Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Protein Expr Purif ; 223: 106551, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38997076

RESUMO

Hyaluronidase, an enzyme that degrades hyaluronic acid (HA), is utilized in clinical settings to facilitate drug diffusion, manage extravasation, and address injection-related complications linked to HA-based fillers. In this study, a novel hyaluronate lyase EsHyl8 was cloned, expressed, and characterized from Escherichia sp. A99 of human intestinal origin. This lyase belongs to polysaccharide lyase (PL) family 8, and showed specific activity towards HA. EsHyl8 exhibited optimal degradation at 40 °C and pH 6.0. EsHyl8 exhibited a high activity of 376.32 U/mg among hyaluronidases of human gut microorganisms. EsHyl8 was stable at 37 °C and remained about 70 % of activity after incubation at 37 °C for 24 h, demonstrating excellent thermostability. The activity of EsHyl8 was inhibited by Zn2+, Cu2+, Fe3+, and SDS. EsHyl8 was an endo-type enzyme whose end-product was unsaturated disaccharide. This study enhances our understanding of hyaluronidases from human gut microorganisms.


Assuntos
Clonagem Molecular , Polissacarídeo-Liases , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Escherichia/genética , Escherichia/enzimologia , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Estabilidade Enzimática , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato
2.
Infect Immun ; 92(7): e0019924, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38842305

RESUMO

Enterococcus faecalis is a common cause of healthcare-acquired bloodstream infections and catheter-associated urinary tract infections (CAUTIs) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but the function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, ΔhylA exhibited defects in bladder colonization and dissemination to the bloodstream, and ΔhylB exhibited a defect in kidney colonization. Furthermore, a ΔhylAΔhylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both hyaluronic acid (HA) and chondroitin sulfate in vitro, while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during the stationary phase and also contributed to dampening of lipopolysaccharide-mediated NF-κB activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.


Assuntos
Bacteriemia , Infecções Relacionadas a Cateter , Enterococcus faecalis , Glicosaminoglicanos , Infecções por Bactérias Gram-Positivas , Infecções Urinárias , Enterococcus faecalis/genética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/metabolismo , Infecções Urinárias/microbiologia , Bacteriemia/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Animais , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Glicosaminoglicanos/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Feminino , Humanos , Ácido Hialurônico/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38411935

RESUMO

Hyaluronate lyase (HA lyase) has potential in the industrial processing of hyaluronan. In this study, HylP, an HA lyase from Streptococcus pyogenes phage (SPB) was successfully expressed in Bacillus subtilis. To improve the extracellular enzyme activity of HylP in B. subtilis, signal peptide engineering systematic optimization was carried out, and cultured it from shake flasks and fermenters, followed by purification, characterization, and analysis of degradation products. The results showed that the replacement of the signal peptide increased the extracellular enzyme activity of HylP from 1.0 × 104 U/mL to 1.86 × 104 U/mL in the shake flask assay, and using a 20 L fermenter in a batch fermentation process, the extracellular enzyme activity achieved the level of 1.07 × 105 U/mL. HylP exhibited significant thermal and pH stability in the temperature range of 40 °C and pH range of 4-8, respectively. The enzyme showed optimum activity at 40 °C and pH 6, with significant activity in the presence of Na+, Mg2+, and Co2+ ions. Degradation analysis showed that HylP efficiently degraded hyaluronan as an endonuclease, releasing unsaturated disaccharides. These comprehensive findings underscore the substantial industrial potential of HylP for hyaluronan processing applications, offering valuable insights into enzyme characterization and optimization of expression for potential industrial utilization.

4.
Microbiol Spectr ; 11(4): e0052423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358453

RESUMO

Bacterial hyaluronate lyases (Hys) are enzymes that degrade hyaluronic acid in their host and are known to contribute to the pathogenesis of several illnesses. The first two identified Hys genes in Staphylococcus aureus were registered as hysA1 and hysA2. However, their annotations have been mistakenly reversed in some registered assembly data, and different abbreviations (hysA and hysB) in some reports complicates comparative analysis of Hys proteins. We investigated the hys loci of S. aureus genome sequences registered in public databases, analyzed the homology, and defined hysA as hys located in the core genome surrounded by a lactose metabolic operon and a ribosomal protein cluster present in almost all strains and hysB as that located on the genomic island νSaß of the accessory genome. Homology analysis of the amino acid sequences of HysA and HysB revealed that they are conserved among clonal complex (CC) groups with a few exceptions. Thus, we propose a new nomenclature for S. aureus Hys subtypes: HysACC*** for HysA and HysBCC*** for HysB, with the asterisks representing the clonal complex number of the S. aureus strain producing the Hys subtype. The application of this proposed nomenclature will facilitate the intuitive, straightforward, and unambiguous designation of Hys subtypes and contribute to enhancing comparative studies in this regard. IMPORTANCE Numerous whole-genome sequence data for Staphylococcus aureus harboring two hyaluronate lyase (Hys) genes have been registered. However, the assigned gene names for hysA1 and hysA2 are incorrect in some assembled data, and in some cases, the genes are annotated differently as hysA and hysB. This creates confusion with respect to the nomenclature of Hys subtypes and complicates analysis involving Hys. In this study, we compared the homology of Hys subtypes and observed that to some extent, their amino acid sequences are conserved in each clonal complex group. Hys has been implicated as an important virulence factor, but relative sequence heterogeneity among S. aureus clones raises the question of whether Hys activities are different among these clones. Our proposed Hys nomenclature will facilitate comparison of the virulence of Hys, as well as discussions of the subject.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/genética , Polissacarídeo-Liases/genética
5.
J Biotechnol ; 366: 35-45, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36925048

RESUMO

Hyaluronate lyases (HA lyases) have been proved to distribute widely among microorganisms, with large potential in hyaluronan processing. Here, a highly active HA lyase HylC from Citrobacter freundii strain Cf1 is reported. HylC was expressed in Escherichia coli BL21(DE3) under the regulation of T7 promoter, and purified to electrophoretic homogeneity for enzymatic characterization, which suggested its suitable thermo- and pH stability under 45 °C and pH rang of 4-8, and high halotolerancy in 1.5 M NaCl. The enzyme exhibited the optimal activity under 37 °C and pH 5.5, and was activated by Ca2+, K+, Zn2+, Ni2+ and Li+. Analysis of degradation product proved it cleave HA in endolytic manner, releasing unsaturated disaccharides as final product. Then, through optimization of promoter and construction of dual promoter, expression level of HylC improved from 1.10 × 104 U/mL to 2.64 × 104 U/mL on shake-flask level. Finally, through batch fermentation, a highest activity of 2.65×105 U/mL was achieved in a 5-L fermenter. Taken together, this work demonstrates the potential of HylC and its recombinant strain in industrial applications. To our knowledge, the HA lyase production reported in this study was the highest level in literatures to date.


Assuntos
Ácido Hialurônico , Oligossacarídeos , Ácido Hialurônico/química , Oligossacarídeos/metabolismo , Dissacarídeos/metabolismo , Polissacarídeo-Liases/química , Escherichia coli/genética , Escherichia coli/metabolismo
6.
Biosci Biotechnol Biochem ; 87(3): 256-266, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36535637

RESUMO

Haliscomenobacter hydrossis is a filamentous bacterium common in activated sludge. The bacterium was found to utilize hyaluronic acid, and hyaluronate lyase activity was detected in its culture. However, no hyaluronate lyase gene was found in the genome, suggesting the bacterium secretes a novel hyaluronate lyase. The purified enzyme exhibited two bands on SDS-PAGE and a single peak on gel filtration chromatography, suggesting a heterodimeric composition. N-terminal amino acid sequence and mass spectrometric analyses suggested that the subunits are molybdopterin-binding and [2Fe-2S]-binding subunits of a xanthine oxidase family protein. The presence of the cofactors was confirmed using spectrometric analysis. Oxidase activity was not detected, revealing that the enzyme is not an oxidase but a hyaluronate lyase. Nuclear magnetic resonance analysis of the enzymatic digest revealed that the enzyme breaks hyaluronic acid to 3-(4-deoxy-ß-d-gluc-4-enuronosyl)-N-acetyl-d-glucosamine. As hyaluronate lyases (EC 4.2.2.1) are monomeric or trimeric, the enzyme is the first heterodimeric hyaluronate lyase.


Assuntos
Ácido Hialurônico , Esgotos , Ácido Hialurônico/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Bacteroidetes , Glicosaminoglicanos , Bactérias/metabolismo
7.
J Microbiol Biotechnol ; 33(2): 235-241, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524342

RESUMO

Hyaluronidase (HAase) can enhance drug diffusion and dissipate edema by degrading hyaluronic acid (HA) in the extracellular matrix into unsaturated HA oligosaccharides in mammalian tissues. Microorganisms are recognized as valuable sources of HAase. In this study, a new hyaluronate lyase (HAaseD) from Bacillus sp. CQMU-D was expressed in Escherichia coli BL21, purified, and characterized. The results showed that HAaseD belonged to the polysaccharide lyase (PL) 8 family and had a molecular weight of 123 kDa. HAaseD could degrade chondroitin sulfate (CS) -A, CS-B, CS-C, and HA, with the highest activity toward HA. The optimum temperature and pH value of HAaseD were 40°C and 7.0, respectively. In addition, HAaseD retained stability in an alkaline environment and displayed higher activity with appropriate concentrations of metal ions. Moreover, HAaseD was an endolytic hyaluronate lyase that could degrade HA to produce unsaturated HA oligosaccharides. Together, our findings indicate that HAaseD from Bacillus sp. CQMU-D is a new hyaluronate lyase and with excellent potential for application in industrial production.


Assuntos
Bacillus , Animais , Bacillus/genética , Polissacarídeo-Liases/metabolismo , Hialuronoglucosaminidase/metabolismo , Ácido Hialurônico/metabolismo , Clonagem Molecular , Oligossacarídeos/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Mamíferos/metabolismo
8.
Enzyme Microb Technol ; 154: 109952, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34871823

RESUMO

Glycosaminoglycan lyase is an effective tool for the functional studies of glycosaminoglycans and for the preparation of oligosaccharides. In this study, a new glycosaminoglycan lyase HCLaseV with a molecular weight of 90 kDa was cloned, expressed, and characterized from Vibrio sp. H240. The lyase belonged to the polysaccharide lyase (PL)- 8 family. HCLaseV showed enzyme activities toward chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, and hyaluronic acid. HCLaseV exhibited the highest activity against HA at pH 7.0 and 40 °C. HCLaseV was an endo-type enzyme whose degradation end-product was unsaturated disaccharides. Ca2+ inhibited the activity of HCLaseV to a certain extent, which was different from most of the enzymes in the PL-8 family. Mutagenesis studies showed that the Ca2+ inhibition might be related to the Asn244 residue. The sequence homology was evaluated by mutagenesis studies, and the catalytic residues in HCLaseV were presumed to be His278, Trp485, and Tyr287. These characteristics are helpful for further basic research and application.


Assuntos
Liases , Vibrio , Clonagem Molecular , Glicosaminoglicanos , Polissacarídeo-Liases/genética , Vibrio/genética
9.
J Microbiol ; 59(10): 920-930, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34554453

RESUMO

The pathogenesis of Staphylococcus aureus, from local infections to systemic dissemination, is mediated by a battery of virulence factors that are regulated by intricate mechanisms, which include regulatory proteins and small RNAs (sRNAs) as key regulatory molecules. We have investigated the involvement of sRNA RsaF, in the regulation of pathogenicity genes hyaluronate lyase (hysA) and serine proteaselike protein D (splD), by employing S. aureus strains with disruption and overexpression of rsaF. Staphylococcus aureus strain with disruption of rsaF exhibited marked down-regulation of hysA transcripts by 0.2 to 0.0002 fold, and hyaluronate lyase activity by 0.2-0.1 fold, as well as increased biofilm formation, during growth from log phase to stationery phase. These mutants also displayed down-regulation of splD transcripts by 0.8 to 0.005 fold, and reduced activity of multiple proteases by zymography. Conversely, overexpression of rsaF resulted in a 2- to 4- fold increase in hysA mRNA levels and hyaluronidase activity. Both hysA and splD mRNAs demonstrated an increased stability in RsaF+ strains. In silico RNA-RNA interaction indicated a direct base pairing of RsaF with hysA and splD mRNAs, which was established in electrophoretic mobility shift assays. The findings demonstrate a positive regulatory role for small RNA RsaF in the expression of the virulence factors, HysA and SplD.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Polissacarídeo-Liases/metabolismo , Serina Proteases/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Humanos , Polissacarídeo-Liases/genética , Sistemas de Translocação de Proteínas , Serina Proteases/genética , Staphylococcus aureus/genética , Fatores de Virulência/genética
10.
Colloids Surf B Biointerfaces ; 208: 112095, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34507069

RESUMO

Hyaluronan is a non-sulfated negatively-charged linear polymer distributed in most parts of the human body, where it is located around cells in the extracellular matrix of connective tissues and plays an essential role in the organization of tissue architecture. Moreover, hyaluronan is involved in many biological processes and used in many clinical, cosmetic, pharmaceutic, and biotechnological applications worldwide. As interest in hyaluronan applications increases, so does interest in hyaluronidases and hyaluronate lyases, as these enzymes play a major part in hyaluronan degradation. Many hyaluronidases and hyaluronate lyases produced by eukaryotic cells, bacteria, and bacteriophages have so far been described and annotated, and their ability to cleave hyaluronan has been experimentally proven. These enzymes belong to several carbohydrate-active enzyme families, share very low sequence identity, and differ in their cleaving mechanisms and in their structural and functional properties. This review presents a summary of annotated and characterized hyaluronidases and hyaluronate lyases isolated from different sources belonging to distinct protein families, with a main focus on the binding and catalytic residues of the discussed enzymes in the context of their biochemical properties. In addition, the application potential of individual groups of hyaluronidases and hyaluronate lyases is evaluated.


Assuntos
Bacteriófagos , Hialuronoglucosaminidase , Humanos , Ácido Hialurônico , Modelos Moleculares
11.
Front Microbiol ; 12: 696096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177877

RESUMO

Hyaluronic acid (HA) is a negatively charged and linear polysaccharide existing in the tissues and body fluids of all vertebrates. Some pathogenic bacteria target hyaluronic acid for adhesion and/or infection to host cells. Vibrio alginolyticus is an opportunistic pathogen related to infections of humans and marine animals, and the hyaluronic acid-degrading potential of Vibrio spp. has been well-demonstrated. However, little is known about how Vibrio spp. utilize hyaluronic acid. In this study, a marine bacterium V. alginolyticus LWW-9 capable of degrading hyaluronic acid has been isolated. Genetic and bioinformatic analysis showed that V. alginolyticus LWW-9 harbors a gene cluster involved in the degradation, transport, and metabolism of hyaluronic acid. Two novel PL8 family hyaluronate lyases, VaHly8A and VaHly8B, are the key enzymes for the degradation of hyaluronic acid. VaHly8A and VaHly8B have distinct biochemical properties, reflecting the adaptation of the strain to the changing parameters of the aquatic habitats and hosts. Based on genomic and functional analysis, we propose a model for the complete degradation of hyaluronic acid by V. alginolyticus LWW-9. Overall, our study expands our knowledge of the HA utilization paradigm within the Proteobacteria, and the two novel hyaluronate lyases are excellent candidates for industrial applications.

12.
Protein Expr Purif ; 182: 105840, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561520

RESUMO

Hyaluronate lyases have received extensive attention due to their applications in medical science, drug and biochemical engineering. However, few thermotolerant and pH-stable hyaluronate lyases have been found. In this study, hyaluronate lyase TcHly8B from Thermasporomyces composti DSM22891 was expressed in Escherichia coli BL21(DE3), purified, and characterized. Phylogenetic analysis revealed that TcHly8B belonged to a new subfamily in PL8. The molecular mass of recombinant TcHly8B determined by SDS-PAGE was approximately 86 kDa. The optimal temperature of TcHly8B was 70 °C, which was higher than that of previously reported hyaluronate lyases. TcHly8B was very stable at temperatures from 0 to 60 °C. The optimal pH of TcHly8B was 6.6. It could retain more than 80% of its original enzyme activity after incubation for 12 h in the pH range of 3.0-10.6. TcHly8B degraded hyaluronic acid into unsaturated disaccharides as the end products. The amino acid sequence and structure analysis of TcHly8B demonstrated that the amino acid composition and salt bridges might contribute to the thermostability of TcHly8B. Overall, this study provides an excellent example for the discovery of thermotolerant hyaluronate lyases and can be applied to the industrialized production and basic research of hyaluronate oligosaccharides.


Assuntos
Actinobacteria , Proteínas de Bactérias , Polissacarídeo-Liases , Actinobacteria/enzimologia , Actinobacteria/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Polissacarídeo-Liases/biossíntese , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
13.
Int J Biol Macromol ; 165(Pt A): 1211-1218, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33038404

RESUMO

Hyaluronic acid (HA) is an anionic linear polysaccharide abundantly distributed in the extracellular matrix of mammalian connective, growing, and tumor tissues. Hyaluronidase is used as an important drug diffusion promoter and a tool enzyme to produce HA oligosaccharides. However, there is no thermostable hyaluronidase suitable for application to date. In this study, a thermophilic hyaluronate lyase, TcHly8C, from Thermasporomyces composti DSM22891 was expressed in Escherichia coli. The recombinant TcHly8C was most active at 70 °C, and it retained about 30% of initial activity after incubation at 60 °C for 28 days. The half-lives of TcHly8C at 60 °C and 70 °C were 16.1 d and 2.3 h, respectively. The optimum pH of TcHly8C is 5.93, and it was stable at pH 6.15-10.90. The presence of Mg2+ could enhance its enzymatic activity significantly. Km, kcat, and kcat/Km of TcHly8C towards HA were 3.69 mg∙ml-1, 17.82 s-1, and 4.82 ml∙mg-1∙s-1, respectively. TcHly8C degraded HA in an exolytic mode, and the end product was unsaturated HA disaccharide (ΔUA-GlcNAc). Overall, our results show that TcHly8C is the first reported PL8 exo-type hyaluronate lyase with high thermostability, which provides a potential enzyme used in medicine and production of HA oligosaccharides.


Assuntos
Actinobacteria/enzimologia , Oligossacarídeos/química , Polissacarídeo-Liases/genética , Actinobacteria/genética , Estabilidade Enzimática/genética , Escherichia coli/genética , Temperatura Alta/efeitos adversos , Ácido Hialurônico/química , Oligossacarídeos/biossíntese , Oligossacarídeos/genética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Especificidade por Substrato
14.
Front Microbiol ; 11: 552418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072013

RESUMO

Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes cellulitis, bacteremia, and invasive diseases, such as streptococcal toxic shock syndrome. Although SDSE infection is more prevalent among elderly individuals and those with diabetes mellitus than infections with Streptococcus pyogenes (Group A streptococci; GAS) and Streptococcus agalactiae (Group B streptococci; GBS), the mechanisms underlying the pathogenicity of SDSE remain unknown. SDSE possesses a gene hylD encoding a hyaluronate lyase (HylD), whose homologue (HylB) is involved in pathogenicity of GBS, while the role of HylD has not been characterized. In this study, we focused on the enzyme HylD produced by SDSE; HylD cleaves hyaluronate (HA) and generates unsaturated disaccharides via a ß-elimination reaction. Hyaluronate-agar plate assays revealed that SDSE promoted dramatic HA degradation. SDSE expresses both HylD and an unsaturated glucuronyl hydrolase (UGL) that catalyzes the degradation of HA-derived oligosaccharides; as such, SDSE was more effective at HA degradation than other ß-hemolytic streptococci, including GAS and GBS. Although HylD shows some homology to HylB, a similar enzyme produced by GBS, HylD exhibited significantly higher enzymatic activity than HylB at pH 6.0, conditions that are detected in the skin of both elderly individuals and those with diabetes mellitus. We also detected upregulation of transcripts from hylD and ugl genes from SDSE wild-type collected from the mouse peritoneal cavity; upregulated expression of ugl was not observed in ΔhylD SDSE mutants. These results suggested that disaccharides produced by the actions of HylD are capable of triggering downstream pathways that catalyze their destruction. Furthermore, we determined that infection with SDSEΔhylD was significantly less lethal than infection with the parent strain. When mouse skin wounds were infected for 2 days, intensive infiltration of neutrophils was observed around the wound areas infected with SDSE wild-type but not SDSEΔhylD. Our investigation suggested that HylD and UGL play important roles in nutrient acquisition from hosts, followed by the bacterial pathogenicity damaging host tissues.

15.
J Biol Chem ; 293(46): 17906-17916, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30262663

RESUMO

Glycosaminoglycans (GAGs) and GAG-degrading enzymes have wide-ranging applications in the medical and biotechnological industries. The former are also an important nutrient source for select species of the human gut microbiota (HGM), a key player in host-microbial interactions. How GAGs are metabolized by the HGM is therefore of interest and has been extensively investigated in the model human gut microbe Bacteroides thetaiotaomicron. The presence of as-yet uncharacterized GAG-inducible genes in its genome and of related species, however, is testament to our incomplete understanding of this process. Nevertheless, it presents a potential opportunity for the discovery of additional GAG-degrading enzymes. Here, we investigated a gene of unknown function (BT_3328) from the chondroitin sulfate (CS) utilization locus of B. thetaiotaomicron NMR and UV spectroscopic assays revealed that it encodes a novel polysaccharide lyase (PL), hereafter referred to as BtCDH, reflecting its source (B. thetaiotaomicron (Bt)) and its ability to degrade the GAGs CS, dermatan sulfate (DS), and hyaluronic acid (HA). When incubated with HA, BtCDH generated a series of unsaturated HA sugars, including Δ4,5UA-GlcNAc, Δ4,5UA-GlcNAc-GlcA-GlcNac, Δ4,5UA-[GlcNAc-GlcA]2-GlcNac, and Δ4,5UA-[GlcNAc-GlcA]3-GlcNac, as end products and hence was classed as endo-acting. A combination of genetic and biochemical assays revealed that BtCDH localizes to the cell surface of B. thetaiotaomicron where it enables extracellular GAG degradation. BtCDH homologs were also detected in several other HGM species, and we therefore propose that it represents the founding member of a new polysaccharide lyase family (PL29). The current discovery also contributes new insights into CS metabolism by the HGM.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/metabolismo , Ácido Hialurônico/metabolismo , Polissacarídeo-Liases/metabolismo , Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Metais Pesados/química , Polissacarídeo-Liases/química , Temperatura
16.
Sheng Wu Gong Cheng Xue Bao ; 33(11): 1883-1888, 2017 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-29202525

RESUMO

In order to produce hyaluronate lyase of high yield, we optimized the fermentation Arthrobacter globiformis A152 in quadruple fermentation of 5 L, and studied the kinetics of fermentation. Both the highest biomass and enzyme activity could be achieved when the rotation speed was 400 r/min and the ventilation volume was 3.5 L/min. In addition, digital models of cell growth, product synthesis and substrate consumption were built by equation of logistic, luedeking-piret, product synthesis and substrate consumption. Nonlinear fitting and estimation of optimal parameters were obtained by MATLAB. The model correlated well between prediction and experimental data, and reflected the change rules of cell growth, hyaluronidase synthesis and substrate consumption during the process of producing hyaluronate lyase. The establishment of fermentation kinetics digital models could provide basis for controlling and prediction of the production process.


Assuntos
Arthrobacter/metabolismo , Fermentação , Polissacarídeo-Liases/biossíntese , Microbiologia Industrial , Cinética , Modelos Biológicos
17.
Microorganisms ; 5(3)2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895889

RESUMO

Hyaluronic acid (HA) and other glycosaminoglycans are extracellular matrix components in the human epidermis and dermis. One of the most prevalent skin microorganisms, Propionibacterium acnes, possesses HA-degrading activity, possibly conferred by the enzyme hyaluronate lyase (HYL). In this study, we identified the HYL of P. acnes and investigated the genotypic and phenotypic characteristics. Investigations include the generation of a P. acneshyl knockout mutant and HYL activity assays to determine the substrate range and formed products. We found that P. acnes employs two distinct variants of HYL. One variant, HYL-IB/II, is highly active, resulting in complete HA degradation; it is present in strains of the phylotypes IB and II. The other variant, HYL-IA, has low activity, resulting in incomplete HA degradation; it is present in type IA strains. Our findings could explain some of the observed differences between P. acnes phylotype IA and IB/II strains. Whereas type IA strains are primarily found on the skin surface and associated with acne vulgaris, type IB/II strains are more often associated with soft and deep tissue infections, which would require elaborate tissue invasion strategies, possibly accomplished by a highly active HYL-IB/II.

18.
Appl Biochem Biotechnol ; 182(1): 216-228, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27878509

RESUMO

A hyaluronate lyase was obtained by cultivating Arthrobacter globiformis strain A152. The enzyme was purified to homogeneity from the supernatant by ammonium sulfate fractionation, Q Sepharose Fast Flow, and Sephadex G-100 chromatography. The purification resulted in a 32.78-fold increase in hyaluronate lyase activity with specific activity of 297.2 U/mg. The molecular weight of the enzyme determined by SDS-PAGE was approximately 73.7 kDa. Using hyaluronic acid (HA) as a substrate, the maximal reaction rate (Vmax) and the Michaelis-Menten constant (Km) of hyaluronate lyase were found to be 4.76 µmol/min/ml and 0.11 mg/ml, respectively. The optimum pH and temperature values for hyaluronate lyase activity were pH 6.0 and 42 °C, respectively. This enzyme was stable at pH 4-10, 5-7, and 5-7 at 4, 37, and 42 °C, respectively. Investigation about temperature effects on hyaluronate lyase displayed that it was stable at 30-37 °C and also showed high activity at 37 °C. The enzymatic activity was enhanced by Ca2+ and was strongly inhibited by Cu2+ and SDS. These properties suggested that the hyaluronate lyase in this study could bring promising prospects in medical and industry applications.


Assuntos
Arthrobacter/química , Proteínas de Bactérias/química , Ácido Hialurônico/química , Polissacarídeo-Liases/química , Arthrobacter/enzimologia , Proteínas de Bactérias/isolamento & purificação , Cálcio/química , Cátions Bivalentes , Cobre/química , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Polissacarídeo-Liases/isolamento & purificação , Dodecilsulfato de Sódio/química , Especificidade por Substrato , Temperatura
19.
Chinese Journal of Biotechnology ; (12): 1883-1888, 2017.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-243662

RESUMO

In order to produce hyaluronate lyase of high yield, we optimized the fermentation Arthrobacter globiformis A152 in quadruple fermentation of 5 L, and studied the kinetics of fermentation. Both the highest biomass and enzyme activity could be achieved when the rotation speed was 400 r/min and the ventilation volume was 3.5 L/min. In addition, digital models of cell growth, product synthesis and substrate consumption were built by equation of logistic, luedeking-piret, product synthesis and substrate consumption. Nonlinear fitting and estimation of optimal parameters were obtained by MATLAB. The model correlated well between prediction and experimental data, and reflected the change rules of cell growth, hyaluronidase synthesis and substrate consumption during the process of producing hyaluronate lyase. The establishment of fermentation kinetics digital models could provide basis for controlling and prediction of the production process.

20.
Biomed Khim ; 62(1): 82-8, 2016.
Artigo em Russo | MEDLINE | ID: mdl-26973193

RESUMO

The lecture is devoted to consideration of mechanism of therapeutic action of the enzyme hyaluronidase in hyperplastic connective tissue. Drugs based on hyaluronidase increase bioavailability of other drugs used in adjuvant therapy; they significantly increase effectiveness of treatment, and also provide targeted synthesis of hyaluronic acid, ths regulating the regeneration process of connective tissue.


Assuntos
Tecido Conjuntivo/metabolismo , Hialuronoglucosaminidase , Animais , Tecido Conjuntivo/patologia , Humanos , Hialuronoglucosaminidase/farmacocinética , Hialuronoglucosaminidase/uso terapêutico , Especificidade de Órgãos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA