Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2407294, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159137

RESUMO

Single-atom catalysts (SACs) with edge-located metal active sites exhibit superior oxygen reduction reaction (ORR) performance due to their narrower energy gap and higher electron density. However, controllably designing such active sites to fully reveal their advantages remains challenging. Herein, rich edge-located Fe-N4 active sites anchored in hierarchically porous carbon nanofibers (denoted as e1-Fe-N-C) are fabricated via an in situ zinc-assisted thermal etching strategy. The e1-Fe-N-C catalyst demonstrates superior alkaline ORR activity compared to counterparts with fewer edge-located Fe-N4 sites and commercial Pt/C. Density functional theory calculations show that the accumulation of more negative charges near the Fe-N and the formation of partially reduced Fe state in the edge-located Fe-N4 sites reduce the energy barrier for the ORR process. Additionally, the unique hierarchically porous structures with mesopores and macropores facilitate full utilization of the active sites and enhance long-range mass transfer. The zinc-air battery (ZAB) assembled with e1-Fe-N-C has a peak power density of 198.9 mW cm-2, superior to commercial Pt/C (152.3 mW cm-2). The present strategy by facile controlling the amount of the zinc acetate template systematically demonstrates the superiority of edge-located Fe-N4 sites, providing a new design avenue for rational defect engineering to achieve high-performance ORR.

2.
Adv Sci (Weinh) ; : e2405187, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159133

RESUMO

Defect engineering is a key chemical tool to modulate the electronic structure and reactivity of nanostructured catalysts. Here, it is reported how targeted introduction of defect sites in a 2D palladium metallene nanostructure results in a highly active catalyst for the alkaline oxygen reduction reaction (ORR). A defect-rich WOx and MoOx modified Pd metallene (denoted: D-Pd M) is synthesized by a facile and scalable approach. Detailed structural analyses reveal the presence of three distinct atomic-level defects, that are pores, concave surfaces, and surface-anchored individual WOx and MoOx sites. Mechanistic studies reveal that these defects result in excellent catalytic ORR activity (half-wave potential 0.93 V vs. RHE, mass activity 1.3 A mgPd-1 at 0.9 V vs. RHE), outperforming the commercial references Pt/C and Pd/C by factors of ≈7 and ≈4, respectively. The practical usage of the compound is demonstrated by integration into a custom-built Zn-air battery. At low D-Pd M loading (26 µgPd cm-2), the system achieves high specific capacity (809 mAh gZn -1) and shows excellent discharge potential stability. This study therefore provides a blueprint for the molecular design of defect sites in 2D metallene nanostructures for advanced energy technology applications.

3.
ChemSusChem ; : e202401311, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158369

RESUMO

Pitch-based porous carbons with adjustable surface chemical property and controllable pore structure are regarded as promising cathode materials for aqueous zinc-ion hybrid capacitors (ZIHCs), while its disordered carbon matrix and microstructure as well as insufficient surface defects often result in low Zn2+-storage capacity and poor rate capability of ZIHCs. Herein, a synergetic strategy of self-assembled supermolecule and enriched defective carbon engineering was developed to achieve ultrahigh edge-nitrogen doping for ZIHCs. The crystallite defects and surface structure of porous carbon could be effectively achieved through grafting electronegative oxygen-containing small molecules and high-level nitrogen-containing functional groups between modified polycyclic aromatic hydrocarbon and supermolecule framework. The optimized three-dimensional carbon structure delivered high capacity of 218 mAh g-1 at 0.2 A g-1, fast charge/discharge capability, enhanced energy density (165.4 Wh kg-1) and superior cycling stability (95% retention after 10000 cycles as cathode of ZIHCs). This provided new insight into the controllable synthesis of carbon cathodes for ZIHCs and expects to prepare functional porous carbon by supermolecules and special precursors.

4.
Nanomicro Lett ; 16(1): 273, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39147921

RESUMO

Defect engineering in transition metal oxides semiconductors (TMOs) is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials. However, achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive, posing a substantial challenge to the advancement of TMOs absorbers. The current research describes a process for the deposition of a MoO3 layer onto SiC nanowires, achieved via electro-deposition followed by high-temperature calcination. Subsequently, intentional creation of oxygen vacancies within the MoO3 layer was carried out, facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material. Remarkably, the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of - 50.49 dB at a matching thickness of 1.27 mm. Furthermore, the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm, comprehensively covering the entire Ku band. These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness. SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO3 nanocomposite. The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution, which in turn enhances conductivity loss and induced polarization loss capacity. This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.

5.
Angew Chem Int Ed Engl ; : e202409951, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177482

RESUMO

Mesoporous metal‒organic frameworks (MOFs) are promising supports for the immobilization of enzymes, yet their applications are often limited by small pore apertures that constrain the size of encapsulated enzymes to below 5 nm. In this study, we introduced labile linkers (4,4',4''-(2,4,6-boroxintriyl)-tribenzoate, TBTB) with dynamic boroxine bonds into mesoporous PCN-333, resulting in PCN-333-TBTB with enhanced enzyme loading and protection capabilities. The selective breaking of B-O bonds creates defects in PCN-333, which effectively expands both window and cavity sizes, thereby unlocking hidden mesopores for enzyme encapsulation. Consequently, this strategy not only increases the adsorption kinetics of small enzymes (<5 nm) such as cytochrome c (Cyt C) and horseradish peroxidase (HRP), but also enables the immobilization of various large-sized enzymes (>5 nm), such as glycoenzymes. The glycoenzymes@PCN-333-TBTB platform was successfully applied to synthesize thirteen complex oligosaccharides and polysaccharides, demonstrating high activity and enhanced enzyme stability. The dynamic linker-mediated enzyme encapsulation strategy enables the immobilization of enzymes exceeding the inherent pore size of MOFs, thus broadening the scope of enzymatic catalytic reactions achievable with MOF materials.

6.
ACS Sens ; 9(8): 4196-4206, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39096304

RESUMO

Reliable and real-time monitoring of seafood decay is attracting growing interest for food safety and human health, while it is still a great challenge to accurately identify the released triethylamine (TEA) from the complex volatilome. Herein, defect-engineered WO3-x architectures are presented to design advanced TEA sensors for seafood quality assessment. Benefiting from abundant oxygen vacancies, the obtained WO2.91 sensor exhibits remarkable TEA-sensing performance in terms of higher response (1.9 times), faster response time (2.1 times), lower detection limit (3.2 times), and higher TEA/NH3 selectivity (2.8 times) compared with the air-annealed WO2.96 sensor. Furthermore, the definite WO2.91 sensor demonstrates long-term stability and anti-interference in complex gases, enabling the accurate recognition of TEA during halibut decay (0-48 h). Coupled with the random forest algorithm with 70 estimators, the WO2.91 sensor enables accurate prediction of halibut storage with an accuracy of 95%. This work not only provides deep insights into improving gas-sensing performance by defect engineering but also offers a rational solution for reliably assessing seafood quality.


Assuntos
Algoritmos , Óxidos , Alimentos Marinhos , Tungstênio , Alimentos Marinhos/análise , Tungstênio/química , Óxidos/química , Qualidade dos Alimentos , Algoritmo Florestas Aleatórias
7.
Adv Sci (Weinh) ; : e2401975, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120481

RESUMO

Hydrogen, a clean resource with high energy density, is one of the most promising alternatives to fossil. Proton exchange membrane water electrolyzers are beneficial for hydrogen production because of their high current density, facile operation, and high gas purity. However, the large-scale application of electrochemical water splitting to acidic electrolytes is severely limited by the sluggish kinetics of the anodic reaction and the inadequate development of corrosion- and highly oxidation-resistant anode catalysts. Therefore, anode catalysts with excellent performance and long-term durability must be developed for anodic oxygen evolution reactions (OER) in acidic media. This review comprehensively outlines three commonly employed strategies, namely, defect, phase, and structure engineering, to address the challenges within the acidic OER, while also identifying their existing limitations. Accordingly, the correlation between material design strategies and catalytic performance is discussed in terms of their contribution to high activity and long-term stability. In addition, various nanostructures that can effectively enhance the catalyst performance at the mesoscale are summarized from the perspective of engineering technology, thus providing suitable strategies for catalyst design that satisfy industrial requirements. Finally, the challenges and future outlook in the area of acidic OER are presented.

8.
ACS Nano ; 18(34): 23457-23467, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39145749

RESUMO

All-inorganic perovskite films have emerged as promising candidates for laser gain materials owing to their outstanding optoelectronic properties and straightforward solution processing. However, the performance of blue perovskite lasing still lags far behind due to the inevitable high density of defects. Herein, we demonstrate that defects can be utilized instead of passivated/removed to form bound excitons to achieve excellent blue stimulated emission in perovskite films. Such a strategy emphasizes defect engineering by introducing a deep-level defect in mixed-Rb/Cs perovskite films through octylammonium bromide (OABr) additives. Consequently, the OA-Rb/Cs perovskite films exhibit blue amplified spontaneous emission (ASE) from defect-related bound excitons with a low threshold (13.5 µJ/cm2) and a high optical gain (744.7 cm-1), which contribute to a vertical-cavity surface-emitting laser with single-mode blue emission at 482 nm. This work not only presents a facile method for creating blue laser gain materials but also provides valuable insights for further exploration of high-performance blue lasing in perovskite films.

9.
Small ; : e2403354, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101616

RESUMO

Defect engineering is an effective strategy to enhance the enzyme-like activity of nanozymes. However, previous efforts have primarily focused on introducing defects via de novo synthesis and post-synthetic treatment, overlooking the dynamic evolution of defects during the catalytic process involving highly reactive oxygen species. Herein, a defect-engineered metal-organic framework (MOF) nanozyme with mixed linkers is reported. Over twofold peroxidase (POD)-like activity enhancement compared with unmodified nanozyme highlights the critical role of in situ defect formation in enhancing the catalytic performance of nanozyme. Experimental results reveal that highly active hydroxyl radical (•OH) generated in the catalytic process etches the 2,5-dihydroxyterephthalic acid ligands, contributing to electronic structure modulation of metal sites and enlarged pore sizes in the framework. The self-enhanced POD-like activity induced by in situ defect engineering promotes the generation of •OH, holding promise in colorimetric sensing for detecting dichlorvos. Utilizing smartphone photography for RGB value extraction, the resultant sensing platform achieves the detection for dichlorvos ranging from 5 to 300 ng mL-1 with a low detection limit of 2.06 ng mL-1. This pioneering work in creating in situ defects in MOFs to improve catalytic activity offers a novel perspective on traditional defect engineering.

10.
Small ; : e2403661, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994824

RESUMO

Efficient conversion of biomass wastes into valuable chemicals has been regarded as a sustainable approach for green and circular economy. Herein, a highly efficient catalytic conversion of glycerol (Gly) into glycerol carbonate (GlyC) by carbonylation with the commercially available urea is presented using low-cost transition metal single atoms supported on zinc oxide quantum dots (M1-ZnO QDs) as a catalyst without using any solvent. A facile one-step wet chemical synthesis allows various types of metal single atoms to simultaneously dope and introduce Lewis-acid defects in the ZnO QD structure. It is found that doping with a trace amount of isolated metal atoms greatly boosts the catalytic activity with Gly conversion of 90.7%, GlyC selectivity of 100.0%, and GlyC yield of 90.6%. Congruential results from both Density Functional Theory (DFT) and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) studies reveal that the superior catalytic performance can be attributed to the enriched Lewis acid sites that endow optimal adsorption, formation of the intermediate for coupling between urea and Gly, and desorption of GlyC. Moreover, the tiny size of ZnO QDs efficiently promotes the accessibility of these active sites to the reactants.

11.
Adv Mater ; : e2406353, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049581

RESUMO

Semiconducting fibers (SCFs) are of significant interest to design next-generation wearable and comfortable optoelectronics that seamlessly integrate with textiles. However, the practical applications of current SCFs are always limited by poor optoelectronic performance and low mechanical robustness caused by uncontrollable multiscale structural defects. Herein, a versatile in situ molecular soldering-governed defect engineering strategy is proposed to construct ultrahigh responsivity and robust wet-spun MoS2 SCFs, by using a π-conjugated dithiolated molecule to simultaneously patch microscale sulfur vacancies within MoS2 nanosheets, diminish mesoscale interlayer voids/wrinkles, promote macroscale orientation, build long-range photoelectron percolation bridges, and provide n-doping effect. The derived MoS2 SCFs exhibit over two orders of magnitude higher responsivity (144.3 A W-1) than previously reported fiber photodetectors, 37.3-fold faster photoresponse speed (52 ms) than pristine counterpart, and remarkable bending robustness (retain 94.2% of the initial photocurrent after 50 000 bending-flattening cycles). Such superior robustness and photodetection capacity of MoS2 SCFs further enable large-scale weaving of reliable smart textile optoelectronic systems, such as direction-identifiable wireless light alarming system, modularized mechano-optical communication system, and indoor light-controlled IoT system. This work offers a universal strategy for the scalable production of mechanically robust and high-performance SCFs, opening up exciting possibilities for large-scale integration of wearable optoelectronics.

12.
Front Chem ; 12: 1416329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947956

RESUMO

5-Hydroxymethylfurfural (HMF), serving as a versatile platform compound bridging biomass resource and the fine chemicals industry, holds significant importance in biomass conversion processes. The electrooxidation of HMF plays a crucial role in yielding the valuable product (2,5-furandicarboxylic acid), which finds important applications in antimicrobial agents, pharmaceutical intermediates, polyester synthesis, and so on. Defect engineering stands as one of the most effective strategies for precisely synthesizing electrocatalytic materials, which could tune the electronic structure and coordination environment, and further altering the adsorption energy of HMF intermediate species, consequently increasing the kinetics of HMF electrooxidation. Thereinto, the most routine and effective defect are the anionic vacancies and cationic vacancies. In this concise review, the catalytic reaction mechanism for selective HMF oxidation is first elucidated, with a focus on the synthesis strategies involving both anionic and cationic vacancies. Recent advancements in various catalytic oxidation systems for HMF are summarized and synthesized from this perspective. Finally, the future research prospects for selective HMF oxidation are discussed.

13.
ACS Appl Mater Interfaces ; 16(31): 40903-40913, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39068602

RESUMO

VO2 with its special tunnel structure and high theoretical capacity is an ideal candidate for cathode materials for aqueous zinc-ion batteries (ZIBs). However, the slow kinetics and structural instability due to the strong electrostatic interactions between the host structure of VO2 and Zn2+ hinder its application. Defect engineering is a well-recognized strategy for improving the intrinsic ion-electron dynamics and structural stability of this material. However, the preparation of oxygen vacancies poses significant difficulties, and it is challenging to control their concentration effectively. Excessive or insufficient vacancy concentration can have a negative effect on the cathode material. Herein, we propose electrode materials with controlled oxygen vacancies prepared in situ on carbon nanofibers (CNF) by a simple, one-step hydrothermal process (Ov-VO2@CNF). This method can balance the adsorption energy and migration energy barrier easily, and we maximized the adsorption energy of Zn2+ while minimizing the adsorption energy barrier. Notably, the Ov2-VO2@CNF electrode delivered a high specific capacity (over 450 mAh g-1 at 0.1 A g-1) and excellent cycle stability (318 mAh g-1 at 5 A g-1 capacity after 2000 cycles with a capacity retention of 85%). This rational design of precisely regulated defect engineering provides a way to obtain advanced electrode materials with excellent comprehensive properties.

14.
Adv Mater ; 36(35): e2403785, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39007279

RESUMO

In this era of artificial intelligence and Internet of Things, emerging new computing paradigms such as in-sensor and in-memory computing call for both structurally simple and multifunctional memory devices. Although emerging two-dimensional (2D) memory devices provide promising solutions, the most reported devices either suffer from single functionalities or structural complexity. Here, this work reports a reconfigurable memory device (RMD) based on MoS2/CuInP2S6 heterostructure, which integrates the defect engineering-enabled interlayer defects and the ferroelectric polarization in CuInP2S6, to realize a simplified structure device for all-in-one sensing, memory and computing. The plasma treatment-induced defect engineering of the CuInP2S6 nanosheet effectively increases the interlayer defect density, which significantly enhances the charge-trapping ability in synergy with ferroelectric properties. The reported device not only can serve as a non-volatile electronic memory device, but also can be reconfigured into optoelectronic memory mode or synaptic mode after controlling the ferroelectric polarization states in CuInP2S6. When operated in optoelectronic memory mode, the all-in-one RMD could diagnose ophthalmic disease by segmenting vasculature within biological retinas. On the other hand, operating as an optoelectronic synapse, this work showcases in-sensor reservoir computing for gesture recognition with high energy efficiency.

15.
J Colloid Interface Sci ; 675: 104-116, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968631

RESUMO

Exploring precious metal-free bifunctional electrocatalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is essential for the practical application of rechargeable Zn-air battery (ZAB). Herein, Ni-doped Co9S8 nanoparticles embedded in a defect-rich N, S co-doped carbon matrix (d-NixCo9-xS8@NSC) are synthesized via a facile pyrolysis and acid treatment process. The introduction of abundant defects in both the carbon matrix and metal sulfide provides numerous active sites and significantly enhances the electrocatalytic performances for both the ORR and OER. d-NixCo9-xS8@NSC exhibits a superior half-wave potential of 0.841 V vs. RHE for the ORR and delivers a low overpotential of 0.329 V at 10 mA cm-2 for the OER. Additionally, Zn-air secondary battery using d-NixCo9-xS8@NSC as the air cathode displays a higher specific capacity of 734 mAh gZn-1 and a peak power density of 148.03 mW cm-2 compared to those of state-of-the-art Pt/C-RuO2 (673 mAh gZn-1 and 136.9 mW cm-2, respectively). These findings underscore the potential of d-NixCo9-xS8@NSC as a high-performance electrocatalyst for secondary ZABs, offering new perspectives on the design of efficient noble metal-free electrocatalysts for future energy storage and conversion applications.

16.
J Colloid Interface Sci ; 675: 815-824, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39002232

RESUMO

Oxygen vacancy engineering in transition metal oxides is an effective strategy for improving catalytic performance. Herein, defect-enriched Mn2O3 catalysts were constructed by controlling the calcination temperature. The high content of oxygen vacancies and accompanying Mn4+ ions were generated in Mn2O3 catalysts calcined at low temperature, which could greatly improve the low-temperature reducibility and migration of surface oxygen species. DFT theoretical calculations further confirmed that molecular oxygen and toluene were easily adsorbed over defective α-Mn2O3 (222) facets with an energy of -0.29 and -0.48 eV, respectively, and corresponding OO bond length is stretched to 1.43 Å, resulting in the highly reactive oxygen species. Mn2O3-300 catalyst with abundant oxygen vacancies exhibited the highest specific reaction rate and lowest activation energy. Furthermore, the optimized catalyst possessed the outstanding stability, water tolerance and CO2 yield. In comparison with the fresh Mn2O3-300 catalyst, the physical structure and surface property of the used catalyst remained almost unchanged regardless of whether undergoing the stability test at consecutive catalytic runs as well as high temperature, and water resistance test. In situ DRIFTS spectra further elucidated that introducing the water vapor had little effect on the reaction intermediates, indicating the excellent durability of the defect-enriched catalyst.

17.
J Colloid Interface Sci ; 676: 310-322, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39042959

RESUMO

Spatially-ordered S-scheme photocatalysts are intriguing due to their enhanced light harvesting, spatially isolated redox sites, and strong redox abilities. Nonetheless, heightening the performance of S-scheme photocatalysts via controllable defect engineering is still challenging to now. In this work, multi-armed MoSe2/CdS S-scheme heterojunction with intimate Mo-S bond coupling and adjustable Se vacancies (VSe) and Mo5+ concentrations was constructed, which consisted of few- or even single-layered MoSe2 growing on the {11-20} facets of wurtzite CdS arms. The S-scheme charge transmission mechanism of MoSe2/CdS heterojunction was validated by density functional theory calculation combined with in situ photo-irradiated X-ray photoelectron spectroscopy, surface photovoltage, and radical measurements. Moreover, the Fermi level gap between CdS and MoSe2 was enlarged by regulating the contents of donor (VSe) and acceptor (Mo5+) impurities with synthesis temperature, which strengthens the built-in electric field and carriers transfer driving force of MoSe2/CdS composites, contributing to an outstanding H2 evolution activity of 52.62 mmol·g-1·h-1 (corresponding to an apparent quantum efficiency of 34.8 % at 400 nm) under visible-light irradiation (λ > 400 nm), 25.8 times that of Pt-loaded CdS counterpart and a substantial amount of reported CdS-containing photocatalysts. Our study results are anticipated to facilitate the rational design of advanced semiconductor nanostructures for efficient solar conversion and utilization.

18.
ACS Appl Mater Interfaces ; 16(28): 36784-36795, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38967626

RESUMO

Tailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise control and tuning of the defect size, position, and density remain challenging; moreover, due to their characteristic labyrinthine morphology, conventional characterization techniques and widely accepted quality indicators fail or need to be reformulated. This study primarily focuses on examining the impact of boron heterodoping and argon plasma treatment on CNW structures, uncovering complex interplays between specific defect-induced three-dimensional nanostructures and electrochemical performance. Moreover, the study introduces the use of defect-rich CNWs as a label-free electrode for directly oxidizing glyphosate (GLY), a common herbicide, and its metabolites (sarcosine and aminomethylphosphonic acid) for the first time. Crucially, we discovered that the presence of specific boron bonds (BC and BN), coupled with the absence of Lewis-base functional groups such as pyridinic-N, is essential for the oxidation of these analytes. Notably, the D+D* second-order combinational Raman modes at ≈2570 cm-1 emerged as a reliable indicator of the analytes' affinity. Contrary to expectations, the electrochemically active surface area and the presence of oxygen-containing functional groups played a secondary role. Argon-plasma post-treatment was found to adversely affect both the morphology and surface chemistry of CNWs, leading to an increase in sp3-hybridized carbon, the introduction of oxygen, and alterations in the types of nitrogen functional groups. Simulations support that certain defects are functional for GLY rather than AMPA. Sarcosine oxidation is the least affected by defect type.

19.
Angew Chem Int Ed Engl ; : e202409179, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004946

RESUMO

Crystalline red phosphorus(CRP), known for its promising photocatalytic properties, faces challenges in photocatalytic hydrogen evolution(PHE) due to undesired inherent charge deep trapping and recombination effects induced by defects. This study overcomes these limitations through an innovative strategy in integrating ruthenium single atoms(Ru1) within CRP to simultaneously repair the intrinsic undesired vacancy defects and serve as the uniformly distributed anchoring sites for a controllable growth into ruthenium nanoparticles(RuNP). Hence, a highly functionalized CRP with Ru1 and RuNP(Ru1-NP/CRP) with concerted effects in regulating electronic structures and promoting interfacial charge transfer has been achieved. Advanced characterizations unveil the pioneering dual role of pre-anchored Ru1 in transforming CRP photocatalysis. The regulations of vacancy defects on the surface of CRP minimize the detrimental deep charge trapping, resulting in the prolonged lifetime of charges. With the well-distributed in-situ growth of RuNP on Ru1 sites, the constructed robust "bridge" that connects CRP and RuNP facilitates constructive interfacial charge transfer. Ultimately, the synergistic effect induced by the pre-anchored Ru1 endows Ru1-NP/CRP with an exceptional PHE rate of 3175µmolh-1g-1, positioning it as one of the most efficient elemental-based photocatalysts. This breakthrough underscores the crucial role of pre-anchoring metal single atoms at defect sites of catalysts in enhancing hydrogen production.

20.
J Phys Condens Matter ; 36(41)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38942001

RESUMO

Photocatalysis and photoelectrochemical (PEC) reactions are complex processes involving both the physical properties and surface chemistry of the semiconductor photocatalyst. Their interplay applies specific limitations on the performance of different materials in light-driven reactions, often despite their optimal band structure and optical absorption. One of the ways to properly characterize the photocatalytic and PEC properties of semiconductors remains the measurement of the photopotential, which characterizes a driving force of photoinduced processes in the material. In this work, we give a general scope on the photopotential in PEC reactions that finds its origin in semiconductor physics. It is shown that the photopotential does not always play an interchangeable role with the photocurrent in comparative analysis of the photocatalytic performance of different materials. Furthermore, a correlation between the photopotential and the kinetics of methylene blue dye photocatalysis is shown for anatase-TiO2, CeO2and WO3as photocatalysts. Fermi level pinning (FLP) in the bandgap of CeO2is observed limiting the photoactivity of the compound, which is attributed to the high defectivity of CeO2. A short review is given on the possible origins of FLP in metal oxides and ways to overcome it. It is pointed out that the shift of the Fermi level after illumination of CeO2can trigger the chemical instability of the material accompanied by the FLP process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA