Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.381
Filtrar
1.
J Sports Sci ; 42(16): 1579-1588, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39270005

RESUMO

Hamstring strain injuries (HSIs) remain a burden with high prevalence rates. The Nordic Hamstring exercise (NHE) has been found to be effective in preventing HSIs. However, the preventive mechanisms are not fully understood. Changes in stiffness are postulated as a possible protective mechanism. Surprisingly, the effect of the NHE on the stiffness of different hamstring muscles has never been investigated before. Therefore, the aim of this Randomised controlled trial was to investigate the impact of a 10-week NHE programme on the eccentric strength and the shear wave velocity (proxy of stiffness) of the hamstrings. Thirty-six soccer players were randomly assigned to either the control or the experimental group. The experimental protocol consisted of the incorporation of a 10-week NHE programme within the normal training routine. The hamstring stiffness and eccentric strength were assessed before and after. Within-group analyses showed a significant increase in strength, only for the experimental group. However, no significant effect of the NHE was found on the stiffness of each hamstring muscle. A 10-week NHE programme does not affect hamstring stiffness, despite an increase in eccentric strength, indicating that the preventive mechanism of the NHE is probably not (co-)explained by alterations in hamstring muscle stiffness.


Assuntos
Técnicas de Imagem por Elasticidade , Músculos Isquiossurais , Força Muscular , Futebol , Humanos , Músculos Isquiossurais/fisiologia , Futebol/fisiologia , Masculino , Força Muscular/fisiologia , Adulto Jovem , Entorses e Distensões/prevenção & controle , Adulto
2.
Physiol Rep ; 12(18): e70064, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39328164

RESUMO

The use of tobacco cigarettes produces locomotor muscle weakness and fatigue intolerance. Also, smokers and chronic obstructive pulmonary disease patients have a greater incidence of muscle injury and a deficient myogenic response. However, the effects of smoke exposure on the recovery from eccentric exercise-induced muscle injuries are unknown. Mice were exposed daily to cigarette smoke (CS) or room air (Air) for 4 months; the anterior crural muscles from one limb were injured by a lengthening contractions protocol (LCP) and recovered for 7 days. Lung compliance was greater, and body weights were lower, in CS-exposed than in the Air group. In LCP-subjected limbs, CS exposure lowered tibialis anterior myofiber cross-sectional area, decreased the size of centrally nucleated myofibers, and decreased extensor digitorum longus (EDL) mass, but did not affect EDL force from both limbs. CS exposure upregulated the mRNA levels of several myogenic (Pax7, Myf5, nNOS) genes in the EDL. The combination of CS exposure and LCP decreased Myf5 and nNOS mRNA levels and exacerbated pro-inflammatory mRNA levels. These data suggest that smoke exposure leads to an excessive pro-inflammatory response in regenerating muscle that is associated with a lower muscle mass recovery from a type of injury that often occurs during strenuous exercise.


Assuntos
Camundongos Endogâmicos C57BL , Contração Muscular , Músculo Esquelético , Animais , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Fumaça/efeitos adversos , Fumar Cigarros/efeitos adversos
3.
Res Q Exerc Sport ; : 1-11, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302246

RESUMO

Eccentric exercise has gained attention as a novel exercise modality that increases muscle performance at a lower metabolic demand. However, vascular responses to eccentric cycling (ECC) are unknown, thus gaining knowledge regarding endothelial shear stress (ESS) during ECC may be crucial for its application in patients. The purpose of this study was to explore ECC-induced blood flow patterns and ESS across three different intensities in ECC. Eighteen young, apparently healthy subjects were recruited for two laboratory visits. Maximum oxygen consumption, power output, and blood lactate (BLa) threshold were measured to determine workload intensities. Blood flow patterns in the brachial artery were measured via ultrasound imaging and Doppler on an eccentric ergometer during a 5 min workload steady exercise test at low (BLa of 0-2 mmol/L), moderate (BLa 2-4 mmol/L), and high intensity (BLa levels > 4 mmol/L). There was a significant increase in the antegrade ESS in an intensity-dependent manner (baseline: 44.2 ± 8.97; low: 55.6 ± 15.2; moderate: 56.0 ± 10.5; high: 70.7 ± 14.9, all dynes/cm2, all p values < 0.0002) with the exception between low and moderate and Re (AU) showed turbulent flow at all intensities. Regarding retrograde flow, ESS also increased in an intensity-dependent manner (baseline 9.72 ± 4.38; low: 12.5 ± 3.93; moderate: 15.8 ± 5.45; high: 15.7 ± 6.55, all dynes/cm2, all p values < 0.015) with the exception between high and moderate and Re (AU) showed laminar flow in all intensities. ECC produced exercise-induced blood flow patterns that are intensity-dependent. This suggests that ECC could be beneficial as a modulator of endothelial homeostasis.

4.
Front Physiol ; 15: 1447343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324106

RESUMO

With innovative portable force plate systems being widely implemented for lower-body neuromuscular performance assessment in an applied sports setting and the existing gap in the scientific literature regarding player performance during in-game competitive scenarios, the purpose of the present study was to compare changes in countermovement vertical jump (CVJ) performance pre-post a simulated 3×3 basketball tournament. Seven current or former members of a 3×3 national basketball team volunteered to participate in the present investigation. Upon completing standardized warm-up procedures, athletes stepped on a uni-axial force plate system sampling at 1,000 Hz and performed three maximal-effort CVJs with no arm swing. Then, the athletes proceeded to play a simulated 3×3 basketball tournament composed of two consecutive games, separated by a 15-min rest interval. Immediately following the completion of the second game, the identical CVJ testing procedures were repeated. Paired sample t-tests were used to examine pre-post-tournament differences in nineteen CVJ performance metrics (p < 0.05). The results reveal that force-time metrics during both eccentric and concentric phases of the CVJ remain relatively unchanged pre-post simulated 3×3 basketball tournament. However, multiple force-time metrics within the eccentric phase of the CVJ changed by 12.1%-19.1% (e.g., eccentric peak power and peak velocity, eccentric duration), suggesting that the eccentric phase of CVJ might be responsive to performance stimulus to a greater extent than the concentric phase. Overall, these findings further support the importance of comprehensive CVJ analysis when intending to measure changes in neuromuscular performance.

5.
Bioelectromagnetics ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315588

RESUMO

Pulsed electromagnetic field (PEMF) therapy, a noninvasive treatment, has shown promise in mitigating nerve damage. However, unaccustomed exercises, such as eccentric contractions (ECCs), can damage both muscle and nerve tissue. This study investigated whether magnetic stimulation (MS) with PEMF could aid in nerve recovery after ECCs in the elbow flexors. Twenty participants were randomly assigned to either a control (CNT) or an MS group. Following ECCs, we measured the latency of the M-wave in the musculocutaneous nerve as an indicator of nerve function. Additionally, isometric torque, range of motion, and muscle pain were assessed for muscle function. Interestingly, only the CNT group exhibited a significant increase in latency on Day 2 (p < 0.05). The MS group, on the other hand, displayed an earlier recovery trend in isometric torque, range of motion, and muscle soreness. Notably, muscle soreness significantly decreased immediately after MS treatment compared to pretreatment levels. These findings suggest that MS treatment can effectively attenuate nerve damage induced by ECCs exercise.

6.
Physiol Rep ; 12(18): e70056, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39304515

RESUMO

Extracellular vesicle (EV) cargo is known to change in response to stimuli such as muscle damage. This study aimed to assess particle size, concentration and microRNA (miR) content within small EV-enriched separations prepared from human blood taken before and after unaccustomed eccentric-biased exercise-induced muscle damage. Nine male volunteers underwent plyometric jumping and downhill running, with blood samples taken at baseline, 2, and 24 h post-exercise. EVs were separated using size exclusion chromatography (SEC) and their characteristics evaluated by nanoparticle tracking. No changes in EV size or concentration were seen following the muscle-damaging exercise. Small RNA sequencing identified 240 miRs to be consistently present within the EVs. RT-qPCR analysis was performed: specifically, for known muscle-enriched/important miRs, including miR-1, -206, -133a, -133b, -31, -208b, -451a, -486 and - 499 and the immune-important miR-21, -146a and - 155. Notably, none of the immune-important miRs within the EVs tested changed in response to the muscle damage. Of the muscle-associated miRs tested, only the levels of miR-31-5p were seen to change with decreased levels at 24 h compared to baseline and 2 h, indicating involvement in the damage response. These findings shed light on the dynamic role of EV miRs in response to exercise-induced muscle damage.


Assuntos
Exercício Físico , Vesículas Extracelulares , MicroRNAs , Músculo Esquelético , Humanos , Masculino , Vesículas Extracelulares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/lesões , Exercício Físico/fisiologia , MicroRNAs/sangue , MicroRNAs/metabolismo , Adulto , Adulto Jovem
7.
Int J Sports Physiol Perform ; : 1-10, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39304177

RESUMO

OBJECTIVE: Limited research has directly compared the effectiveness of aqua- and land-based exercises for postexercise recovery. This study aimed to fill this gap by comparing the effects of these 2 types of exercises on postexercise recovery. METHODS: Sixteen male college athletes participated in an 8-day experimental study. The initial 2 days were dedicated to determining the intensity levels for the muscle-damaging exercise and recovery jogging. In a crossover design, participants underwent 2 sets of experimental trials. They were randomly assigned to either an aqua or land recovery intervention for days 3 to 5, and after a 1-week washout period they switched to the opposite intervention for days 6 to 8. Muscle soreness, creatine kinase, anaerobic performance, countermovement-jump height, and flexibility were assessed at different time points: baseline, immediately after downhill running, within 1 hour after jogging, and 24 hours and 48 hours after aqua or land jogging. RESULTS: Significant group × time interaction effects were detected in the perceived soreness of the hamstring and quadriceps. However, the post hoc analysis showed no significant difference between aqua and land jogging groups. No significant group × time interaction effect was observed in creatine kinase, anaerobic performance, countermovement-jump height, or flexibility. CONCLUSION: Aqua and land jogging have similar recovery effects on muscle soreness and performance-based parameters.

8.
J Sports Sci ; : 1-8, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39306705

RESUMO

This study aimed to compare the effects of an accentuated eccentric training programme on physical performance between men and women. Distributed in two groups by gender, 21 male and 21 female athletes performed four sets of seven repetitions of the half-squat exercise twice per week for 6 weeks. Both groups lifted the same absolute load using a rotary inertial device. To accentuate the eccentric action, the eccentric load was twice as heavy as the concentric load. Vertical jump, sprint, and change of direction (COD) performances were measured pre- and post-intervention. To measure strength gains, vertical ground reaction forces were measured for each repetition of the entire training programme. Vertical jump improved post-intervention (MG: 33.88 ± 4.94 to 35.41 ± 4.86; FG: 20.60 ± 4.62 to 22.12 ± 4.32; p < 0.001; η2p = 0.42), while sprint (MG: 3.08 ± 0.11 to 3.07 ± 0.13; FG: 3.66 ± 0.23 to 3.64 ± 0.23) and COD (MG: 7.77 ± 0.42 to 7.61 ± 0.47; FG: 8.44 ± 0.58 to 8.38 ± 0.57) remained unchanged. Concentric and eccentric forces increased for both groups from session 1 to 4 (p < 0.001; η2p >0.39), while only peak eccentric forces increased until session 12 (p = 0.009; η2p = 0.21). In conclusion, even when men are able to produce greater forces with similar loads, accentuated eccentric RT produces similar strength and strength-related adaptations in male and female athletes.

9.
J Sports Sci Med ; 23(1): 581-592, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228780

RESUMO

Recent studies have shown that the extramuscular connective tissue (ECT) is thickened and stiffened in delayed onset muscle soreness (DOMS). However, contrarily to the normal population, severe DOMS is rare in athletes or highly trained individuals. The present randomized, controlled trial therefore aimed to investigate pain as well as microcirculation and stiffness of the ECT and the erector spinae muscle following submaximal eccentric trunk extension exercise not causing DOMS. The effect of manual treatment by a therapist (myofascial release; MFR) on these parameters was to be studied. Trained healthy participants (n = 21; 31.3 ± 9.6 years; > 4 h exercise per week) performed submaximal eccentric exercise of the trunk extensors. One group was manually treated (n = 11), while the other group (n = 10) received placebo treatment with sham laser therapy. Stiffness of the ECT and the erector spinae muscle (shear wave elastography), microcirculation (white light and laser Doppler spectroscopy), palpation pain (100 mm visual analogue scale, VAS) and pressure pain threshold (indentometry, PPT) were assessed before (t0), 24 h (t24) and 48 h (t48) after conditions. Erector spinae muscle stiffness increased after eccentric exercise from t0 to t24 (0.875 m/s) and from t0 to t48 (0.869 m/s). After MFR, erector spinae muscle stiffness decreased in contrast to placebo treatment at t24 (-0.66 m/s), while ECT stiffness remained unchanged. Oxygen saturation increased (17-20.93%) and relative haemoglobin decreased (-9.1 - -12.76 AU) after eccentric exercise and MFR differed from placebo treatment at t48 (-3.71 AU). PPT differed after MFR from placebo treatment at t48 (20.69 N/mm), while VAS remained unchanged. Multiple linear regression showed that ECT stiffness and group membership predicted erector spinae muscle stiffness. MFR could have a positive effect on pain, microcirculation and muscle stiffness after submaximal eccentric exercise, suggesting better recovery, which needs to be confirmed by future work.


Assuntos
Exercício Físico , Microcirculação , Mialgia , Humanos , Microcirculação/fisiologia , Adulto , Masculino , Feminino , Mialgia/terapia , Mialgia/fisiopatologia , Exercício Físico/fisiologia , Manipulações Musculoesqueléticas/métodos , Região Lombossacral/irrigação sanguínea , Região Lombossacral/fisiologia , Adulto Jovem , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Limiar da Dor/fisiologia , Tronco/fisiologia , Medição da Dor , Músculos Paraespinais/fisiologia , Músculos Paraespinais/diagnóstico por imagem , Músculos Paraespinais/irrigação sanguínea
10.
Elife ; 122024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254193

RESUMO

The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.


Assuntos
Modelos Biológicos , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Humanos , Contração Muscular/fisiologia , Animais , Sarcômeros/fisiologia , Impedância Elétrica
11.
Front Sports Act Living ; 6: 1431607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234529

RESUMO

Introduction: Muscle fatigue, characterized by diminished force production and contraction sustainability, can impair muscle coordination and increase joint instability. Differing force profiles used in fatiguing tasks, such as prolonged eccentric trunk protocols, might provide insights into individualized strategies and resulting spinal stability. Thus, this study assessed individual differences in fatigue characteristics during an eccentric trunk flexion-extension protocol in a population of asymptomatic individuals. Methods: Twelve participants (2 f/10 m, 29 ± 4 years, 78.4 ± 16.9 kg, 1.76 ± 0.10 m) performed an eccentric trunk flexion and extension protocol on an isokinetic dynamometer (45° flexion to 10° extension; 60°/s), with final analysis on 8 participants for trunk flexion and 11 for trunk extension due to data exclusions. Participants engaged in a maximal all-out (AO) task for 2 min. Each participant's torque output (Nm) was assessed on a repetition-by-repetition basis, and smoothened by a moving average of 5 repetitions. Individual time profiles for reaching fatigue thresholds (10%, 15%, 20% and 30% reduction of initial torque output), and inter subject variability (by coefficient of variation, CV in %) were assessed throughout the AO task. Further, percentage torque reduction and variability were assessed at mid (1-minute) and end (2-minute) of task. Results: On average, for flexor and extensor muscles combined, participants reached a force reduction of 10% within 23.2 ± 19.1 s, of 15% within 44.9 ± 19.6 s, of 20% in 62.4 ± 26.3 s, and of 30% within 79.2 ± 21.8 s. The variability between individuals for the timepoint of reaching the defined torque thresholds was assessed by CV ranged between 23.4% and 103.8% for trunk flexor muscles, and between 28.4% and 56.5% for trunk extensor muscles. Discussion: A reduction of up to 20% was seen on average for all participants within 1-minute of eccentric trunk flexion and extension. Different inter-individual force output profiles were seen throughout the AO protocol, potentially related to physiological, skill-based, technical, adaptational, and/or motivational factors. The increase in fatigue resulted in a reduction in variability among individuals. A 2-minute protocol effectively induced pronounced fatigue, offering insights into individual force profiles and strategies.

12.
Sci Rep ; 14(1): 18589, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127797

RESUMO

We aimed to assess high-density surface electromyography (HDsEMG)-torque relationships in the presence of delayed onset trunk muscle soreness (DOMS) and the effect of these relationships on torque steadiness (TS) and lumbar movement during concentric/eccentric submaximal trunk extension contractions. Twenty healthy individuals attended three laboratory sessions (24 h apart). HDsEMG signals were recorded unilaterally from the thoracolumbar erector spinae with two 64-electrode grids. HDsEMG-torque signal relationships were explored via coherence (0-5 Hz) and cross-correlation analyses. Principal component analysis was used for HDsEMG-data dimensionality reduction and improvement of HDsEMG-torque-based estimations. DOMS did not reduce either concentric or eccentric trunk extensor muscle strength. However, in the presence of DOMS, improved TS, alongside an altered HDsEMG-torque relationship and kinematic changes were observed, in a contraction-dependent manner. For eccentric trunk extension, improved TS was observed, with greater lumbar flexion movement and a reduction in δ-band HDsEMG-torque coherence and cross-correlation. For concentric trunk extensions, TS improvements were observed alongside reduced thoracolumbar sagittal movement. DOMS does not seem to impair the ability to control trunk muscle force, however, perceived soreness induced changes in lumbar movement and muscle recruitment strategies, which could alter motor performance if the exposure to pain is maintained in the long term.


Assuntos
Eletromiografia , Exercício Físico , Mialgia , Humanos , Masculino , Mialgia/fisiopatologia , Mialgia/etiologia , Adulto , Feminino , Exercício Físico/fisiologia , Fenômenos Biomecânicos , Torque , Adulto Jovem , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/fisiologia , Região Lombossacral/fisiopatologia , Tronco/fisiopatologia , Vértebras Lombares/fisiopatologia
13.
Ther Adv Neurol Disord ; 17: 17562864241266113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091997

RESUMO

Background: Eccentric muscle contractions elicit distinct physiological responses, including modulation of the cytokine profile. Although relevant for rehabilitation, the effect of eccentric muscle training on the immune system has never been investigated in multiple sclerosis (MS). Objectives: Examine the immediate cytokine response of interleukin-4 (IL-4), IL-6, IL-10, IL-17a, interferon-gamma, and tumor necrosis factor-alpha after a moderate eccentric training session in individuals with MS. Additionally, further investigate the association between systemic cytokine levels at rest and clinical measures of mobility and lower limb functional strength. Design: Observational study. Methods: The first session included blood sampling for baseline cytokine measures. Subsequently, the participant completed a battery of clinical assessments related to mobility and lower limb strength, that is, the Timed-Up-and-Go Test, Five-Repetition-Sit-to-Stand-Test (5STS), Four-Square-Step-Test, and Two-Minute-Walk-Test. The second session included the eccentric exercise training session, followed by a second blood sampling to assess the acute cytokine response to the eccentric training bout. This session comprised 10 exercises concentrating on the strength of the trunk and lower extremities. Results: Twenty-seven people with MS (pwMS), with a mean age of 40.1 years, participated in the study. No difference was demonstrated in the cytokine concentration values between baseline and immediately after the eccentric training session. The 5STS explained 30.3% of the variance associated with interferon-gamma, 14.8% with IL-4, and 13.8% with IL-10. Conclusion: An eccentric training bout does not impact cytokine concentration in the blood and, consequently, does not boost a pro-inflammatory response, thus, it can be performed on pwMS in a rehabilitation setting.


A strength-lengthening exercise session doesn't affect inflammation markers in people with multiple sclerosis The article explores how a specific type of exercise, called eccentric muscle training, affects people with multiple sclerosis (MS). Eccentric muscle training involves exercises where the muscle lengthens under tension, like when you slowly lower a heavy object. This type of exercise is known for causing unique physical responses, including changes in certain proteins in the blood that help control the immune system and inflammation. The main goal of the study was to see if a session of eccentric muscle training would change the levels of these proteins, called cytokines, in the blood of people with MS immediately after exercise. The cytokines studied included IL-4, IL-6, IL-10, IL-17a, INF-γ, and TNF-α. These proteins are important because they help regulate inflammation and immune responses. The researchers also wanted to know if there was any connection between the levels of these proteins at rest and measures of mobility and leg strength. Twenty-seven people with MS took part in the study. Their average age was 40.1 years. In the first session, blood samples were taken to measure the baseline levels of these proteins, and various tests were conducted to assess mobility and leg strength. In the second session, participants completed an eccentric training session, and another blood sample was taken immediately after to see if there were any immediate changes in the protein levels. The results showed no significant differences in the protein levels before and after the exercise session. This suggests that a single session of eccentric muscle training does not cause an immediate inflammatory response in the blood. Therefore, this type of exercise can be safely included in rehabilitation programs for people with MS without the risk of causing harmful inflammation. Overall, the study supports the safety of eccentric muscle training for people with MS and provides valuable insights into its immediate effects on the immune system.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39111687

RESUMO

BACKGROUND: Augmented baseplates can be effective at addressing eccentric glenoid wear in reverse total shoulder arthroplasty (rTSA). However, these implants often come in a limited number of predetermined shapes that require additional reaming to ensure adequate glenoid seating. This typically involves complex instrumentation and can have a negative impact on implant stability. Modular baseplate augmentation based on intra-operative measurements may allow for more precise defect filling while preserving glenoid bone. The purpose of this investigation was to assess the stability of a novel ringed baseplate with modular augmentation in comparison to non-augmented standard and ringed baseplate designs. METHODS: In this biomechanical study, baseplate micromotion was tested for three constructs according to American Society for Testing and Materials (ASTM) guidelines. The constructs included a non-augmented curved baseplate, a non-augmented ringed baseplate and ringed baseplate with an 8 mm locking modular augmentation peg. The non-augmented constructs were mounted flush onto polyurethane (PU) foam blocks, while the augmented baseplate was mounted on a PU block with a simulated defect. Baseplate displacement was measured prior to and after 100,000 cycles of cyclic loading. RESULTS: Prior to cyclic loading, the non-augmented and augmented ringed baseplates both demonstrated significantly less micromotion than the non-augmented curved baseplate design (81.1 µm vs 97.2 µm vs 152.7 µm; p=0.009). After cyclic loading, both ringed constructs continued to have significantly less micromotion compared to the curved design (105.5 µm vs 103.2 µm vs 136.6 µm; p<0.001). The micromotion for both ringed constructs remained below the minimum threshold required for bony ingrowth (150 µm) at all time points. CONCLUSION: In the setting of a simulated glenoid defect, locked modular augmentation of a ringed baseplate does not result in increased baseplate micromotion when compared to full contact, non-augmented baseplates. This design offers a simple method for tailored baseplate augmentation that can match specific variations in glenoid anatomy, limiting the need for excessive reaming and ultimately optimizing the environment for long term implant stability. LEVEL OF EVIDENCE: Basic Science Study; Biomechanics.

15.
Materials (Basel) ; 17(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39124402

RESUMO

In the paper, the eccentric compression behavior of the truss-reinforced cross-shaped concrete-filled steel tubular (CCFST) column is investigated. A total of eighteen CCFST columns were tested under eccentric compression, and the key test variables included the reinforced truss node spacing (s = 140 mm and 200 mm), slenderness ratio (λ = 9.2, 16.6, and 23.1), and eccentricity ratio (η = 0, 0.08, and 0.15). The failure mode, deformation characteristic, stress distribution, strain distribution at the mid-span of the steel tube, and the eccentric compression bearing capacity were assessed. The results show that due to the addition of reinforced truss, the steel plates near the mid-span of eccentrically compressed CCFST columns experienced multi-wave buckling rather than single-wave buckling after the peak load was reduced to 85%, and the failure mode of concrete also changed from single-section to multi-section collapse failure. Comparisons were made with the unstiffened specimen. The ductility coefficient of the stiffened specimen with eccentricity ratios of 0.08-0.15 and node spacings of 140 mm~200 mm increased by 70~83%, approaching that of the multi-cell specimens with an increasing steel ratio of 1.8%. In addition, by comparing the test results with the calculation results of four domestic and international design codes, it was found that the Chinese codes CECS159-2018 and GB50936-2014, and the Eurocode 4 (2004) can be better employed to predict the compression bearing capacity of truss-reinforced CCFST columns.

16.
Front Sports Act Living ; 6: 1441022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39189032

RESUMO

One of the reoccurring questions that arises during the countermovement vertical jump (CVJ) assessment is whether the learning effect has an impact on the accuracy of the results obtained. Thus, the purpose of the present investigation was to examine the impact of the short-term learning effect on the assessment of lower-body neuromuscular performance characteristics when performed on a portable one-dimensional force plate system. Sixteen recreationally active college-age males volunteered to participate in the present study. Each participant completed four sets of three non-consecutive CVJs with no arm swing throughout a single day. Besides strong verbal encouragement, participants were constantly instructed to focus on pushing the ground as explosively as possible. Fourteen force-time metrics were selected for CVJ performance analysis purposes: eccentric and concentric peak and mean force and power, eccentric and concentric duration, contraction time, jump height, reactive strength index-modified, and countermovement depth. Repeated measures multivariate analysis of variance was used to examine statistically significant differences across four testing time points (p < 0.05). The results indicate an absence of any meaningful differences across four testing time points in force-time metrics of interest during both eccentric and concentric phases of the CVJ. Moreover, no differences were observed in CVJ outcome metrics such as countermovement depth, suggesting that the movement strategy tends to remain consistent. Overall, these findings reveal that CVJ test repeatability is not affected by the short-term learning effect and that data are stable at least within the scope of this study and within this population.

17.
Front Sports Act Living ; 6: 1439858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193491

RESUMO

Sleep has been recognized as one of the most essential recovery methods necessary for achieving optimal performance. However, there is still a lack of scientific literature focused on examining its impact on one of the most prevalent skills in the game of basketball, the countermovement vertical jump (CVJ). Therefore, the purpose of the present study was to examine the relationship between sleep quality and quantity, and lower-body neuromuscular performance characteristics within a cohort of semi-professional male basketball players. Twenty-eight athletes competing in a first-tier regional league in Serbia volunteered to participate in this investigation. Upon arrival at the gym, all athletes completed the Pittsburgh Sleep Quality Index (PSQI) self-rated questionnaire. Immediately after completion of the PSQI, each athlete stepped on a force plate system and performed three maximum-effort CVJs with no arm swing. The following force-time metrics were obtained for the analysis: eccentric and concentric absolute and relative mean and peak force and power, vertical jump height, and reactive strength index-modified. Pearson product-moment correlation coefficients were used to examine the strength of the linear relationships between sleep quality and quantity and lower-body neuromuscular performance characteristics (p < 0.05). The results indicated that sleep quality appears to have a greater impact on the concentric than the eccentric phase of the CVJ (e.g., concentric mean force [r = -0.830; p < 0.001], relative concentric peak force [r = -0.466; p = 0.013, eccentric mean power (r = -0.162; p = 0.409)], while no significant relationship was found between sleep quantity and lower-body neuromuscular performance (e.g., concentric peak force [r = -0.055; p = 0.782], relative eccentric mean power [r = -0.301; p = 0.107]). Overall, these findings offer valuable insights into the importance of good sleep hygiene (e.g., efficiency, duration) in an athletic population, and can help practitioners develop more effective training and recovery programs.

19.
Small ; : e2406783, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206610

RESUMO

Metal halide perovskites (MHPs) have undergone rapid development in the fields of solar cells, light diodes, lasing, photodetectors, etc. However, the MHPs still face significant challenges, such as poor stability and heterocompositing with other functional materials at the single nanoparticle level. Herein, the successful synthesis of well-dispersed CsPbBr3@TiO2 heterostructure nanocrystals (NCs) is reported, in which each heterostructure NC has only one CsPbBr3 with a precise anatase TiO2 coating ranging from asymmetric to symmetric. Due to the protection of anatase TiO2, CsPbBr3 shows dramatically improved chemical stability and photostability. More significantly, the synthesized CsPbBr3@TiO2 heterostructure NCs form a type II heterojunction, which strongly promoted efficient photogenerated carrier separation between anatase TiO2 and CsPbBr3, hence leading to improved optoelectronic activity. This study provides a robust avenue for synthesizing stable and highly efficient MHPs@metal oxide heterostructure NCs, paving the way for the practical application of all inorganic perovskites.

20.
Sports (Basel) ; 12(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39195578

RESUMO

This narrative review of kinesiotherapy methods in the treatment of Achilles tendinopathy (AT) encompassed a diverse range of studies, including athletes and untrained people, healthy or injured, undergoing kinesiotherapy treatments. Most experimental studies (86%) reported results related to pain perception, 27% to the range of motion, and 27% to biomechanical assessment. However, the studies showed notable heterogeneity in the outcomes associated with the interventions, and, in this review of kinesiotherapy protocols for AT, a prominent observation emerged regarding their efficacy, suggesting a more favorable impact on pain and tendon stiffness management when comparing the measured parameters between the trained and untrained groups. The importance of tailoring the treatment approach based on the individual's athletic background and conditioning status is underscored. There is a need for personalized rehabilitation strategies in athletic populations. The average duration of kinesiotherapy in the treatment of tendinopathy was 15.3 weeks. This observation underscores the potential of kinesiotherapy interventions as a viable treatment option for individuals with Achilles tendon issues. These findings underscore the urgent need for further research to provide stakeholders with more comprehensive directions for future studies. The results may be helpful for doctors, physiotherapists, trainers, and researchers interested in this topic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA