Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Methods Mol Biol ; 2843: 15-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39141291

RESUMO

Bacterial extracellular vesicles (BEVs) have emerged as mediators of transkingdom communication with numerous potential biotechnological applications. As such, investigation of BEV's protein composition holds promise to uncover new biological mechanisms, such as in microbiome-host communication or pathogen infection. Additionally, bioengineering of BEV protein composition can enhance their therapeutic potential. However, accurate assessment of BEV protein cargo is limited by their nanometer size, which precludes light microscopy imaging, as well as by co-isolation of protein impurities during separation processes. A solution to these challenges is found in immunogold transmission electron microscopy (TEM), which combines antibody-based labeling with direct visualization of BEVs. Several challenges are commonly encountered during immunogold TEM analysis of BEVs, most notably inefficient antibody labeling and poor contrast. Here, we present an optimized protocol for immunogold TEM analysis of BEVs that overcomes such challenges.


Assuntos
Vesículas Extracelulares , Microscopia Eletrônica de Transmissão , Vesículas Extracelulares/ultraestrutura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Microscopia Eletrônica de Transmissão/métodos , Imuno-Histoquímica/métodos , Bactérias/ultraestrutura , Bactérias/química
2.
Antimicrob Agents Chemother ; : e0005224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717092

RESUMO

Phage therapy has not been established in the clinical routine, in part due to uncertainties concerning efficacy and immunogenicity. Here, three rabbits were immunized against staphylococcal phage K to assess viral potency in the presence of immunized serum. Three rabbits received weekly intramuscular injections of ~1010±1 pfu/mL phage K. Phage K-specific IgG formation was measured by an enzyme-linked immunosorbent assay (ELISA); phage inactivation was assessed by calculating K-rates. Using transmission electron microscopy (TEM) and immunogold labeling, antibody binding to phage K was visualized. This was numerically assessed by objective imaging analysis comparing the relative distances of each gold particle to the nearest phage head and tail structure. Immunization led to a strong IgG response, plateauing 7 days after the last phage injection. There was no significant correlation between K-rate and antibody titer over time. TEM showed IgG binding to the head structure of phage K. Image analysis showed a significant reduction in relative distances between antibodies and phage head structures when comparing samples from day 0 and day 28 (P < 0.0001). These results suggest that while individual serum analysis for antibodies against therapeutic phage bears consideration prior to and with prolonged therapy, during phage application, the formation of specific antibodies against phage may only partially explain decreased phage potency in the presence of immunized serum. Instead, other factors may contribute to an individual's "humoral receptiveness" to phage therapy. Future investigations should be directed toward the identification of the humoral factors that have the most significant predictive value on phage potency in vivo.

3.
Curr Protoc ; 4(5): e1045, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717451

RESUMO

The cell surface distribution patterns (clustering) of membrane proteins have been widely investigated in cell biology. Here we describe a novel transmission electron microscopic (TEM) protocol designed to improve the quality of information obtained about the protein distribution patterns detected. This novel method makes it possible to study the clustering of all transmembrane proteins on one half of the cytoplasmic membrane of a whole cell. To achieve better imaging, we combine various methods, including critical-point drying, fixation of gold beads with a carbon layer, and a newly developed chemical thinning method. In addition, in our image-processing algorithm, we implemented pair correlation and pair cross-correlation functions, providing more details and better quantitative accuracy in characterizing the size and numbers of possible protein clusters. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sample preparation and transmission electron micrography Alternate Protocol: Direct cell labeling for transmission electron micrography Basic Protocol 2: Analysis of TEM images to detect immunogold-labeled proteins.


Assuntos
Membrana Celular , Proteínas de Membrana , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica de Transmissão/métodos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Humanos , Algoritmos
4.
J Struct Biol ; 215(4): 108025, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37678713

RESUMO

Immunogold labeling in transmission electron microscopy (TEM) utilizes the high electron density of gold nanoparticles conjugated to proteins to identify specific antigens in biological samples. In this work we applied the concept of immunogold labeling for the labeling of negatively charged phospholipids, namely phosphatidylserine, by a simple protocol, performed entirely in the liquid-phase, from which cryo-TEM specimens can be directly prepared. Labeling included a two-step process using biotinylated annexin-V and gold-conjugated streptavidin. We initially applied it on liposomal systems, demonstrating its specificity and selectivity, differentiating between 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) membranes. We also observed specific labeling on extracellular vesicle samples isolated from THP1 cells and from MDA-468 cells, which underwent stimulations. Finally, we compared the levels of annexin-V labeling on the cells vs. on their isolated EVs by flow cytometry and found a good correlation with the cryo-TEM results. This simple, yet effective labeling technique makes it possible to differentiate between negatively charged and non-negatively charged membranes, thus shillucidating their possible EV shedding mechanism.


Assuntos
Nanopartículas Metálicas , Fosfatidilserinas , Ouro , Microscopia Eletrônica de Transmissão , Anexinas
5.
Cytometry A ; 103(12): 978-991, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37605541

RESUMO

Peptide presentation by MHC class I and MHC class II molecules plays important roles in the regulation of the immune response. One factor in these displays is the density of antigen, which must exceed a critical threshold for the effective activation of T cells. Nonrandom distribution of MHC class I and class II has already been detected at the nanometer level and at higher hierarchical levels. It is not clear how the absence and reappearance of some protein molecules can influence the nonrandom distribution. Therefore, we performed experiments on HLA II-deficient bare lymphocyte syndrome (BLS1) cells: we created a stable transfected cell line, tDQ6-BLS-1, and were able to detect the effect of the appearance of HLA-DQ6 molecules on the homo and heteroassociation of different cell surface molecules by comparing Förster resonance energy transfer (FRET) efficiency on transfected cells to that on nontransfected BLS-1 and JY human B-cell lines. Our FRET results show a decrease in homoassociation FRET between HLA I chains in HLA-DQ6-transfected tDQ6-BLS-1 cells compared with the parent BLS-1 cell line and an increase in heteroassociation FRET between HLA I and HLA II (compared with JY cells), suggesting a similar pattern of antigen presentation by the HLA-DQ6 allele. Transmission electron microscopy (TEM) revealed that both HLA class I and class II molecules formed clusters at higher hierarchical levels on the tDQ6-BLS-1 cells, and the de novo synthesized HLA DQ molecules did not intersperse with HLA class I islands. These observations could be important in understanding the fine tuning of the immune response.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Antígenos HLA-DQ , Humanos , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/química , Antígenos de Histocompatibilidade Classe II , Membrana Celular , Microscopia Eletrônica
6.
Methods Mol Biol ; 2668: 33-43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37140788

RESUMO

Transmission electron microscopy (TEM) is currently the only method that enables the observation of extracellular vesicles (EVs) at a nanometer scale. Direct visualization of the whole content of EV preparation provides not only crucial insights on the morphology of EVs but also an objective evaluation of the content and purity of the preparation. Coupled to immunogold labeling, TEM allows the detection and association of proteins at the surface of EVs. In these techniques, EVs are deposited on grids and are chemically immobilized and contrasted to withstand a high-voltage electron beam. Under high vacuum, the electron beam hits the sample and the electrons that scatter forward are collected to form an image. Here, we describe the steps needed to observe EVs by classical TEM and the extra steps required to label proteins through immunolabeling electron microscopy (IEM).


Assuntos
Vesículas Extracelulares , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo
7.
ACS Nano ; 17(11): 9919-9937, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37204291

RESUMO

To understand how the molecular machinery of synapses works, it is essential to determine an inventory of synaptic proteins at a subsynaptic resolution. Nevertheless, synaptic proteins are difficult to localize because of the low expression levels and limited access to immunostaining epitopes. Here, we report on the exTEM (epitope-exposed by expansion-transmission electron microscopy) method that enables the imaging of synaptic proteins in situ. This method combines TEM with nanoscale resolution and expandable tissue-hydrogel hybrids for enhanced immunolabeling with better epitope accessibility via molecular decrowding, allowing successful probing of the distribution of various synapse-organizing proteins. We propose that exTEM can be employed for studying the mechanisms underlying the regulation of synaptic architecture and function by providing nanoscale molecular distribution of synaptic proteins in situ. We also envision that exTEM is widely applicable for investigating protein nanostructures located in densely packed environments by immunostaining of commercially available antibodies at nanometer resolution.


Assuntos
Sinapses , Expansão de Tecido , Sinapses/fisiologia
8.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563005

RESUMO

Nano secondary ion mass spectrometry (nanoSIMS) imaging is a rapidly growing field in biological sciences, which enables investigators to describe the chemical composition of cells and tissues with high resolution. One of the major challenges of nanoSIMS is to identify specific molecules or organelles, as these are not immediately recognizable in nanoSIMS and need to be revealed by SIMS-compatible probes. Few laboratories have generated such probes, and none are commercially available. To address this, we performed a systematic study of probes initially developed for electron microscopy. Relying on nanoscale SIMS, we found that antibodies coupled to 6 nm gold particles are surprisingly efficient in terms of labeling specificity while offering a reliable detection threshold. These tools enabled accurate visualization and sample analysis and were easily employed in correlating SIMS with other imaging approaches, such as fluorescence microscopy. We conclude that antibodies conjugated to moderately sized gold particles are promising tools for SIMS imaging.


Assuntos
Organelas , Espectrometria de Massa de Íon Secundário , Ouro , Microscopia Eletrônica , Microscopia de Fluorescência , Espectrometria de Massa de Íon Secundário/métodos
9.
Front Neuroanat ; 16: 855218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444519

RESUMO

Integral membrane proteins such as ion channels, transporters, and receptors shape cell activity and mediate cell-to-cell communication in the brain. The distribution, quantity, and clustering arrangement of those proteins contribute to the physiological properties of the cell; therefore, precise quantification of their state can be used to gain insight into cellular function. Using a highly sensitive immunoelectron microscopy technique called sodium dodecyl sulfate-digested freeze-fracture replica immunogold labeling (SDS-FRL), multiple membrane proteins can be tagged with different sizes of immunogold particles at once and visualized two-dimensionally. For quantification, gold particles in the images must be annotated, and then different mathematical and statistical methods must be applied to characterize the distribution states of proteins of interest. To perform such analyses in a user-friendly manner, we developed a program with a simple graphical user interface called Gold In-and-Out (GIO), which integrates several classical and novel analysis methods for immunogold labeled replicas into one self-contained package. GIO takes an input of particle coordinates, then allows users to implement analysis methods such as nearest neighbor distance (NND) and particle clustering. The program not only performs the selected analysis but also automatically compares the results of the real distribution to a random distribution of the same number of particles on the membrane region of interest. In addition to classical approaches for analyzing protein distribution, GIO includes new tools to analyze the positional bias of a target protein relative to a morphological landmark such as dendritic spines, and can also be applied for synaptic protein analysis. Gold Rippler provides a normalized metric of particle density that is resistant to differences in labeling efficiency among samples, while Gold Star is useful for quantifying distances between a protein and landmark. This package aims to help standardize analysis methods for subcellular and synaptic protein localization with a user-friendly interface while increasing the efficiency of these time-consuming analyses.

10.
Histochem Cell Biol ; 157(2): 251-265, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35048193

RESUMO

The parasitic protozoan Giardia intestinalis, the causative agent of giardiasis, presents a stable and elaborated cytoskeleton, which shapes and supports several intracellular structures, including the ventral disc, the median body, the funis, and four pairs of flagella. Giardia trophozoite is the motile form that inhabits the host small intestine and attaches to epithelial cells, leading to infection. The ventral disc is considered one important element of adhesion to the intestinal cells. It is adjacent to the plasma membrane in the ventral region of the cell and consists of a spiral layer of microtubules and microribbons. In this work, we studied the organization of the cytoskeleton in the ventral disc of G. intestinalis trophozoites using high-resolution scanning electron microscopy or helium ion microscopy in plasma membrane-extracted cells. Here, we show novel morphological details about the arrangement of cross-bridges in different regions of the ventral disc. Results showed that the disc is a non-uniformly organized structure that presents specific domains, such as the margin and the ventral groove region. High-resolution scanning electron microscopy allowed observation of the labeling pattern for several anti-tubulin antibodies using secondary gold particle-labeled antibodies. Labeling in the region of the emergence of the microtubules and supernumerary microtubules using an anti-acetylated tubulin antibody was observed. Ultrastructural analysis and immunogold labeling for gamma-tubulin suggest that disc microtubules originate from a region bounded by the bands of the banded collar and merge with microtubules formed at the perinuclear region. Actin-like filaments and microtubules of the disc are associated, showing an interconnection between elements of the cytoskeleton of the trophozoite.


Assuntos
Citoesqueleto/ultraestrutura , Giardia lamblia/ultraestrutura , Hélio/química , Animais , Membrana Celular/química , Íons/química , Microscopia Eletrônica de Varredura
11.
Methods Mol Biol ; 2382: 1-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34705230

RESUMO

Cell division in plants consists of separating the mother cell in two daughter cells by the centrifugal growth of a new wall. This process involves the reorganization of the structural elements of the cell, namely the microtubules and actin cytoskeleton which allow the coordination, the orientation, and the progression of mitosis. In addition to its implication in those plant-specific structures, the actin cytoskeleton, in close association with the plasma membrane, exhibits specific patterning at the cortex of the dividing cells, and might act as a signaling component. This review proposes an overview of the techniques available to visualize the actin cytoskeleton in fixed tissues or living cells during division, including electron, fluorescent, and super-resolution microscopy techniques.


Assuntos
Células Vegetais , Citoesqueleto de Actina , Actinas , Citoesqueleto , Microtúbulos , Mitose , Plantas
12.
Biology (Basel) ; 10(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064459

RESUMO

The glycocalyx (GCX), a pericellular carbohydrate rich hydrogel, forms a selective barrier that shields the cellular membrane, provides mechanical support, and regulates the transport and diffusion of molecules. The GCX is a fragile structure, making it difficult to study by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Sample preparation by conventional chemical fixation destroys the GCX, giving a false impression of its organization. An additional challenge is to process the GCX in a way that preserves its morphology and enhanced antigenicity to study its cell-specific composition. The aim of this study was to provide a protocol to preserve both antigen accessibility and the unique morphology of the GCX. We established a combined high pressure freezing (HPF), osmium-free freeze substitution (FS), rehydration, and pre-embedding immunogold labeling method for TEM. Our results showed specific immunogold labeling of GCX components expressed in human monocytic THP-1 cells, hyaluronic acid receptor (CD44) and chondroitin sulfate (CS), and maintained a well-preserved GCX morphology. We adapted the protocol for antigen localization by CLSM and confirmed the specific distribution pattern of GCX components. The presented combination of HPF, FS, rehydration, and immunolabeling for both TEM and CLSM offers the possibility for analyzing the morphology and composition of the unique GCX structure.

13.
Mol Brain ; 14(1): 86, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082785

RESUMO

Immunogold labeling allows localization of proteins at the electron microscopy (EM) level of resolution, and quantification of signals. The present paper summarizes methodological issues and experiences gained from studies on the distribution of synaptic and other neuron-specific proteins in cell cultures and brain tissues via a pre-embedding method. An optimal protocol includes careful determination of a fixation condition for any particular antibody, a well-planned tissue processing procedure, and a strict evaluation of the credibility of the labeling. Here, tips and caveats on different steps of the sample preparation protocol are illustrated with examples. A good starting condition for EM-compatible fixation and permeabilization is 4% paraformaldehyde in PBS for 30 min at room temperature, followed by 30 min incubation with 0.1% saponin. An optimal condition can then be readjusted for each particular antibody. Each lot of the secondary antibody (conjugated with a 1.4 nm small gold particle) needs to be evaluated against known standards for labeling efficiency. Silver enhancement is required to make the small gold visible, and quality of the silver-enhanced signals can be affected by subsequent steps of osmium tetroxide treatment, uranyl acetate en bloc staining, and by detergent or ethanol used to clean the diamond knife for cutting thin sections. Most importantly, verification of signals requires understanding of the protein of interest in order to validate for correct localization of antibodies at expected epitopes on particular organelles, and quantification of signals needs to take into consideration the penetration gradient of reagents and clumping of secondary antibodies.


Assuntos
Encéfalo/ultraestrutura , Microscopia Eletrônica , Neurônios/ultraestrutura , Inclusão do Tecido/métodos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Células Cultivadas , Cromogranina A/metabolismo , Hipocampo/citologia , Proteínas de Membrana/metabolismo , Camundongos , Ratos , Coloração e Rotulagem , Fixação de Tecidos
14.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161262

RESUMO

The prokaryotic cell is traditionally seen as a "bag of enzymes," yet its organization is much more complex than in this simplified view. By now, various microcompartments encapsulating metabolic enzymes or pathways are known for Bacteria These microcompartments are usually small, encapsulating and concentrating only a few enzymes, thus protecting the cell from toxic intermediates or preventing unwanted side reactions. The hyperthermophilic, strictly anaerobic Crenarchaeon Ignicoccus hospitalis is an extraordinary organism possessing two membranes, an inner and an energized outer membrane. The outer membrane (termed here outer cytoplasmic membrane) harbors enzymes involved in proton gradient generation and ATP synthesis. These two membranes are separated by an intermembrane compartment, whose function is unknown. Major information processes like DNA replication, RNA synthesis, and protein biosynthesis are located inside the "cytoplasm" or central cytoplasmic compartment. Here, we show by immunogold labeling of ultrathin sections that enzymes involved in autotrophic CO2 assimilation are located in the intermembrane compartment that we name (now) a peripheric cytoplasmic compartment. This separation may protect DNA and RNA from reactive aldehydes arising in the I. hospitalis carbon metabolism. This compartmentalization of metabolic pathways and information processes is unprecedented in the prokaryotic world, representing a unique example of spatiofunctional compartmentalization in the second domain of life.


Assuntos
Compartimento Celular , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , DNA Arqueal/metabolismo , Desulfurococcaceae/citologia , Desulfurococcaceae/metabolismo , Desulfurococcaceae/ultraestrutura , Células Procarióticas/ultraestrutura , Frações Subcelulares/metabolismo
15.
J Struct Biol ; 213(3): 107746, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34010667

RESUMO

A long-standing challenge in cell biology is elucidating the structure and spatial distribution of individual membrane-bound proteins, protein complexes and their interactions in their native environment. Here, we describe a workflow that combines on-grid immunogold labeling, followed by cryo-electron tomography (cryoET) imaging and structural analyses to identify and characterize the structure of photosystem II (PSII) complexes. Using an antibody specific to a core subunit of PSII, the D1 protein (uniquely found in the water splitting complex in all oxygenic photoautotrophs), we identified PSII complexes in biophysically active thylakoid membranes isolated from a model marine diatom Phaeodactylum tricornutum. Subsequent cryoET analyses of these protein complexes resolved two PSII structures: supercomplexes and dimeric cores. Our integrative approach establishes the structural signature of multimeric membrane protein complexes in their native environment and provides a pathway to elucidate their high-resolution structures.


Assuntos
Diatomáceas , Tilacoides , Diatomáceas/metabolismo , Tomografia com Microscopia Eletrônica , Complexos de Proteínas Captadores de Luz/análise , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/análise , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/química , Tilacoides/metabolismo
16.
Methods Mol Biol ; 2291: 177-205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704754

RESUMO

Outer membrane vesicles (OMVs), nanoparticles released by Shiga toxin-producing Escherichia coli (STEC), have been identified as novel efficient virulence tools of these pathogens. STEC O157 OMVs carry a cocktail of virulence factors including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, flagellin, and lipopolysaccharide. OMVs are taken up by human intestinal epithelial and microvascular endothelial cells, the major targets during STEC infection, and deliver the virulence factors into host cells. There the toxins separate from OMVs and are trafficked via different pathways to their target compartments, i.e., the cytosol (Stx2a-A subunit), nucleus (CdtV-B subunit), and mitochondria (EHEC hemolysin). This leads to a toxin-specific host cell injury and ultimately apoptotic cell death. Besides their cytotoxic effects, STEC OMVs trigger an inflammatory response via their lipopolysaccharide and flagellin components. In this chapter, we describe methods for the isolation and purification of STEC OMVs, for the detection of OMV-associated virulence factors, and for the analysis of OMV interactions with host cells including OMV cellular uptake and intracellular trafficking of OMVs and OMV-delivered toxins.


Assuntos
Toxinas Bacterianas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Escherichia coli O157 , Toxina Shiga II/metabolismo , Fatores de Virulência/metabolismo , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidade , Humanos
17.
Methods Mol Biol ; 2183: 499-511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32959263

RESUMO

Cryogenic transmission electron microscopy (Cryo-TEM) enables visualizing the physicochemical structure of nanocarriers in solution. Here, we demonstrate the typical applications of Cryo-TEM in characterizing archaeosome-based vesicles as antigen carriers, including the morphology and size of vaccine carriers. Cryo-TEM tomography, incorporated with immunogold labeling for identifying and localizing the antigens, reveals the antigen distribution within archaeosomes in three dimensions (3D).


Assuntos
Microscopia Crioeletrônica , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Microscopia Eletrônica de Transmissão , Vacinas/administração & dosagem , Microscopia Eletrônica de Transmissão/métodos , Software , Vacinas de Partículas Semelhantes a Vírus
18.
Ultrastruct Pathol ; 45(1): 1-18, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33320036

RESUMO

Electron microscopy is a mainstay in the analysis of renal biopsies, where it is typically employed in a correlative fashion along with light and immunofluorescence microscopy. Despite the development of a growing armamentarium of molecular and biochemical analytic methods as well as new immunostains with a widening panel of immunoreactants, electron microscopy remains crucial to the diagnosis of a number of disorders involving the renal glomerulus, vasculature, and tubulointerstitial compartment. The number of renal biopsies continues to grow and the indications for these biopsies continue expanding together with our understanding of disease processes. Proper collection of biopsies and careful analysis of data emanating from diagnostic modalities, clinical information, imaging, gross and microscopic tissue analysis, including a wide range of ancillary studies, represent the essential paradigm for generating detailed diagnoses with clinical significance. This communication offers a guide to the pre-analytic and analytic process for renal biopsy examination, discusses diagnostic keys and pitfalls for an important category of renal diseases (immune complex disorders), and provides an introduction to a useful adjunct diagnostic method (ultrastructural immunolabeling). Renal pathologists should render expert diagnoses that guide patient management, provide prognostic information and lead to targeted new therapeutic interventions that are currently available.


Assuntos
Corantes , Nefropatias , Biópsia , Humanos , Rim , Nefropatias/diagnóstico , Glomérulos Renais , Microscopia Eletrônica
19.
Small ; : e2004615, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090693

RESUMO

The understanding of living systems and their building blocks relies on the assessment of structure-function relationships at the nanoscale. Although electron microscopy (EM) gives access to ultrastructural imaging with nanometric resolution, the unambiguous localization of specific molecules is challenging. An EM approach capable of localizing biomolecules with respect to the cellular ultrastructure will offer a direct route to the molecular blueprints of biological systems. In an approach departing from conventional correlative imaging, an electron beam may be used as excitation source to generate optical emission with nanometric resolution, that is, cathodoluminescence (CL). Once suitable luminescent labels become available, CL may be harnessed to enable identification of biomolecule labels based on spectral signatures rather than electron density and size. This work presents CL-enabled immunolabeling based on rare-earth element doped nanoparticle-labels allowing specific molecules to be visualized at nanoscale resolution in the context of the cellular ultrastructure. Folic acid decorated nanoparticles exhibiting single particle CL emission are employed to specifically label receptors and identify characteristic receptor clustering on the surface of cancer cells. This demonstration of CL immunotargeting gives access to protein localization in the context of the cellular ultrastructure and paves the way for immunolabeling of multiple proteins in EM.

20.
Methods Cell Biol ; 160: 21-36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32896317

RESUMO

Electron microscopy enables the imaging of organelles and macromolecular complexes within cells at nanometer scale resolution. Electron tomography of biological samples, either in vitrified ice or fixed and embedded in resin, provides three-dimensional structural information of relatively small volumes (a few cubic microns) of cells at axial resolutions of 1-7nm. This chapter discusses approaches for plant sample preparation by high-pressure freezing/freeze-substitution and resin-embedding for electron tomography and immunogold labeling using transmission electron microscopy.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Imuno-Histoquímica , Células Vegetais/metabolismo , Substituição ao Congelamento , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA