Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 986515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238594

RESUMO

In comparison with ectomycorrhizal (EM) tree species, arbuscular mycorrhizal (AM) trees have different litter quality and nitrogen cycle modes, which may affect mycorrhizal colonization and the community composition and diversity. However, available studies addressing the mycorrhizal fungal colonization rate, diversity and community composition in mixed forest stands composed of AM and EM trees are rare. In the present study, we assessed litter quality, soil physicochemical properties and correlated them with mycorrhizal community characteristics in rhizosphere soils of monoculture and mixture plantation stands of AM tree species (Fraxinus mandschurica Rupr.) and EM tree species (Larix gmelinii Rupr., Picea koraiensis Nakai) in Northeast China. We hypothesized that (1) the effect of mixture pattern on mycorrhizal colonization rate and diversity would change with tree species, (2) the effect of mixture pattern on mycorrhizal community composition would be less pronounced in comparison with that of tree species. We found that mixture did not change AMF colonization rate regardless of mixture identity, whereas mixture and tree species exerted significant effects on EMF colonization rate. For AMF community, both M-AS (Fraxinus mandschurica Rupr. and Picea koraiensis Nakai) and M-AL (Fraxinus mandschurica Rupr. and Larix gmelinii Rupr.) mixtures significantly increased Pielou index and Simpson index, whereas only M-AS significantly increased Sobs. For EMF community, mixture significantly affected examined diversity indices except for Chao1. Mixture significantly shifted AMF and EMF community, and the magnitude was tree species dependent. The dominant genera in AMF and EMF communities in plantation stands were Glomus and Tomentella, respectively. The EnvFit analysis showed that the determinant factors of EMF community are soil moisture, pH, nitrate nitrogen content, dissolved organic nitrogen content, soil organic matter content, soil organic carbon/total nitrogen and litter carbon/total nitrogen. In conclusion, mixed conifer-broadleaf trees significantly changed soil physicochemical properties, litter quality as well as mycorrhizal fungi community diversity and composition.

2.
Ecol Evol ; 12(6): e9016, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784037

RESUMO

Nitrogen (N) deposition poses a serious threat to terrestrial biodiversity and alters plant and soil microbial community composition. Species turnover and nestedness reflect the underlying mechanisms of variations in community composition. However, it remains unclear how species turnover and nestedness contribute to different responses of taxonomic groups (plants and soil microbes) to N enrichment. Here, based on a 13-year consecutive multi-level N addition experiment in a semiarid steppe, we partitioned community ß-diversity into species turnover and nestedness components and explored how and why plant and microbial communities reorganize via these two processes following N enrichment. We found that plant, soil bacterial, and fungal ß-diversity increased, but their two components showed different patterns with increasing N input. Plant ß-diversity was mainly driven by species turnover under lower N input but by nestedness under higher N input, which may be due to a reduction in forb species, with low tolerance to soil Mn2+, with increasing N input. However, turnover was the main contributor to differences in soil bacterial and fungal communities with increasing N input, indicating the phenomenon of microbial taxa replacement. The turnover of bacteria increased greatly whereas that of fungi remained within a narrow range with increasing N input. We further found that the increased soil Mn2+ concentration was the best predictor for increasing nestedness of plant communities under higher N input, whereas increasing N availability and acidification together contributed to the turnover of bacterial communities. However, environmental factors could explain neither fungal turnover nor nestedness. Our findings reflect two different pathways of community changes in plants, soil bacteria, and fungi, as well as their distinct community assembly in response to N enrichment. Disentangling the turnover and nestedness of plant and microbial ß-diversity would have important implications for understanding plant-soil microbe interactions and seeking conservation strategies for maintaining regional diversity.

3.
Ecol Evol ; 12(3): e8700, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342551

RESUMO

We explore the effect of land-use change from extensively used grasslands to intensified silvi- and agricultural monocultures on metacommunity structure of native forests in Uruguay. We integrated methods from metacommunity studies, remote sensing, and landscape ecology to explore how woody species distribution was influenced by land-use change from local to regional scale. We recorded richness and composition of adult and juvenile woody species from 32 native forests, created land-use maps from satellite image to calculate spatial metrics at landscape, class, and patch levels. We also analyzed the influence of land use pattern, climate, topography, and geographic distance between sites (d) on metacommunity, and created maps to visualize species richness and (dis)similarity between communities across the country. Woody species communities were distributed in a discrete pattern across Uruguay. Precipitation and temperature seasonality shaped species distribution pattern. Species richness and community dissimilarity increased from West to East. Latitude did not influence these patterns. Number of patches, landscape complexity, and interspersion and juxtaposition indexes determine woody species distribution at landscape level. Increasing areas covered by crops and timber plantation reduced species richness and increased community dissimilarity. The spatial metrics of native forest fragments at patch level did not influence metacommunity structure, species richness, and community dissimilarity. In conclusion, Uruguayan native forests display a high range of dissimilarity. Pressure of neighborhood land uses was the predominant factor for species assemblages. Conserving landscape structures that assure connectivity within and among native forest patches is crucial. On sites with rare target species, the creation of alliances between governmental institution and landowner complemented by incentives for biodiversity conservation provides opportunities to advance in species protection focused on those less tolerant to land-use change.

4.
Imeta ; 1(2): e18, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868564

RESUMO

Microorganisms of the soil-root continuum play key roles in ecosystem function. The Loess Plateau is well known for its severe soil erosion and thick loess worldwide, where mean annual precipitation (MAP) and soil nutrients decrease from the southeast to the northwest. However, the relative influence of environmental factors on the microbial community in four microhabitats (bulk soil, rhizosphere, rhizoplane, and endosphere) in the soil-root continuum along the environmental gradient in the Loess Plateau remains unclear. In this study, we investigated 82 field sites from warm-temperate to desert grasslands across the Loess Plateau, China, to assess the bacterial diversity, composition, community assembly, and co-occurrence networks in the soil-root continuum along an environmental gradient using bacterial 16S recombinant DNA amplicon sequencing. We discovered that the microhabitats explained the largest source of variations in the bacterial diversity and community composition in this region. Environmental factors (e.g., MAP, soil organic carbon, and pH) impacted the soil, rhizosphere, and rhizoplane bacterial communities, but their effects on the bacterial community decreased with increased proximity to roots from the soil to the rhizoplane, and the MAP enlarged the dissimilarity of microbial communities from the rhizosphere and rhizoplane to bulk soil. Additionally, stochastic assembly processes drove the endosphere communities, whereas the soil, rhizosphere, and rhizoplane communities were governed primarily by the variable selection of deterministic processes, which showed increased importance from warm-temperate to desert grasslands. Moreover, the properties of the microbial networks in the rhizoplane community indicate more stable networks in desert grasslands, likely conferring the resistance of microbial communities in higher stress environments. Collectively, our results showed that the bacterial communities in the soil-root continuum had different sensitivities and assembly mechanisms along an environmental gradient. These patterns are shaped simultaneously by the intertwined dimensions of proximity to roots and environmental stress change in the Loess Plateau.

5.
Biology (Basel) ; 10(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34827082

RESUMO

Species diversity (SD) and genetic diversity (GD) are the two basic levels of biodiversity. In general, according to the consensus view, the parallel effects of environmental heterogeneity, area, and connectivity on two levels, can drive a positive correlation between GD and SD. Conversely, a negative correlation or no correlation would be expected if these effects are not parallel. Our understanding of the relationships between SD and GD among different ecosystems, sampling methods, species, and under climate change remains incomplete. In the present study, we conducted a hierarchical meta-analysis based on 295 observations from 39 studies and found a positive correlation between genetic diversity and species diversity (95% confidence interval, 7.6-22.64%). However, significant relationships were not found in some ecosystems when we conducted species-genetic diversity correlation analysis based on a single ecosystem. Moreover, the magnitudes of the correlations generally decreased with the number of sampling units and the annual average the temperature of sampling units. Our results highlight the positive correlation between GD and SD, thereby indicating that protecting SD involves protecting GD in conservation practice. Furthermore, our results also suggest that global increases in temperature during the 21st century will have significant impacts on global biodiversity.

6.
Glob Chang Biol ; 27(22): 5963-5975, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403163

RESUMO

Understanding the influences of global climate change on soil microbial communities is essential in evaluating the terrestrial biosphere's feedback to this alarming anthropogenic disturbance. However, little is known about how intra-site historical climate variability can mediate the influences of current climate differences on community dissimilarity and assembly. To fill this gap, we examined and disentangled the interactive effects of historical climate variability and current climate differences on the soil bacterial community dissimilarity and stochasticity of community assembly among 143 sites from 28 forests across eastern China. We hypothesize that the relative importance of stochasticity and community dissimilarity are related to historical climate variability and that an increasing sum of intra-site historical variability enhances stochasticity while reduces dissimilarity between two communities. To test our hypothesis, we statistically controlled for covariates between sites including differences in soil chemistry, plant diversity, spatial distance, and seasonal climate variations at annual timescales. We observed that an increase in inter-site current climate differences led to a reduced impact of stochasticity in community assembly and a pronounced divergence between communities. In stark contrast, when communities were subjected to a high level of intra-site historical climate fluctuation, the observed impact incurred from current climate differences was substantially weakened. Moreover, the influence of increased historical variability was consistent along the gradient of current temperature differences between sites. However, effects induced by historical fluctuation in precipitation were disproportional and only evident when small inter-site differences were observed. Consequently, if the prior climate variability is ignored, especially regarding environmental factors like temperature, we assert that the influence current climate differentiation has on regulating community dissimilarity and assembly stochasticity will be underestimated. Together, our findings highlight the importance and need of explicitly controlling the mean and the historical variability of climate factors for the next "generation" of climate change experiments to come.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias , Florestas , Solo
7.
Front Plant Sci ; 12: 804861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975995

RESUMO

Plants and arbuscular mycorrhizal fungi (AMF) can form complex symbiotic networks based on functional trait selection, contributing to the maintenance of ecosystem biodiversity and stability. However, the selectivity of host plants on AMF and the characteristics of plant-AMF networks remain unclear in Tibetan alpine meadows. In this study, we studied the AMF communities in 69 root samples from 23 plant species in a Tibetan alpine meadow using Illumina-MiSeq sequencing of the 18S rRNA gene. The results showed a significant positive correlation between the phylogenetic distances of plant species and the taxonomic dissimilarity of their AMF community. The plant-AMF network was characterized by high connectance, high nestedness, anti-modularity, and anti-specialization, and the phylogenetic signal from plants was stronger than that from AMF. The high connected and nested plant-AMF network potentially promoted the interdependence and stability of the plant-AMF symbioses in Tibetan alpine meadows. This study emphasizes that plant phylogeny and plant-AMF networks play an important role in the coevolution of host plants and their mycorrhizal partners and enhance our understanding of the interactions between aboveground and belowground communities.

8.
R Soc Open Sci ; 6(11): 190883, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31827836

RESUMO

Predicting disease emergence and outbreak events is a critical task for public health professionals and epidemiologists. Advances in global disease surveillance are increasingly generating datasets that are worth more than their component parts for prediction-oriented work. Here, we use a trait-free approach which leverages information on the global community of human infectious diseases to predict the biogeography of pathogens through time. Our approach takes pairwise dissimilarities between countries' pathogen communities and pathogens' geographical distributions and uses these to predict country-pathogen associations. We compare the success rates of our model for predicting pathogen outbreak, emergence and re-emergence potential as a function of time (e.g. number of years between training and prediction), pathogen type (e.g. virus) and transmission mode (e.g. vector-borne). With only these simple predictors, our model successfully predicts basic network structure up to a decade into the future. We find that while outbreak and re-emergence potential are especially well captured by our simple model, prediction of emergence events remains more elusive, and sudden global emergences like an influenza pandemic are beyond the predictive capacity of the model. However, these stochastic pandemic events are unlikely to be predictable from such coarse data. Together, our model is able to use the information on the existing country-pathogen network to predict pathogen outbreaks fairly well, suggesting the importance in considering information on co-occurring pathogens in a more global view even to estimate outbreak events in a single location or for a single pathogen.

9.
Environ Monit Assess ; 191(5): 288, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31001723

RESUMO

Despite the importance of assessing beta diversity to understand the effects of human modifications on biological communities, there are almost no studies that properly addressed how beta diversity varies along anthropogenic gradients. We developed an algorithm to calculate beta diversity among a set of sites included in a moving window along any given environmental gradient. This allowed us to assess beta diversity among sites with similar conditions in terms of human modifications (e.g., land use or instream degradation). We investigated beta diversity using stream fish community data and indicators of human modification quantified at four spatial scales (whole catchment, riparian, local, and instream). Variation in beta diversity was dependent on the scale of human modifications (catchment, riparian, local, instream, and all four scales combined) and on the type of diversity considered (taxonomic or functional). We also found evidence for non-linear responses of both taxonomic and functional beta diversity to human-induced environmental alterations. Therefore, the response of beta diversity was more complex than expected, as it depended on the scale used to quantify human impact and exhibited opposite responses depending on the location along the environmental impact gradient and on whether the response was taxonomic or functional diversity. Anthropogenic modifications can introduce unexpected variability among stream communities, which means that low beta diversity may not necessarily indicate a degraded environmental condition and high beta diversity may not always indicate a reference environmental condition. This has implications for how we should consider beta diversity in environmental assessments.


Assuntos
Biodiversidade , Monitoramento Ambiental/métodos , Peixes , Animais , Biota , Humanos , Rios , Alimentos Marinhos
10.
Mol Ecol ; 22(23): 5949-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24112555

RESUMO

Symbiotic interactions are common in nature. In dynamic or degraded environments, the ability to associate with multiple partners (i.e. broad specificity) may enable species to persist through fluctuations in the availability of any particular partner. Understanding how species interactions vary across landscapes is necessary to anticipate direct and indirect consequences of environmental degradation on species conservation. We asked whether mycorrhizal symbiosis by populations of a rare epiphytic orchid (Epidendrum firmum) is related to geographic or environmental heterogeneity. The latter would suggest that interactions are governed by environmental conditions rather than historic isolation of populations and/or mycorrhizal fungi. We used DNA-based methods to identify mycorrhizal fungi from eleven E. firmum populations in Costa Rica. We used molecular and phylogenetic analyses to compare associations. Epidendrum firmum exhibited broad specificity, associating with diverse mycorrhizal fungi, including six Tulasnellaceae molecular operational taxonomic units (MOTUs), five Sebacinales MOTUs and others. Notably, diverse mycorrhizal symbioses formed in disturbed pasture and roadside habitats. Mycorrhizal fungi exhibited significant similarity within populations (spatial and phylogenetic autocorrelation) and significant differences among populations (phylogenetic community dissimilarity). However, mycorrhizal symbioses were not significantly associated with biogeographic or environmental features. Such unexpected heterogeneity among populations may result from complex combinations of fine-scale environmental factors and macro-evolutionary patterns of change in mycorrhizal specificity. Thus, E. firmum exhibits broad specificity and the potential for opportunistic associations with diverse fungi. We suggest that these characteristics could confer symbiotic assurance when mycorrhizal fungi are stochastically available, which may be crucial in dynamic or disturbed habitats such as tropical forest canopies.


Assuntos
Micorrizas/classificação , Orchidaceae/microbiologia , Filogenia , Simbiose , Ascomicetos/classificação , Ascomicetos/genética , Basidiomycota/classificação , Basidiomycota/genética , Biodiversidade , Costa Rica , Código de Barras de DNA Taxonômico , Dados de Sequência Molecular , Micorrizas/genética , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA