Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1368509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817938

RESUMO

Although the transition toward a more sustainable agricultural system is sparking the interest of scientists and farmers around the globe, breeding programs are still focusing on optimizing cultivars intended for the monoculture system, and most cultivars available on the market are not suitable for intercropping. The incorporation of versatile cool-season food legumes (CSFLs) in the intercropping system is a promising way toward more diversified and sustainable cropping systems. However, as the selection of good-performing cultivars under sole cropping does not always lead to a good performance in intercropping, the development of an alternative breeding scheme for intercropping is now a necessity. The case study of faba bean-wheat intercropping was used to select for traits associated with better performance of faba bean, resulting in identifying the combined grain yield, 100-seed weight, number of pods per plant, and canopy height as key traits for faba bean-wheat intercropping suitability. Incorporating these traits in the breeding programs would be the cornerstone of the prospective transition.

2.
J Hazard Mater ; 471: 134282, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657509

RESUMO

Microplastics (MPs) pose a threat to farmland soil quality and crop safety. MPs exist widely in food legumes farmland soil due to the extensive use of agricultural film and organic fertilizer, but their distribution characteristics and their impact on soil environment have not been reported. The abundance and characteristics of MPs, soil physical and chemical properties, and bacterial community composition were investigated in 76 soil samples from five provinces in northern China. The results showed that the abundance of MPs ranged from 1600 to 36,200 items/kg. MPs in soil were mostly fibrous, less than 0.2 mm, and white. Rayon, polyester and polyethylene were the main types of MPs. The influences of MPs on soil physicochemical properties and bacterial communities mainly depended on the type of MPs. Notably, polyethylene significantly decreased the proportion of silt particles, and increased the nitrate nitrogen content as well as the abundance of MPs-degrading bacteria Paenibacillus (p < 0.05). Moreover, bacteria were more sensitive to polyesters in soil with low concentration of organic matter. This study indicated that MPs in food legumes farmland soil presented a higher-level. And, they partially altered soil physicochemical properties, and soil bacteria especially in soil with low organic matter.


Assuntos
Bactérias , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Solo , China , Poluentes do Solo/análise , Solo/química , Microplásticos/análise , Bactérias/classificação , Fabaceae , Agricultura , Fazendas
3.
Plant Methods ; 20(1): 30, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369489

RESUMO

The use of high-performant varieties could help to improve the production of food legumes and thus meet the demand of the growing world population. However, long periods needed to develop new varieties through traditional breeding are a major obstacle. Thus, new techniques allowing faster genetic advance are needed. Speed breeding using longer periods of light exposure on plants, appears to be a good solution for accelerating plant life cycles and generation turnover. However, applying extended photoperiod causes plant stress and mortality due to lack of information on the adequate intensity to be used in speed breeding protocol. This study examines the impact of light intensity under speed breeding conditions on the development and growth of lentils and chickpeas, with a keen interest in enhancing genetic gain in these key food legumes. Four distinct levels of light intensity (T1: Green-house: 2000 µmol/m2/s; T2: 148-167 µmol/m2/s; T3: 111-129 µmol/m2/s; T4: 74-93 µmol/m2/s) under a photoperiod of 18 h of light and 6 h of darkness were tested in a growth chamber. Significant variation depending on light intensity was observed for plant height, total biomass, number of secondary stems, pods number, number of seeds per plant, growth rate, green canopy cover, time to flowering, time of pod set, time to maturity, vegetative stage length, reproduction stage length and seed filling stage length. Light intensity significantly influenced flowering/maturity and plant's stress compared to normal conditions in green-house where flowering/maturity were around 67/97 days for lentil and 79/111 days for chickpea. Therefore, lentils in treatment 2 flowered and reached maturity in 30/45 days respectively, with high stress, while chickpeas in the same treatment did not flower. In contrast, treatment 4 showed interesting results, promoting optimal growth with low stress, and flowering/maturity in 27/46 days and 28/54 days, respectively for lentils and chickpeas. These results underline the crucial importance of light management in speed breeding to accelerate vegetative growth and phenology while allowing healthy growth conditions for plants to produce enough seeds for generation turnover.

4.
Plants (Basel) ; 12(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836192

RESUMO

Paleogenomics focuses on the recovery, manipulation, and analysis of ancient DNA (aDNA) from historical or long-dead organisms to reconstruct and analyze their genomes. The aDNA is commonly obtained from remains found in paleontological and archaeological sites, conserved in museums, and in other archival collections. Herbarium collections represent a great source of phenotypic and genotypic information, and their exploitation has allowed for inference and clarification of previously unsolved taxonomic and systematic relationships. Moreover, herbarium specimens offered a new source for studying phenological traits in plants and for disentangling biogeography and evolutionary scenarios of species. More recently, advances in molecular technologies went in parallel with the decreasing costs of next-generation sequencing (NGS) approaches, which paved the way to the utilization of aDNA for whole-genome studies. Although many studies have been carried out combining modern analytic techniques and ancient samples, such as herbarium specimens, this research field is still relatively unexplored due to the need for improving strategies for aDNA manipulation and exploitation from ancient samples. The higher susceptibility of aDNA to degradation and contamination during herbarium conservation and manipulation and the occurrence of biochemical postmortem damage can result in a more challenging reconstruction of the original DNA sequence. Here, we review the methodological approaches that have been developed for the exploitation of historical herbarium plant materials, such as best practices for aDNA extraction, amplification, and genotyping. We also focus on some strategies to overcome the main problems related to the utilization of herbarium specimens for their exploitation in plant evolutionary studies.

5.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638885

RESUMO

Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. 'Omics'-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel 'omics' approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics-which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation-has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.


Assuntos
Inteligência Artificial , Produtos Agrícolas/genética , Fabaceae/genética , Genômica , Melhoramento Vegetal , Estresse Fisiológico/genética , Produtos Agrícolas/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Locos de Características Quantitativas
6.
Foods ; 9(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268476

RESUMO

China is a major producer of various kinds of food legumes. Some of the under-utilized food legumes are consumed by the local society from different areas in China. The antioxidant capacity and phytochemical profile of these under-utilized food legumes haven't been investigated until now. In this study, colorimetric and high-performance liquid chromatography was employed to explore the antioxidant capacity and phytochemical profile of 21 under-utilized food legumes. Different legumes under investigation exhibit a wide range of variations in their total phenolic content (TPC), total flavonoids content (TFC) and condensed tannins content (CTC). Among all the legume samples, the velvet bean from Hechi, Guangxi exhibited the highest antioxidant capacity while the white flat bean from Shangrao, Shanxi presented the least antioxidant capacity. Gallic acid was observed to be a major phenolic acid and its content in the velvet bean was significantly higher compared to the other legume samples explored in this study. The composition of flavonoids was different among all the legumes. Kaempferol was observed to be the most predominant flavonoid. The findings of this study will be beneficial for plant breeders, food scientists and consumers for the better selection of germplasm with a high level of phytochemicals that in turn possess maximum health benefits.

7.
Front Plant Sci ; 11: 589189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552095

RESUMO

Food legumes are important for defeating malnutrition and sustaining agri-food systems globally. Breeding efforts in legume crops have been largely confined to the exploitation of genetic variation available within the primary genepool, resulting in narrow genetic base. Introgression as a breeding scheme has been remarkably successful for an array of inheritance and molecular studies in food legumes. Crop wild relatives (CWRs), landraces, and exotic germplasm offer great potential for introgression of novel variation not only to widen the genetic base of the elite genepool for continuous incremental gains over breeding cycles but also to discover the cryptic genetic variation hitherto unexpressed. CWRs also harbor positive quantitative trait loci (QTLs) for improving agronomic traits. However, for transferring polygenic traits, "specialized population concept" has been advocated for transferring QTLs from CWR into elite backgrounds. Recently, introgression breeding has been successful in developing improved cultivars in chickpea (Cicer arietinum), pigeonpea (Cajanus cajan), peanut (Arachis hypogaea), lentil (Lens culinaris), mungbean (Vigna radiata), urdbean (Vigna mungo), and common bean (Phaseolus vulgaris). Successful examples indicated that the usable genetic variation could be exploited by unleashing new gene recombination and hidden variability even in late filial generations. In mungbean alone, distant hybridization has been deployed to develop seven improved commercial cultivars, whereas in urdbean, three such cultivars have been reported. Similarly, in chickpea, three superior cultivars have been developed from crosses between C. arietinum and Cicer reticulatum. Pigeonpea has benefited the most where different cytoplasmic male sterility genes have been transferred from CWRs, whereas a number of disease-resistant germplasm have also been developed in Phaseolus. As vertical gene transfer has resulted in most of the useful gene introgressions of practical importance in food legumes, the horizontal gene transfer through transgenic technology, somatic hybridization, and, more recently, intragenesis also offer promise. The gains through introgression breeding are significant and underline the need of bringing it in the purview of mainstream breeding while deploying tools and techniques to increase the recombination rate in wide crosses and reduce the linkage drag. The resurgence of interest in introgression breeding needs to be capitalized for development of commercial food legume cultivars.

8.
Crit Rev Food Sci Nutr ; 58(8): 1260-1270, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28605204

RESUMO

Inflammation is the first biological response of the immune system to infection, injury or irritation. Evidence suggests that the anti-inflammatory effect is mediated through the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ as well as noncytokine mediator, prostaglandin E2. Fruits, vegetables, and food legumes contain high levels of phytochemicals that show anti-inflammatory effect, but their mechanisms of actions have not been completely identified. The aim of this paper was to summarize the recent investigations and findings regarding in vitro and animal model studies on the anti-inflammatory effects of fruits, vegetables, and food legumes. Specific cytokines released for specific type of physiological event might shed some light on the specific use of each source of phytochemicals that can benefit to counter the inflammatory response. As natural modulators of proinflammatory gene expressions, phytochemical from fruits, vegetables, and food legumes could be incorporated into novel bioactive anti-inflammatory formulations of various nutraceuticals and pharmaceuticals. Finally, these phytochemicals are discussed as the natural promotion strategy for the improvement of human health status. The phenolics and triterpenoids in fruits and vegetables showed higher anti-inflammatory activity than other compounds. In food legumes, lectins and peptides had anti-inflammatory activity in most cases. However, there are lack of human study data on the anti-inflammatory activity of phytochemicals from fruits, vegetables, and food legumes.


Assuntos
Anti-Inflamatórios/farmacologia , Fabaceae/química , Frutas/química , Compostos Fitoquímicos/farmacologia , Verduras/química , Animais , Anti-Inflamatórios/química , Análise de Alimentos , Humanos , Compostos Fitoquímicos/química
9.
Front Plant Sci ; 8: 1658, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123532

RESUMO

Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.

10.
Ann Biol Clin (Paris) ; 73(6): 690-704, 2015.
Artigo em Francês | MEDLINE | ID: mdl-26635049

RESUMO

Peanut, soybean, sesame and lentil are members of legumes worldwide consumed by human that can induce food allergy in genetically predisposed individuals. Several protein allergens, mainly water-soluble, have been described. We studied the non water-soluble fraction from these 4 food sources using immunoproteomics tools and techniques. Flour extracts were solubilized in detergent and chaotropes and analysed in 1 and 2 dimensional gel electrophoresis (2D). Results showed numerous proteins exhibiting wide ranges of isoelectric points and relative molecular masses. When IgE immunoreactivities of 18 food allergy patients were individually tested in 1 and 2D western-blots, a very diversified IgE repertoire was observed, reflecting extensive cross-reactivities but also co-sensitizations. Besides already well known and characterized allergens, mass spectrometry analysis allowed the identification of 22 allergens undescribed until now: 10 in peanut, 2 in soybean, 3 in sesame and 7 in lentil. Three allergens are legume storage proteins and the others belong to transport proteins, nucleotide binding proteins and proteins involved in the regulation of metabolism. Seven proteins are potentially similar to allergens described in plants and fungi and 11 are not related to any known allergen. Our results contribute to increase the repertoire of legume allergens that may improve the diagnosis, categorize patients and thus provide a better treatment of patients.


Assuntos
Alérgenos/isolamento & purificação , Arachis/metabolismo , Farinha , Glycine max/metabolismo , Lens (Planta)/metabolismo , Sesamum/metabolismo , Alérgenos/metabolismo , Arachis/imunologia , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/metabolismo , Humanos , Lens (Planta)/imunologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteoma/imunologia , Proteoma/isolamento & purificação , Proteoma/metabolismo , Proteômica/métodos , Sesamum/imunologia , Solubilidade , Glycine max/imunologia , Água/química
11.
J Sci Food Agric ; 95(11): 2228-36, 2015 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25270891

RESUMO

BACKGROUND: As probiotics, soy oligosaccharides have become popular as healthy foods to reduce disease risk. However, comprehensive information about oligosaccharides in different food legumes is limited. RESULTS: In this study, eight oligosaccharides were well detected and quantified in different varieties of eight legume species using high-resolution mass spectrometry. It was determined that species could be distinguished by total content of oligosaccharides and their distribution modes. Among the studied species, Vigna unguiculata is a better resource of non-digestible oligosaccharides, while Vicia faba and black soybean (Glycine max) are at a disadvantage. Normally, stachyose predominates in non-digestible oligosaccharides, except in mung bean and broad bean, where verbascose predominates. For mung bean and green soybean, the seed coat should be taken into account for oligosaccharide consumption. The developed high-resolution mass spectrometry method greatly simplified the sample preparation process and permitted the identification of oligosaccharides without reference compounds. CONCLUSION: This work involved extensive sample collecting and provided useful information for consumers. The developed method may be useful for rapid quantification of oligosaccharides in related foods.


Assuntos
Dieta , Carboidratos da Dieta/análise , Fabaceae/química , Oligossacarídeos/análise , Sementes/química , Fabaceae/classificação , Humanos , Espectrometria de Massas/métodos , Prebióticos , Especificidade da Espécie
12.
Adv Virus Res ; 90: 431-505, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25410108

RESUMO

Diverse array of food legume crops (Fabaceae: Papilionoideae) have been adopted worldwide for their protein-rich seed. Choice of legumes and their importance vary in different parts of the world. The economically important legumes are severely affected by a range of virus diseases causing significant economic losses due to reduction in grain production, poor quality seed, and costs incurred in phytosanitation and disease control. The majority of the viruses infecting legumes are vectored by insects, and several of them are also seed transmitted, thus assuming importance in the quarantine and in the epidemiology. This review is focused on the economically important viruses of soybean, groundnut, common bean, cowpea, pigeonpea, mungbean, urdbean, chickpea, pea, faba bean, and lentil and begomovirus diseases of three minor tropical food legumes (hyacinth bean, horse gram, and lima bean). Aspects included are geographic distribution, impact on crop growth and yields, virus characteristics, diagnosis of causal viruses, disease epidemiology, and options for control. Effectiveness of selection and planting with virus-free seed, phytosanitation, manipulation of crop cultural and agronomic practices, control of virus vectors and host plant resistance, and potential of transgenic resistance for legume virus disease control are discussed.


Assuntos
Agricultura/métodos , Fabaceae/virologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Plantas Comestíveis/virologia , Clima Tropical , Viroses/prevenção & controle , Animais , Vetores de Doenças , Controle de Insetos , Insetos/virologia , Quarentena , Viroses/diagnóstico
13.
J Nat Sci Biol Med ; 4(2): 396-402, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24082740

RESUMO

BACKGROUND: Both lentil (Lens culinaris Medik.) and grass pea (Lathyrus sativus L.) in the family Fabaceae are two important cool-season food legumes, often experiencing water stress conditions during growth and maturity. OBJECTIVE: The present study was undertaken to ascertain the response of these two crops under different water stress regimes. MATERIALS AND METHODS: Different morpho-physiological and biochemical parameters were studied in a pot experiment under controlled environmental conditions. Along with control (proper irrigation, 0 stress), three sets of plants were subjected to mild (6 d), moderate (13 d) and severe (20 d) water stress by withholding irrigation at the appropriate time. RESULTS: Compared with control, plant growth traits and seed yield components reduced significantly in both crops with increasing period of water stress, resulting in lowering of dry mass with more severe effect on lentil compared with grass pea. Foliar Relative Water Content (RWC) (%), K(+)/Na(+) ratio, chlorophyll (chl) a, chl a/b ratio, stomatal conductance and net photosynthetic rate declined considerably in both crops under water stress. Leaf-free proline level increased significantly in both crops, but it decreased markedly in nodules of lentil and remained unchanged in grass pea. Nodulation was also affected due to water stress. The impairment in growth traits and physio-biochemical parameters under water stress was manifested in reduction of drought tolerance efficiency of both crops. CONCLUSION: Impact of water stress was more severe on lentil compared with grass pea, and modulation of growth traits signified necessity of a detailed strategy in breeding of food legumes under water stress.

14.
Food Chem ; 110(1): 1-13, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26050159

RESUMO

The effects of soaking, boiling and steaming processes on the total phenolic components and antioxidant activity in commonly consumed cool season food legumes (CSFL's), including green pea, yellow pea, chickpea and lentil were investigated. As compared to original unprocessed legumes, all processing steps caused significant (p<0.05) decreases in total phenolic content (TPC), DPPH free radical scavenging activity (DPPH) in all tested CSFL's. All soaking and atmospheric boiling treatments caused significant (p<0.05) decreases in oxygen radical absorbing capacity (ORAC). However, pressure boiling and pressure steaming caused significant (p<0.05) increases in ORAC values. Steaming treatments resulted in a greater retention of TPC, DPPH, and ORAC values in all tested CSFL's as compared to boiling treatments. To obtain cooked legumes with similar palatability and firmness, pressure boiling shortened processing time as compared to atmospheric boiling, resulted in insignificant differences in TPC, DPPH for green and yellow pea. However, TPC and DPPH in cooked lentils differed significantly between atmospheric and pressure boiling. As compared to atmospheric processes, pressure processes significantly increased ORAC values in both boiled and steamed CSFL's. Greater TPC, DPPH and ORAC values were detected in boiling water than that in soaking and steaming water. Boiling also caused more solid loss than steaming. Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA