated agricultural recession type lake, which reflected the complex dynamic patterns of aquatic bacteria in typical Inner Mongolia Plateau lakes. These findings enhanced our understanding of the interspecific relationships and assembly processes among microorganisms in lakes with distinct habitats.


Assuntos
Bactérias , Lagos , Plâncton , Lagos/microbiologia , Lagos/química , China , Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota , Monitoramento Ambiental
4.
Mol Ecol ; 33(13): e17386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38751195

RESUMO

One of the key goals of ecology is to understand how communities are assembled. The species co-existence theory suggests that community ß-diversity is influenced by species pool and community assembly processes, such as environmental filtering, dispersal events, ecological drift and biotic interactions. However, it remains unclear whether there are similar ß-diversity patterns among different soil microbial groups and whether all these mechanisms play significant roles in mediating ß-diversity patterns. By conducting a broad survey across Chinese deserts, we aimed to address these questions by investing biological soil crusts (biocrusts). Through amplicon-sequencing, we acquired ß-diversity data for multiple microbial groups, that is, soil total bacteria, diazotrophs, phoD-harbouring taxa, and fungi. Our results have shown varying distance decay rates of ß-diversity across microbial groups, with soil total bacteria showing a weaker distance-decay relationship than other groups. The impact of the species pool on community ß-diversity varied across microbial groups, with soil total bacteria and diazotrophs being significantly influenced. While the contributions of specific assembly processes to community ß-diversity patterns varied among different microbial groups, significant effects of local community assembly processes on ß-diversity patterns were consistently observed across all groups. Homogenous selection and dispersal limitation emerged as crucial processes for all groups. Precipitation and soil C:P were the key factors mediating ß-diversity for all groups. This study has substantially advanced our understanding of how the communities of multiple microbial groups are structured in desert biocrust systems.


Assuntos
Bactérias , Biodiversidade , Clima Desértico , Microbiologia do Solo , Bactérias/genética , Bactérias/classificação , Fungos/genética , Fungos/classificação , China , Microbiota/genética , Solo/química
5.
J Hazard Mater ; 471: 134397, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677114

RESUMO

Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.


Assuntos
Carvão Vegetal , Compostagem , Glicina , Glifosato , Herbicidas , Neonicotinoides , Nitrocompostos , Microbiologia do Solo , Poluentes do Solo , Estrobilurinas , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos/metabolismo , Nitrocompostos/toxicidade , Estrobilurinas/metabolismo , Estrobilurinas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Carvão Vegetal/química , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/toxicidade , Herbicidas/metabolismo , Herbicidas/toxicidade , Carbamatos/metabolismo , Carbamatos/toxicidade , Microbiota/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Pirazóis/metabolismo , Pirazóis/toxicidade , Inseticidas/metabolismo , Inseticidas/toxicidade , Biodegradação Ambiental , Solo/química , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
6.
Microb Ecol ; 87(1): 58, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602532

RESUMO

Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.


Assuntos
Microbiota , Micorrizas , China , Florestas , Raios gama , Solo
7.
Appl Environ Microbiol ; 90(3): e0175023, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349147

RESUMO

Phyllosphere microbial communities are increasingly experiencing intense pulse disturbance events such as drought. It is currently unknown how phyllosphere communities respond to such disturbances and if they are able to recover. We explored the stability of phyllosphere communities over time, in response to drought stress, and under recovery from drought on temperate forage grasses. Compositional or functional changes were observed during the disturbance period and whether communities returned to non-stressed levels following recovery. Here, we found that phyllosphere community composition shifts as a result of simulated drought but does not fully recover after irrigation is resumed and that the degree of community response to drought is host species dependent. However, while community composition had changed, we found a high level of functional stability (resistance) over time and in the water deficit treatment. Ecological modeling enabled us to understand community assembly processes over a growing season and to determine if they were disrupted during a disturbance event. Phyllosphere community succession was characterized by a strong level of ecological drift, but drought disturbance resulted in variable selection, or, in other words, communities were diverging due to differences in selective pressures. This successional divergence of communities with drought was unique for each host species. Understanding phyllosphere responses to environmental stresses is important as climate change-induced stresses are expected to reduce crop productivity and phyllosphere functioning. IMPORTANCE: Leaf surface microbiomes have the potential to influence agricultural and ecosystem productivity. We assessed their stability by determining composition, functional resistance, and resilience. Resistance is the degree to which communities remain unchanged as a result of disturbance, and resilience is the ability of a community to recover to pre-disturbance conditions. By understanding the mechanisms of community assembly and how they relate to the resistance and resilience of microbial communities under common environmental stresses such as drought, we can better understand how communities will adapt to a changing environment and how we can promote healthy agricultural microbiomes. In this study, phyllosphere compositional stability was highly related to plant host species phylogeny and, to a lesser extent, known stress tolerances. Phyllosphere community assembly and stability are a result of complex interactions of ecological processes that are differentially imposed by host species.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Plantas , Folhas de Planta/microbiologia , Especificidade de Hospedeiro
8.
Sci Total Environ ; 914: 169905, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190904

RESUMO

Soil bacterial communities are essential for ecosystem function, yet their response along altitudinal gradients in different soil strata remains unclear. Understanding bacterial community co-occurrence networks and assembly patterns in mountain ecosystems is crucial for comprehending microbial ecosystem functions. We utilized Illumina MiSeq sequencing to study bacterial diversity and assembly patterns of surface and subsurface soils across a range of elevations (700 to 2100 m) on Dongling Mountain. Our results showed significant altitudinal distribution patterns concerning bacterial diversity and structure in the surface soil. The bacterial diversity exhibited a consistent decrease, while specific taxa demonstrated unique patterns along the altitudinal gradient. However, no altitudinal dependence was observed for bacterial diversity and community structure in the subsurface soil. Additionally, a shift in bacterial ecological groups is evident with changing soil depth. Copiotrophic taxa thrive in surface soils characterized by higher carbon and nutrient content, while oligotrophic taxa dominate in subsurface soils with more limited resources. Bacterial community characteristics exhibited strong correlations with soil organic carbon in both soil layers, followed by pH in the surface soil and soil moisture in the subsurface soil. With increasing depth, there is an observable increase in taxa-taxa interaction complexity and network structure within bacterial communities. The surface soil exhibits greater sensitivity to environmental perturbations, leading to increased modularity and an abundance of positive relationships in its community networks compared to the subsurface soil. Furthermore, the bacterial community at different depths was influenced by combining deterministic and stochastic processes, with stochasticity (homogenizing dispersal and undominated) decreasing and determinism (heterogeneous selection) increasing with soil depth.


Assuntos
Ecossistema , Solo , Solo/química , Carbono , Microbiologia do Solo , Florestas , Bactérias , China
9.
mSystems ; 9(2): e0123323, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289092

RESUMO

Community assembly processes are complex and understanding them represents a challenge in microbial ecology. Here, we used Lascaux Cave as a stable, confined environment to quantify the importance of stochastic vs deterministic processes during microbial community dynamics across the three domains of life in relation to an anthropogenic disturbance that had resulted in the side-by-side occurrence of a resistant community (unstained limestone), an impacted community (present in black stains), and a resilient community (attenuated stains). Metabarcoding data showed that the microbial communities of attenuated stains, black stains, and unstained surfaces differed, with attenuated stains being in an intermediate position. We found four scenarios to explain community response to disturbance in stable conditions for the three domains of life. Specifically, we proposed the existence of a fourth, not-documented yet scenario that concerns the always-rare microbial taxa, where stochastic processes predominate even after disturbance but are replaced by deterministic processes during post-disturbance recovery. This suggests a major role of always-rare taxa in resilience, perhaps because they might provide key functions required for ecosystem recovery.IMPORTANCEThe importance of stochastic vs deterministic processes in cave microbial ecology has been a neglected topic so far, and this work provided an opportunity to do so in a context related to the dynamics of black-stain alterations in Lascaux, a UNESCO Paleolithic cave. Of particular significance was the discovery of a novel scenario for always-rare microbial taxa in relation to disturbance, in which stochastic processes are replaced later by deterministic processes during post-disturbance recovery, i.e., during attenuation of black stains.


Assuntos
Corantes , Microbiota , Cavernas
10.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37771081

RESUMO

Litter decomposition is a fundamental ecosystem process controlling the biogeochemical cycling of energy and nutrients. Using a 360-day lab incubation experiment to control for environmental factors, we tested how litter quality (low C/N deciduous vs. high C/N coniferous litter) governed the assembly and taxonomic composition of bacterial communities and rates of litter decomposition. Overall, litter mass loss was significantly faster in soils amended with deciduous (DL) rather than coniferous (CL) litter. Communities degrading DL were also more taxonomically diverse and exhibited stochastic assembly throughout the experiment. By contrast, alpha-diversity rapidly declined in communities exposed to CL. Strong environmental selection and competitive biological interactions induced by molecularly complex, nutrient poor CL were reflected in a transition from stochastic to deterministic assembly after 180 days. Constraining how the diversity and assembly of microbial populations modulates core ecosystem processes, such as litter decomposition, will become increasingly important under novel climate conditions, and as policymakers and land managers emphasize soil carbon sequestration as a key natural climate solution.


Assuntos
Ecossistema , Plantas , Clima , Solo/química , Bactérias/genética , Folhas de Planta/química , Microbiologia do Solo
11.
Sci Total Environ ; 903: 166408, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597539

RESUMO

Soil organic carbon (SOC) mineralization is essential to biogeochemical recycling in terrestrial ecosystem. However, the microbial mechanisms underlying the nutrient-induced SOC mineralization remain uncertain. Here, we investigated how SOC mineralization was linked to microbial assembly processes as well as soil nutrient availability and stoichiometric ratio in a paddy rice ecosystem at four soil profile levels. Our results showed a sharp decrease in SOC mineralization from topsoil (112.61-146.34 mg CO2 kg-1 day-1) to subsoil (33.51-61.41 mg CO2 kg-1 day-1). High-throughput sequencing showed that both abundance and diversity of specialist microorganisms (Chao1: 1244.30-1341.35) significantly increased along the soil profile, while the generalist microorganisms (Chao1: 427.67-616.15; Shannon: 7.46-7.97) showed the opposite trend. Correspondingly, the proportion of deterministic processes that regulate specialist (9.64-21.59 %) and generalist microorganisms (21.17-53.53 %) increased and decreased from topsoil to subsoil, respectively. Linear regression modeling and partial least squares path modeling indicated that SOC mineralization was primarily controlled by the assembly processes of specialist microorganisms, which was significantly mediated by available soil C:N:P stoichiometry. This study highlighted the importance of soil stoichiometry-mediated bacterial community assembly processes in regulating SOC mineralization. Our results have an important implication for the integration of bacterial community assembly processes into the prediction of SOC dynamics.

12.
Environ Microbiome ; 18(1): 71, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620948

RESUMO

BACKGROUND: Soil and phyllosphere (leaves and fruit) microbes play critical roles in the productivity and health of crops. However, microbial community dynamics are currently understudied in orchards, with a limited number incorporating temporal monitoring. We used 16S rRNA gene amplicon sequencing to investigate bacterial community temporal dynamics and community assembly processes on the leaves and fruit, and in the soil of 12 kiwifruit orchards across a cropping season in New Zealand. RESULTS: Community composition significantly differed (P < 0.001) among the three sample types. However, the communities in the phyllosphere substrates more closely resembled each other, relative to the communities in the soil. There was more temporal stability in the soil bacterial community composition, relative to the communities residing on the leaves and fruit, and low similarity between the belowground and aboveground communities. Bacteria in the soil were more influenced by deterministic processes, while stochastic processes were more important for community assembly in the phyllosphere. CONCLUSIONS: The higher temporal variability and the stochastic nature of the community assembly processes observed in the phyllosphere communities highlights why predicting the responsiveness of phyllosphere communities to environmental change, or the likelihood of pathogen invasion, can be challenging. The relative temporal stability and the influence of deterministic selection on soil microbial communities suggests a greater potential for their prediction and reliable manipulation.

13.
Sci Total Environ ; 899: 166372, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598964

RESUMO

The effects of cadmium (Cd) contamination on the assembly mechanism and co-occurrence patterns of arbuscular mycorrhizal (AM) fungal communities remain unclear, especially in urban green spaces. This study sequenced AM fungal communities in greenbelt soils in Zhengzhou (China). The effects of Cd contamination on the AM fungal diversity, community assembly processes, and co-occurrence patterns were explored. We found that (1) an increase in Cd contamination changed the community composition, which resulted in a significant improvement in the diversity of specialists of AM fungi and a significant decrease in the diversity of generalists. (2) Deterministic processes dominated the community assembly of specialists and stochastic processes dominated the community assembly of generalists. (3) Specialists played a more important role than generalists in maintaining the stability of AM fungal networks under Cd contamination. Overall, Cd contamination affected the ecological processes of AM fungi in urban green space ecosystems. However, the effects on the assembly processes and network stability of different AM fungi taxa (specialists and generalists) differed significantly. The present study provides deeper insight into the effect of Cd contamination on the ecological processes of AMF and is helpful in further exploring the ecological risk of Cd contamination in urban green spaces.


Assuntos
Micobioma , Micorrizas , Cádmio , Ecossistema , Parques Recreativos , China
14.
Sci Total Environ ; 894: 164932, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348721

RESUMO

The potential toxic elements of the site are diverse and complex, seriously threatening the land utilization potential and soil ecological function. Microbial community is critical to maintaining ecosystem function, their assembly processes and diversity play an essential role in predicting changes in soil ecological function. However, our understanding of the mechanisms that shape community composition and successional direction in complex polluted environments is very limited. In this study, to explore the mechanisms driving community assembly and symbiosis in different contaminated regional environments, the biological characteristics of bacterial and fungal communities in four different polluted areas of a typical lead smelting site were studied. Contamination by PTEs appears to increase microbial networks, as well as altering microbial community composition, with relative abundance of dominant phyla such as Actinomycetes and Acidobacteria decreasing, whilst Proteobacteria and Ascomycota increased, this indicated that communities may shift from K-strategy to r-strategy and become opportunistic. Dispersal limitation (DL, 42 %-86 %), drift (Dr, 8 %-37 %) and homogeneous selection (HoS, 1 %-31 %) proved to be the important community assembly process. The top ten bins controlling the contribution of different biological processes were identified, and the relative abundance of these bacterial and fungal taxa varied with CPI. Collectively, our results suggest that CPI and nutrient availability regulate soil bacterial and fungal community assembly processes. The results of this study provide potential guidance for community regulation in the process of ecological restoration and mitigating degraded soils at smelting sites.


Assuntos
Microbiota , Solo , Microbiologia do Solo , Chumbo , Consórcios Microbianos , Bactérias
15.
Plant Divers ; 45(1): 27-35, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36876316

RESUMO

The underlying causes of biodiversity disparities among geographic regions have long been a fundamental theme in ecology and evolution. However, the patterns of phylogenetic diversity (PD) and phylogenetic beta diversity (PBD) of congeners that are disjunctly distributed between eastern Asia-eastern North America (EA-ENA disjuncts) and their associated factors remain unknown. Here we investigated the standardized effect size of PD (SES-PD), PBD, and potentially associated factors in 11 natural mixed forest sites (five in EA and six in ENA) where abundant EA-ENA disjuncts occur. We found that the disjuncts in ENA possessed higher SES-PD than those in EA at the continental scale (1.96 vs -1.12), even though the number of disjunct species in ENA is much lower than in EA (128 vs 263). SES-PD of the EA-ENA disjuncts tended to decrease with increasing latitude in 11 sites. The latitudinal diversity gradient of SES-PD was stronger in EA sites than in ENA sites. Based on the unweighted unique fraction metric (UniFrac) distance and the phylogenetic community dissimilarity, PBD showed that the two northern sites in EA were more similar to the six-site ENA group than to the remaining southern EA sites. Based on the standardized effect size of mean pairwise distances (SES-MPD), nine of eleven studied sites showed a neutral community structure (-1.96 ≤ SES-MPD ≤ 1.96). Both Pearson's r and structural equation modeling suggested that SES-PD of the EA-ENA disjuncts was mostly associated with mean divergence time. Moreover, SES-PD of the EA-ENA disjuncts was positively correlated with temperature-related climatic factors, although negatively correlated with mean diversification rate and community structure. By applying approaches from phylogenetics and community ecology, our work sheds light on historical patterns of the EA-ENA disjunction and paves the way for further research.

16.
Environ Microbiome ; 18(1): 19, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932455

RESUMO

The relationships between biodiversity-ecosystem functioning (BEF) for microbial communities are poorly understood despite the important roles of microbes acting in natural ecosystems. Dilution-to-extinction (DTE), a method to manipulate microbial diversity, helps to fill the knowledge gap of microbial BEF relationships and has recently become more popular with the development of high-throughput sequencing techniques. However, the pattern of community assembly processes in DTE experiments is less explored and blocks our further understanding of BEF relationships in DTE studies. Here, a microcosm study and a meta-analysis of DTE studies were carried out to explore the dominant community assembly processes and their potential effect on exploring BEF relationships. While stochastic processes were dominant at low dilution levels due to the high number of rare species, the deterministic processes became stronger at a higher dilution level because the microbial copiotrophs were selected during the regrowth phase and rare species were lost. From the view of microbial functional performances, specialized functions, commonly carried by rare species, are more likely to be impaired in DTE experiments while the broad functions seem to be less impacted due to the good performance of copiotrophs. Our study indicated that shifts in the prokaryotic community and its assembly processes induced by dilutions result in more complex BEF relationships in DTE experiments. Specialized microbial functions could be better used for defining BEF. Our findings may be helpful for future studies to design, explore, and interpret microbial BEF relationships using DTE.

17.
Sci Total Environ ; 871: 162063, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746286

RESUMO

Deciphering the ecological role of soil communities in the maintenance of multiple ecosystem functions is pivotal for the conservation and sustainability of soil biodiversity. However, few studies have investigated niche differentiation of abundant and rare microbiota, as well as their contributions to multiple soil elemental cycles, particularly in agroecosystems that have received decades of intense fertilization. Here, we characterized the environmental thresholds and phylogenetic signals for the environmental adaptation of both abundant and rare microbial subcommunities via amplicon sequencing and metagenomic sequencing and explored their importance in sustaining soil multiple nutrient cycling in agricultural fields that were fertilized for two decades. The results showed that rare taxa exhibited narrower niche breadths and weaker phylogenetic signals than abundant species. The assembly of abundant subcommunity was shaped predominantly by dispersal limitation (explained 71.1 % of the variation in bacteria) and undominated processes (explained 75 % of the variation in fungi), whereas the assembly of rare subcommunity was dominated by homogeneous selection process (explained 100 % of the variation in bacteria and 60 % of the variation in fungi). Soil ammonia nitrogen was the leading factor mediating the balance between stochastic and deterministic processes in both abundant (R2 = 0.15, P < 0.001) and rare (R2 = 0.08, P < 0.001) bacterial communities. Notably, the rare biosphere largely contributed to key soil processes such as carbon (R2bacteria = 0.03, P < 0.05; R2fungi = 0.05, P < 0.05) and nitrogen (R2bacteria = 0.03, P < 0.05; R2fungi = 0.17, P < 0.001) cycling. Collectively, these findings facilitate our understanding of the maintenance of rhizosphere bacterial and fungal diversity in response to agricultural fertilization and highlight the key role of rare taxa in sustaining agricultural ecosystem functions.


Assuntos
Microbiota , Solo , Filogenia , Microbiologia do Solo , Bactérias/genética , Nitrogênio
18.
Sci Total Environ ; 855: 158941, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36152859

RESUMO

Arbuscular mycorrhizal (AM) fungi play an important role in facilitating ecosystem function and stability. Yet, their community response patterns and ecological assembly processes along elevational gradients which cross a range of climates and soil conditions remain elusive. We used Illumina MiSeq sequencing to examine trends in soil AM fungal community along an elevational gradient from 100 m to 2300 m in central Japan. A total of 750 operational taxonomic units (OTUs) affiliated to 12 AM fungal genera were identified from soil samples, and the AM fungal community composition differed strongly with elevation, with variance explained more by climate, followed by soil and plant factors. The AM fungal α-diversity, network connectivity and complexity between AM fungal taxa and also with plant communities all exhibited a maximum at the mid-elevation of 800 m and then declined, principally influenced by soil pH and precipitation. Stochastic processes dominated AM fungal community assembly across the whole elevation gradient, with homogenizing dispersal being the main process. Only when AM fungal communities were contrasted across a relatively broad range of elevations, did variable selection (deterministic process) became significant, and even then in a mixed role with stochasticity. While OTUs of AM fungi are clearly adapted to particular environmental ranges, stochasticity due to rapid dispersal has a major role in determining their occurrence, suggesting that AM fungi may possess generalized and interchangeable niches, and can adjust their distribution rapidly - at least on the scale of a single mountain. This finding emphasizes that the roles of AM fungi in plant ecology may be non-specific and easily substituted, and furthermore that there is rapid local scale dispersal, which may allow plants to maintain effective AM associations under environmental change.


Assuntos
Micobioma , Micorrizas , Micorrizas/fisiologia , Solo/química , Ecossistema , Microbiologia do Solo , Japão , Plantas , Processos Estocásticos , Fungos
19.
mSystems ; 8(1): e0097022, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36511690

RESUMO

The presence of more species in the community of a sampling site (α diversity) typically increases ecosystem functions via nonrandom processes like resource partitioning. When considering multiple communities, we hypothesize that higher compositional difference (ß diversity) increases overall functions of these communities. Further, we hypothesize that the ß diversity effect is more positive when ß diversity is increased by nonrandom assembly processes. To test these hypotheses, we collected bacterioplankton along a transect of 6 sampling sites in the southern East China Sea in 14 cruises. For any pairs of the 6 sites within a cruise, we calculated the Bray-Curtis index to represent ß diversity and summed bacterial biomass as a proxy to indicate the overall function of the two communities. We then calculated deviation of observed mean pairwise phylogenetic similarities among species in two communities from random to represent the influences of nonrandom processes. The bacterial ß diversity was found to positively affect the summed bacterial biomass; however, the effect varied among cruises. Cross-cruise comparison indicated that the ß diversity effect increased with the nonrandom processes selecting for phylogenetically dissimilar species. This study extends biodiversity-ecosystem functioning research to the scale of multiple sites and enriches the framework by considering community assembly processes. IMPORTANCE The implications of our analyses are twofold. First, we emphasize the importance of studying ß diversity. We expanded the current biodiversity-ecosystem functioning framework from single to multiple sampling sites and investigated the influences of species compositional differences among sites on the overall functioning of these sites. Since natural ecological communities never exist alone, our analyses allow us to more holistically perceive the role of biodiversity in natural ecosystems. Second, we took community assembly processes into account to attain a more mechanistic understanding of the impacts of biodiversity on ecosystem functioning.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Filogenia , Organismos Aquáticos , Bactérias/genética
20.
Sci Total Environ ; 863: 160832, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36521602

RESUMO

The diversity and distribution patterns of the abundant and rare microbial sub-communities in hot spring ecosystems and their assembly mechanisms are poorly understood. The present study investigated the diversity and distribution patterns of the total, abundant, conditionally rare, and always rare taxa in the low- and moderate-temperature hot spring sediments on the Tibetan Plateau based on high-throughput 16S rRNA gene sequencing, and explored their major environmental drivers. The diversity of these four bacterial taxa showed no significant change between the low-temperature and moderate-temperature hot spring sediments, whereas the bacterial compositions were obviously different. Stochasticity dominated the bacterial sub-community assemblages, while heterogeneous selection also played an important role in shaping the abundant and conditionally rare taxa between the low-temperature and moderate-temperature hot spring sediments. No significant difference in the topological properties of co-occurrence networks was found between the conditionally rare and abundant taxa, and the connections between the paired operational taxonomic units (OTUs) were almost positive. The diversity of the total, abundant, and conditionally rare taxa was governed by the salinity of hot spring sediments, while that of the always rare taxa was determined by the content of S element. In contrast, temperature had significant direct effect on the composition of the total, abundant, and conditionally rare taxa, but relatively weak influence on that of the always rare taxa. Besides, salinity was another major environmental factor driving the composition of the abundant and rare sub-communities in the hot spring sediments. These results reveal the assembly processes and major environmental drivers that shaped different bacterial sub-communities in the hot spring sediments on the Tibetan Plateau, and indicate the importance of conditionally rare taxa in constructing bacterial communities. These findings enhance the current understanding of the ecological mechanisms maintaining the ecosystem stability and services in extreme environment.


Assuntos
Fontes Termais , Microbiota , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Bactérias , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA