Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Talanta ; 278: 126373, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901075

RESUMO

Recently, solution-based surface-enhanced Raman scattering (SERS) detection technique has been widely recognized due to its cost-effectiveness, simplicity, and ease of use. However, solution-based SERS is limited for practical applications mainly because of the weak adsorption affinity of the target biomolecules to the surface of plasmonic nanoparticles. Herein, we developed a highly sensitive solution-based SERS sensing platform based on mercaptopropionic acid (MPA)-capped silver-coated gold nanostars (SGNS@MPA), which allows efficient enrichment on the nanostars surface for improved detection of an analyte: creatinine, a potential biomarker of chronic kidney disease (CKD). The SGNS@MPA exhibited high enrichment ability towards creatinine molecules in alkaline medium (pH-9) through multiple hydrogen bonding interaction, which causes aggregation of the nanoparticles and enhances the SERS signal of creatinine. The detection limit for creatinine was achieved at 0.1 nM, with a limit of detection (LOD) value of 14.6 pM. As a proof-of-concept demonstration, we conducted the first quantitative detection of creatinine in noninvasive human fluids, such as saliva and sweat, under separation-free conditions. We achieved a detection limit of up to 1 nM for both saliva and sweat, with LOD values as low as 0.136 nM for saliva and 0.266 nM for sweat. Overall, our molecular enrichment strategy offers a new way to improve the solution-based SERS detection technique for real-world practical applications in point-of-care settings and low-resource settings.


Assuntos
Creatinina , Ouro , Ligação de Hidrogênio , Nanopartículas Metálicas , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Ouro/química , Creatinina/análise , Creatinina/química , Nanopartículas Metálicas/química , Humanos , Prata/química , Limite de Detecção , Soluções , Ácido 3-Mercaptopropiônico/química , Saliva/química
3.
Biomed Mater ; 19(4)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870927

RESUMO

Recently, cytokine-induced killer (CIK) cells have a broad application prospect in the comprehensive diagnosis and treatment of tumors owing to their unique characteristics of killing and targeting malignant tumors. Herein, we report a facile strategy for synthesis of monodisperse gold nanostars (GNSs) based on PEGylation and co-loaded with the photosensitizer chlorin e6 (Ce6) to form GNSs-PEG@Ce6 NPs. Then employing CIK cells loading the as-prepared GNSs-PEG@Ce6 NPs to fabricate a CIK cells-based drug delivery system (GNSs-PEG@Ce6-CIK) for lung cancer. Among them, GNSs was functioned as transport media, Ce6 acted as the near-infrared (NIR) fluorescence imaging agent and photodynamic therapy (PDT), and CIK cells served as targeting vectors for immunotherapy, which can increase the efficiency of tumor enrichment and treatment effect. The results of cellular experiments demonstrated that GNSs-PEG@Ce6 NPs had good dispersibility, water solubility and low toxicity under physiological conditions, and the cultured CIK cells had strong anti-tumor properties. Subsequently, GNSs-PEG@Ce6-CIK could effectively inhibit the growth of A549 cells under the exposure of 633 nm laser, which showed stronger killing effect than that of GNSs-PEG@Ce6 NPs or CIK cells. In addition, they showed good tumor targeting and tumor synergistic killing activityin vivo. Therefore, GNSs-PEG@Ce6-CIK was constructed for targeted NIR fluorescence imaging, enhanced PDT and immunotherapy of lung cancer.


Assuntos
Clorofilídeos , Células Matadoras Induzidas por Citocinas , Ouro , Neoplasias Pulmonares , Nanopartículas Metálicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Ouro/química , Fotoquimioterapia/métodos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Animais , Porfirinas/química , Porfirinas/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas Metálicas/química , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Células A549 , Imagem Óptica/métodos , Camundongos Nus
4.
Nanotechnology ; 35(19)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38306966

RESUMO

A straightforward method to prepare surface enhanced Raman spectroscopy (SERS) chips containing a monolayer of silver coated gold nanostars (GNS@Ag) grafted on a glass surface is introduced. The synthetic approach is based on a seed growth method performed directly on surface, using GNS as seeds, and involving a green pathway, which only uses silver nitate, ascorbic acid and water, to grow the silver shell. The preparation was optimized to maximize signals obtaining a SERS response of one order of magnitude greater than that from the original GNS based chips, offering in the meantime good homogeneity and acceptable reproducibility. The proposed GNS@Ag SERS chips are able to detect pesticide thiram down to 20 ppb.

5.
ACS Appl Mater Interfaces ; 16(7): 8554-8569, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323816

RESUMO

Optical imaging and spectroscopic modalities are of considerable current interest for in vivo cancer detection and image-guided surgery, but the turbid or scattering nature of biomedical tissues has severely limited their abilities to detect buried or occluded tumor lesions. Here we report the development of a dual-modality plasmonic nanostructure based on colloidal gold nanostars (AuNSs) for simultaneous surface-enhanced Raman scattering (SERS) and photoacoustic (PA) detection of tumor phantoms embedded (hidden) in ex vivo animal tissues. By using red blood cell membranes as a naturally derived biomimetic coating, we show that this class of dual-modality contrast agents can provide both Raman spectroscopic and PA signals for the detection and differentiation of hidden solid tumors with greatly improved depths of tissue penetration. Compared to previous polymer-coated AuNSs, the biomimetic coatings are also able to minimize protein adsorption and cellular uptake when exposed to human plasma without compromising their SERS or PA signals. We further show that tumor-targeting peptides (such as cyclic RGD) can be noncovalently inserted for targeting the ανß3-integrin receptors expressed on metastatic cancer cells and tracked via both SERS and PA imaging (PAI). Finally, we demonstrate image-guided resections of tumor-mimicking phantoms comprising metastatic tumor cells buried under layers of skin and fat tissues (6 mm in thickness). Specifically, PAI was used to determine the precise tumor location, while SERS spectroscopic signals were used for tumor identification and differentiation. This work opens the possibility of using these biomimetic dual-modality nanoparticles with superior signal and biological stability for intraoperative cancer detection and resection.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias , Animais , Humanos , Meios de Contraste , Análise Espectral Raman/métodos , Biomimética , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Nanopartículas Metálicas/química
6.
Biosens Bioelectron ; 252: 116146, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417286

RESUMO

Staphylococcus aureus contamination in food supplements poses substantial challenges to public health and large-scale production but the sensitive detection in a timely manner remains a bottleneck. Drawing inspiration from the sea hedgehog, gold nanostars (AuNSs) were leveraged to design an ultrasensitive surface-enhanced Raman scattering (SERS) biosensor for the determination of Staphylococcus aureus in food supplements. Besides the surface enhancement furnished by the AuNSs, Raman reporter molecules and specific aptamers sequentially self-assembled onto these AuNSs to construct the "three-in-one" SERS biosensor probe for label-based quantitation of Staphylococcus aureus. Following incubation with contaminated health product samples, the gold nanostars@Raman reporter-aptamer specifically recognize and assemble around Staphylococcus aureus cells, forming a distinctive sea hedgehog structure. This unique configuration results in an amplified Raman signal at 1338 cm-1 and an enhancement factor of up to 6.71 × 107. The entire quantitative detection process can be completed within 30 min, boasting an exceptional limit of detection as low as 1.0 CFU mL-1. The method exhibits a broad working range for the determination of Staphylococcus aureus, with concentrations spanning 2.15 CFU mL-1 to 2.15 × 105 CFU mL-1. Furthermore, it demonstrates outstanding precision, with relative standard deviation values consistently below 5.0%. As a showcase to validate the practicality of the SERS method, we conducted tests on determining Staphylococcus aureus in a herbal food supplement, i.e., Ginkgo Biloba extract (GBE); the results align closely with those obtained through the conventional lysogeny broth agar plate method, pointing to the potential applicability in real-world scenarios.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Staphylococcus aureus , Nanopartículas Metálicas/química , Ouriços , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Ouro/química , Aptâmeros de Nucleotídeos/química , Suplementos Nutricionais
7.
Mikrochim Acta ; 191(2): 110, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252139

RESUMO

A high-throughput surface-enhanced Raman scattering (SERS)-sensing platform is presented for FNT detection in human urine without any sample preparation. The sensing platform is based on plasmonics-active silver-coated sharply branched gold nanostars (SGNS). The effect of silver thickness was investigated experimentally and theoretically, and the results indicated that SERS enhancement was maximum at an optimum silver thickness of 45 nm on the sharply spiked SGNS. The proposed high-throughput SERS platform exhibited ultrahigh sensitivity and excellent enhancement uniformity for a model analyte, i.e., crystal violet. Moreover, the SERS-sensing platform demonstrated good sensitivity of FNT spiked in human urine samples with two differential linear response ranges of 2 to 0.2 µg/mL and 0.1 µg/mL to 100 pg/mL, respectively,  with a detection limit as low as 10.02 pg/mL. The spiked human urine samples show satisfactory recovery values from 92.5 to 102% with relative standard deviations (RSD) of less than 10%. In summary, the high-throughput performance of the proposed microplate-based SERS platform demonstrated great potential for rapid low-cost SERS-based sensing applications.


Assuntos
Analgésicos Opioides , Fentanila , Humanos , Prata , Bioensaio , Ouro
8.
ACS Biomater Sci Eng ; 10(1): 38-50, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249042

RESUMO

Gold nanostars (AuNSs) are nanoparticles with intricate three-dimensional structures and shape-dependent optoelectronic properties. For example, AuNSs uniquely display three distinct surface curvatures, i.e. neutral, positive, and negative, which provide different environments to adsorbed ligands. Hence, these curvatures are used to introduce different surface chemistries in nanoparticles. This review summarizes and discusses the role of surface curvature in AuNS properties and its impact on biomedical and chemical applications, including surface-enhanced Raman spectroscopy, contrast agent performance, and catalysis. We examine the main synthetic approaches to generate AuNSs, control their morphology, and discuss their benefits and drawbacks. We also describe the optical characteristics of AuNSs and discuss how these depend on nanoparticle morphology. Finally, we analyze how AuNS surface curvature endows them with properties distinctly different from those of other nanoparticles, such as strong electromagnetic fields at the tips and increased hydrophilic environments at the indentations, together making AuNSs uniquely useful for biosensing, imaging, and local chemical manipulation.


Assuntos
Ouro , Nanopartículas , Ouro/química , Nanopartículas/química , Análise Espectral Raman
9.
Biosensors (Basel) ; 13(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37998140

RESUMO

We describe a competitive colorimetric assay that enables rapid and sensitive detection of galactose and reduced nicotinamide adenine dinucleotide (NADH) via colorimetric readouts and demonstrate its usefulness for monitoring NAD+-driven enzymatic reactions. We present a sensitive plasmonic sensing approach for assessing galactose concentration and the presence of NADH using galactose dehydrogenase-immobilized gold nanostars (AuNS-PVP-GalDH). The AuNS-PVP-GalDH assay remains turquoise blue in the absence of galactose and NADH; however, as galactose and NADH concentrations grow, the reaction well color changes to a characteristic red color in the presence of an alkaline environment and a metal ion catalyst (detection solution). As a result, when galactose is sensed in the presence of H2O2, the colored response of the AuNS-PVP-GalDH assay transforms from turquoise blue to light pink, and then to wine red in a concentration-dependent manner discernible to the human eye. This competitive AuNS-PVP-GalDH assay could be a viable analytical tool for rapid and convenient galactose quantification in resource-limited areas.


Assuntos
Galactose , Nanopartículas Metálicas , Humanos , Colorimetria , Ouro , Galactose Desidrogenases , NAD , Peróxido de Hidrogênio
10.
R Soc Open Sci ; 10(10): 230825, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830025

RESUMO

Plasmonic colorimetric sensors have emerged as powerful analytical tools in biochemistry due to their localized surface plasmon resonance extinction in the visible range. Here, we describe the feasibility of NAD(P)/NAD(P)H as redox agents in enzymatic plasmonic gold nanostar (AuNS) assays for galactose quantification using three model enzymes, GalDH, AR and GalOx, immobilized separately on polyvinylpyrrolidone-capped AuNS scaffolds. These highly specific, sensitive and selective bioassays induce the transformation of AuNS into quasi-spherical nanoparticles during the biorecognition of galactose in water and synthetic blood matrices. As a result, using our inexpensive and simple AuNS plasmon bioassays, the presence of galactose may be detected spectrophotometrically and by the naked eye.

11.
Chemphyschem ; 24(22): e202200809, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37515550

RESUMO

Core-shell nanostructures of silicon oxide@noble metal have drawn a lot of interest due to their distinctive characteristics and minimal toxicity with remarkable biocompatibility. Due to the unique property of localized surface plasmon resonance (LSPR), plasmonic nanoparticles are being used as surface-enhanced Raman scattering (SERS) based detection of pollutants and photothermal (PT) agents in cancer therapy. Herein, we demonstrate the synthesis of multifunctional silica core - Au nanostars shell (SiO2 @Au NSs) nanostructures using surfactant free aqueous phase method. The SERS performance of the as-synthesized anisotropic core-shell NSs was examined using Rhodamine B (RhB) dye as a Raman probe and resulted in strong enhancement factor of 1.37×106 . Furthermore, SiO2 @Au NSs were also employed for PT killing of breast cancer cells and they exhibited a concentration-dependent increase in the photothermal effect. The SiO2 @Au NSs show remarkable photothermal conversion efficiency of up to 72 % which is unprecedented. As an outcome, our synthesized NIR active SiO2 @Au NSs are of pivotal importance to have their dual applications in SERS enhancement and PT effect.

12.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373154

RESUMO

Bacterial infections have become a fatal threat because of the abuse of antibiotics in the world. Various gold (Au)-based nanostructures have been extensively explored as antibacterial agents to combat bacterial infections based on their remarkable chemical and physical characteristics. Many Au-based nanostructures have been designed and their antibacterial activities and mechanisms have been further examined and demonstrated. In this review, we collected and summarized current developments of antibacterial agents of Au-based nanostructures, including Au nanoparticles (AuNPs), Au nanoclusters (AuNCs), Au nanorods (AuNRs), Au nanobipyramids (AuNBPs), and Au nanostars (AuNSs) according to their shapes, sizes, and surface modifications. The rational designs and antibacterial mechanisms of these Au-based nanostructures are further discussed. With the developments of Au-based nanostructures as novel antibacterial agents, we also provide perspectives, challenges, and opportunities for future practical clinical applications.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Nanoestruturas , Humanos , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química
13.
Micromachines (Basel) ; 14(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37374759

RESUMO

A new generation of nanoscale photosensitizer agents has improved photothermal capabilities, which has increased the impact of photothermal treatments (PTTs) in cancer therapy. Gold nanostars (GNS) are promising for more efficient and less invasive PTTs than gold nanoparticles. However, the combination of GNS and visible pulsed lasers remains unexplored. This article reports the use of a 532 nm nanosecond pulse laser and polyvinylpyrrolidone (PVP)-capped GNS to kill cancer cells with location-specific exposure. Biocompatible GNS were synthesized via a simple method and were characterized under FESEM, UV-visible spectroscopy, XRD analysis, and particle size analysis. GNS were incubated over a layer of cancer cells that were grown in a glass Petri dish. A nanosecond pulsed laser was irradiated on the cell layer, and cell death was verified via propidium iodide (PI) staining. We assessed the effectiveness of single-pulse spot irradiation and multiple-pulse laser scanning irradiation in inducing cell death. Since the site of cell killing can be accurately chosen with a nanosecond pulse laser, this technique will help minimize damage to the cells around the target cells.

14.
Nanomaterials (Basel) ; 13(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049309

RESUMO

In recent years, the disease burden of hyperuricemia has been increasing, especially in high-income countries and the economically developing world with a Western lifestyle. Abnormal levels of uric acid and hypoxanthine are associated with many diseases, and therefore, to demonstrate improved methods of uric acid and hypoxanthine detection, three different bodily fluids were analysed using surface-enhanced Raman spectroscopy (SERS) and high-performance liquid chromatography (HPLC). Gold nanostar suspensions were mixed with series dilutions of uric acid and hypoxanthine, 3 kDa centrifugally filtered human blood serum, urine and saliva. The results show that gold nanostars enable the quantitative detection of the concentration of uric acid and hypoxanthine in the range 5-50 µg/mL and 50-250 ng/mL, respectively. The peak areas of HPLC and maximum peak intensity of SERS have strongly correlated, notably with the peaks of uric acid and hypoxanthine at 1000 and 640 cm-1, respectively. The r2 is 0.975 and 0.959 for uric acid and hypoxanthine, respectively. Each of the three body fluids has a number of spectral features in common with uric acid and hypoxanthine. The large overlap of the spectral bands of the SERS of uric acid against three body fluids at spectra peaks were at 442, 712, 802, 1000, 1086, 1206, 1343, 1436 and 1560 cm-1. The features at 560, 640, 803, 1206, 1290 and 1620 cm-1 from hypoxanthine were common to serum, saliva and urine. There is no statistical difference between HPLC and SERS for determination of the concentration of uric acid and hypoxanthine (p > 0.05). For clinical applications, 3 kDa centrifugal filtration followed by SERS can be used for uric acid and hypoxanthine screening is, which can be used to reveal the subtle abnormalities enhancing the great potential of vibrational spectroscopy as an analytical tool. Our work supports the hypnosis that it is possible to obtain the specific concentration of uric acid and hypoxanthine by comparing the SER signals of serum, saliva and urine. In the future, the analysis of other biofluids can be employed to detect biomarkers for the diagnosis of systemic pathologies.

15.
Food Chem ; 419: 136049, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003051

RESUMO

Currently, the development of efficient mycotoxins detection methods, particularly using portable devices as readout devices, remains a great challenge. Herein, a photothermal enzyme-linked immunosorbent assay (ELISA) based on gold nanostars (AuNSs) for the detection of ochratoxin A (OTA) using a "thermometer" was proposed for the first time. AuNSs with photothermal conversion capacity were parepared using an ascorbic acid (AA)-mediated in situ growth methd. Quantification was based on the alkaline phosphatase catalyzing the dephosphorylation of ascorbic acid 2-phosphoate to AA, thereby converting OTA concentration to the amount of in situ synthesized AuNSs, thus achieving straightforward readout by temperature. Benefiting from the classical tyramine signal amplification strategy, a detection limit of 0.39 ng mL-1 was obtained. The recoveries of grape juice and maize samples spiked with 10 ng mL-1 and 30 ng mL-1 OTA ranged from 86.53% to 116.9%. Our method has great potential in on-site OTA detection for food safety.


Assuntos
Micotoxinas , Ocratoxinas , Ouro , Ocratoxinas/análise , Imunoensaio/métodos , Micotoxinas/análise , Limite de Detecção
16.
Food Chem ; 421: 136171, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37094406

RESUMO

In this study, a simple and sensitive surface-enhanced Raman scattering (SERS) sensor based on gold nanostars@reduced graphene oxide (AuNS@rGO) was successfully developed for the detection of benzo[a]pyrene in foods. The detection strategy involved benzo[a]pyrene adsorption on reduced graphene oxide, followed SERS detection of adsorbed molecules. Owing to the large electric fields generated by the gold nanostars under laser irradiation, which greatly amplified the Raman signals of benzo[a]pyrene, very high sensitivity for the target analyte was achieved. Under optimized conditions, the SERS sensor exhibited a wide linear detection range for benzo[a]pyrene (from 0.1 µg L-1 to 10000 µg L-1), with a low limit of detection of 0.0028 µg L-1. Chicken samples spiked with benzo[a]pyrene were assayed using the sensor, with recoveries ranging from 89.20% to 100.80%. The benzo[a]pyrene content in roasted mutton sample was quantified using the SERS sensor and a reversed-phase high-performance liquid chromatography method, with similar results being obtained.


Assuntos
Benzo(a)pireno , Grafite , Benzo(a)pireno/análise , Ouro/química , Análise Espectral Raman/métodos , Grafite/química
17.
Anal Chim Acta ; 1251: 340956, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925275

RESUMO

A rapid, in-field, and reliable method for the detection of illegal drugs of abuse in biological fluids without any sample pretreatment would potentially be helpful for law enforcement, drug control officials, and public healthcare. In this study, we presented a cost-effective and highly reproducible solution-based surface-enhanced Raman scattering (SERS) platform utilizing a portable Raman instrument for fast sensitive SERS detection of illegal drugs, such as cocaine, and heroin in human urine without any sample preprocessing. The SERS platform was constructed for the first time by combining the superior SERS enhancement properties of bimetallic silver-coated gold nanostars (BGNS-Ag) and the advantages of suitable alkaline metal salts such as NaI for SERS signal amplification. The effects of the silver thickness of BGNS-Ag and alkaline salts on the SERS performance were investigated in detail; we observed that the maximum SERS enhancement was obtained for BGNS-Ag with the maximum silver thickness (54 ± 5 nm) in presence of NaI salt. Our SERS platform shows ultra-high sensitivity of cocaine and heroin with a limit of detection (LOD) as low as 10 pg/mL for cocaine and 100 pg/mL for heroin, which was 100 times lower than that of the traditional silver nanoparticle-based illegal drug detection. As a demonstration, the platform was further applied to detect cocaine and heroin spiked in human urine without any sample preprocessing achieving a LOD of 100 pg/mL for cocaine and 1 ng/mL for heroin. Overall, our SERS detection platform shows potential for rapid, onsite, ultra-low-cost portable applications for trace detection of illegal drugs and biomarkers.


Assuntos
Cocaína , Nanopartículas Metálicas , Humanos , Prata , Ouro , Heroína , Sais , Análise Espectral Raman/métodos , Biglicano
18.
Small ; 19(29): e2204293, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965074

RESUMO

The in vivo dynamics of nanoparticles requires a mechanistic understanding of multiple factors. Here, for the first time, the surprising breakdown of functionalized gold nanostars (F-AuNSs) conjugated with antibodies and 64 Cu radiolabels in vivo and in artificial lysosomal fluid ex vivo, is shown. The short-term biodistribution of F-AuNSs is driven by the route of systemic delivery (intravenous vs intraperitoneal) and long-term fate is controlled by the tissue type in vivo. In vitro studies including endocytosis pathways, intracellular trafficking, and opsonization, are combined with in vivo studies integrating a milieu of spectroscopy and microcopy techniques that show F-AuNSs dynamics is driven by their physicochemical properties and route of delivery. F-AuNSs break down into sub-20 nm broken nanoparticles as early as 7 days postinjection. Martini coarse-grained simulations are performed to support the in vivo findings. Simulations suggest that shape, size, and charge of the broken nanoparticles, and composition of the lipid membrane depicting various tissues govern the interaction of the nanoparticles with the membrane, and the rate of translocation across the membrane to ultimately enable tissue clearance. The fundamental study addresses critical gaps in the knowledge regarding the fate of nanoparticles in vivo that remain a bottleneck in their clinical translation.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/química , Distribuição Tecidual , Nanopartículas/química , Nanopartículas Metálicas/química
19.
Appl Spectrosc ; 77(4): 360-370, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36653320

RESUMO

Gold nanostars (AuNSs) are synthesized using a seed-mediated growth method. The synthesized AuNSs solution is stable and shows a localized surface plasmon resonance (LSPR) band in the visible range, which is confirmed using ultraviolet-visible (UV-Vis) spectroscopy. Furthermore, the as-synthesized AuNSs were functionalized with melamine and used as a sensor for the colorimetric detection of uric acid (UA). The detection mechanism could be assessed through various analytical techniques such as UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), zeta potential, field emission scanning electron microscopy (FE-SEM), and transmission electron microscopic techniques. These methods exhibited a good linear regression between the absorption ratio of LSPR band of melamine-AuNSs and the concentration of UA (0-120 µM), with the detection limit of 8.50 nm. As a result, UA was quantitatively detected in biofluids by using melamine-AuNSs as a colorimetric sensor, revealing melamine-AuNSs-based colorimetric approach which could be used as a simple platform for UA assay in biofluids.


Assuntos
Nanopartículas Metálicas , Ácido Úrico , Colorimetria/métodos , Ouro/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química
20.
Mikrochim Acta ; 190(1): 45, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602584

RESUMO

A nanosensor comprising of gold nanostars (Au-Nstars)-graphitic carbon nitride (g-C3N4) nanocomposite layered on a glassy carbon electrode (GCE) to detect serotonin (ST) in various body fluids has been fabricated. The nanocomposite and the sensing platform have been thoroughly characterized with UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray photoelectron spectroscopy (EDX), and electrochemical techniques such as cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The designed ST detection probe has achieved a linear dynamic range (LDR) in the range 5 × 10-7 and 1 × 10-3 M with a limit of detection (LOD) of 15.1 nM (RSD < 3.3%). The ST detection capability of the fabricated sensor ranges between the normal and several abnormal pathophysiological situations. The sensor effectively detects ST in real matrices such as urine and blood serum, thus, showing its direct diagnostic applicability. Additionally, the sensor has been tested in the microenvironment of human embryonic kidney (HEK) cells to assess the possibility of ST secretion in cell lines. Interferences because of co-existing molecules have been evaluated, and the shelf-life of the fabricated sensor has been obtained as 8 weeks.


Assuntos
Nanocompostos , Serotonina , Humanos , Ouro/química , Nanocompostos/química , Espectroscopia Dielétrica , Rim
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA