Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39186730

RESUMO

Additive manufacturing (AM) is emerging as an eco-friendly method for minimizing waste, as the demand for responsive materials in IoT and Industry 4.0 is on the rise. Magnetoactive composites, which are manufactured through AM, facilitate nonintrusive remote sensing and actuation. Printed magnetoelectric composites are an innovative method that utilizes the synergies between magnetic and electric properties. The study of magnetoelectric effects, including the recently validated piezoinductive effect, demonstrates the generation of electric voltage through external AC and DC magnetic fields. This shift in magnetic sensors, utilizing piezoinductive effect of the piezoelectric polymer poly(vinylidene fluoride), PVDF, eliminates the need for magnetic fillers in printed devices, aligning with sustainability principles, essential for the deployment of IoT and Industry 4.0. The achieved sensitivity surpasses other studies by 100 times, showcasing linear outputs for both applied AC and DC magnetic fields. Additionally, the sensor capitalizes on the linear phase shift of the generated signal with an applied DC magnetic field, an unprecedented effect. Thus, this work introduces a remarkable magnetoactive device with a sensitivity of ST = 95.1 ± 0.9 µV Oe-1 mT-1, a significantly improved performance compared to magnetoelectric devices using polymer composites. As a functional proof of concept of the developed system, a magnetic position sensor has been demonstrated.

2.
Proc Natl Acad Sci U S A ; 121(17): e2322361121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625947

RESUMO

Growing crystallographically incommensurate and dissimilar organic materials is fundamentally intriguing but challenging for the prominent cross-correlation phenomenon enabling unique magnetic, electronic, and optical functionalities. Here, we report the growth of molecular layered magnet-in-ferroelectric crystals, demonstrating photomanipulation of interfacial ferroic coupling. The heterocrystals exhibit striking photomagnetization and magnetoelectricity, resulting in photomultiferroic coupling and complete change of their color while inheriting ferroelectricity and magnetism from the parent phases. Under a light illumination, ferromagnetic resonance shifts of 910 Oe are observed in heterocrystals while showing a magnetization change of 0.015 emu/g. In addition, a noticeable magnetization change (8% of magnetization at a 1,000 Oe external field) in the vicinity of ferro-to-paraelectric transition is observed. The mechanistic electric-field-dependent studies suggest the photoinduced ferroelectric field effect responsible for the tailoring of photo-piezo-magnetism. The crystallographic analyses further evidence the lattice coupling of a magnet-in-ferroelectric heterocrystal system.

3.
J Phys Condens Matter ; 36(9)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37972397

RESUMO

Type-II multiferroics, in which the magnetic order breaks inversion symmetry, are appealing for both fundamental and applied research due their intrinsic coupling between magnetic and electrical orders. Using first-principles calculations we study the ground state magnetic behaviour of Ba7Mn4O15which has been classified as a type-II multiferroic in recent experiments. Our constrained moment calculations with the proposed experimental magnetic structure shows the spontaneous emergence of a polar mode giving rise to an electrical polarisation comparable to other known type-II multiferroics. When the constraints on the magnetic moments are removed, the spins self-consistently relax into a canted antiferromagnetic ground state configuration where two magnetic modes transforming as distinct irreducible representations coexist. While the dominant magnetic mode matches well with the previous experimental observations, the second mode is found to possess a different character resulting in a non-polar ground state. Interestingly, the non-polar magnetic ground state exhibits a significantly strong linear magnetoelectric (ME) coupling comparable to the well-known multiferroic BiFeO3, suggesting strategies to design new linear MEs.

4.
Adv Mater ; 33(52): e2104688, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34606122

RESUMO

The functionalities of BiFeO3 -based magnetoelectric multiferroic heterostructures rely on the controlled manipulation of their ferroelectric domains and of the corresponding net in-plane polarization, as this aspect guides the voltage-controlled magnetic switching. Chemical substitution has emerged as a key to push the energy dissipation of the BiFeO3 into the attojoule range but appears to result in a disordered domain configuration. Using non-invasive optical second-harmonic generation on heavily La-substituted BiFeO3 films, it is shown that a weak net in-plane polarization remains imprinted in the pristine films despite the apparent domain disorder. It is found that this ingrained net in-plane polarization can be trained with out-of-plane electric fields compatible with applications. Operando studies on capacitor heterostructures treated in this way show the full restoration of the domain configuration of pristine BiFeO3 along with a giant net in-plane polarization enhancement. Thus, the experiments reveal a surprising robustness of the net in-plane polarization of BiFeO3 against chemical modification, an important criterion in ongoing attempts to integrate magnetoelectric materials into energy-efficient devices.

5.
J Phys Condens Matter ; 34(2)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638109

RESUMO

The influence of an external static magnetic field (up to 480 mT) on the structural properties of EuTiO3(ETO) polycrystalline samples was examined by powder XRD at the Elettra synchrotron facilities in the temperature range 100-300 K. While the cubic to tetragonal structural phase transition temperature in this magnetic field range remains almost unaffected, significant lattice effects appear at two characteristic temperatures (∼200 K and ∼250 K), which become more pronounced at a critical threshold field. At ∼200  K a change in the sign of magnetostriction is detected attributed to a modification of the local magnetic properties from intrinsic ferromagnetism to intrinsic antiferromagnetism. These data are a clear indication that strong spin-lattice interactions govern also the high temperature phase of ETO and trigger the appearance of magnetic domain formation and phase transitions.

6.
J Phys Condens Matter ; 33(12)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33378273

RESUMO

Direct engineering of material properties through exploitation of spin, phonon, and charge-coupled degrees of freedom is an active area of development in materials science. However, the relative contribution of the competing orders to controlling the desired behavior is challenging to decipher. In particular, the independent role of phonons, magnons, and electrons, quasiparticle coupling, and relative contributions to the phase transition free energy largely remain unexplored, especially for magnetic phase transitions. Here, we study the lattice and magnetic dynamics of biferroic yttrium orthochromite using Raman, infrared, and inelastic neutron spectroscopy techniques, supporting our experimental results with first-principles lattice dynamics and spin-wave simulations across the antiferromagnetic transition atTN∼ 138 K. Spectroscopy data and simulations together with the heat capacity (Cp) measurements, allow us to quantify individual entropic contributions from phonons (0.01 ± 0.01kBatom-1), dilational (0.03 ± 0.01kBatom-1), and magnons (0.11 ± 0.01kBatom-1) acrossTN. High-resolution phonon measurements conducted in a magnetic field show that anomalousT-dependence of phonon energies acrossTNoriginates from magnetoelastic coupling. Phonon scattering is primarily governed by the phonon-phonon coupling, with little contribution from magnon-phonon coupling, short-range spin correlations, or magnetostriction effects; a conclusion further supported by our thermal conductivity measurements conducted up to 14 T, and phenomenological modeling.

7.
Adv Mater ; 32(50): e2006839, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33179284

RESUMO

Traditional electromagnetic generators used in hydraulic power generation are heavy, bulky, and immovable, and are thus unsuitable for low water supply. A portable miniature electromagnetic system that can harvest energy from rainwater is critical for developing a sustainable energy strategy. In this study, a superhydrophobic droplet-based magnetoelectric hybrid system is fabricated, that can generate electricity from tiny water droplets. The magnetoelectric system (MS) comprises three parts: a superhydrophobic surface containing a conductive coil, liquid droplets, and a superhydrophobic magnetic powders/Ecoflex base. The mechanical impact of a falling water droplet onto the assembled system is transformed into electricity. Maxwell numerical simulation is used to analyze the related mechanism; the magnetoelectric performance is further improved by modifying the process parameters such as droplet falling velocity and magnetic powder contents. Furthermore, a model is developed, comprising the MS and a cactus-like superhydrophobic patterned plate that can generate electricity and collect water from fog, simultaneously. The described magnetoelectric strategy is believed to enhance and extend functions in energy harvesting and provide a generalized method to exploit new systems toward sustainable energy development.

8.
Adv Mater ; 32(28): e2001943, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468701

RESUMO

Spintronic elements based on spin transfer torque have emerged with potential for on-chip memory, but they suffer from large energy dissipation due to the large current densities required. In contrast, an electric-field-driven magneto-electric storage element can operate with capacitive displacement charge and potentially reach 1-10 µJ cm-2 switching operation. Here, magneto-electric switching of a magnetoresistive element is shown, operating at or below 200 mV, with a pathway to get down to 100 mV. A combination of phase detuning is utilized via isovalent La substitution and thickness scaling in multiferroic BiFeO3 to scale the switching energy density to ≈10 µJ cm-2 . This work provides a template to achieve attojoule-class nonvolatile memories.

9.
ACS Appl Mater Interfaces ; 11(37): 34399-34407, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31456387

RESUMO

Based on first-principles calculations, we predict the polarization control of the interfacial magnetic phase and a giant electronically driven magnetoelectric coupling (MEC) in Co/PbZr0.25Ti0.75O3 (PZT)(001). The effect of Co oxidation at the interface shared with (Zr,Ti)O2-terminated PZT is evidenced. The magnetic phase of the oxidized Co interface layer is electrically switched from the ferromagnetic to the antiferromagnetic state by reversing the PZT polarization from upward to downward, respectively. A comparative study between oxidized and unoxidized Co/PZT interfaces shows that in oxidized Co/PZT bilayers, the variation of the interface spin moment upon polarization reversal exceeds that of unoxidized Co/PZT bilayers by about 1 order of magnitude. We define a surface MEC constant αS taking into account the polarization dependence of both the spin and orbital moments. In unoxidized Co/PZT bilayers, we obtain αS ≈ 2 × 10-10 G cm2 V-1, while a giant surface coupling αS ≈ 12 × 10-10 G cm2 V-1 is found in the case of oxidized Co/PZT. We demonstrate that the polarization control of the magnetocrystalline anisotropy via spin-orbit coupling is not only effective at the interface but it extends to the Co film despite the interface origin of the MEC. This study shows that tailoring the nature of atomic bonding and electron occupancies allows for improving the performance of functional interfaces, enabling an efficient electric field control of spin-orbit interactions. Moreover, the nonlocal character of this effect holds promising perspectives for the application of electronically driven interface MEC in spin-orbitronic devices.

10.
Nano Lett ; 19(3): 1682-1687, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30702895

RESUMO

Antiferromagnets have recently emerged as attractive platforms for spintronics applications, offering fundamentally new functionalities compared with their ferromagnetic counterparts. Whereas nanoscale thin-film materials are key to the development of future antiferromagnetic spintronic technologies, existing experimental tools tend to suffer from low resolution or expensive and complex equipment requirements. We offer a simple, high-resolution alternative by addressing the ubiquitous surface magnetization of magnetoelectric antiferromagnets in a granular thin-film sample on the nanoscale using single-spin magnetometry in combination with spin-sensitive transport experiments. Specifically, we quantitatively image the evolution of individual nanoscale antiferromagnetic domains in 200 nm thin films of Cr2O3 in real space and across the paramagnet-to-antiferromagnet phase transition, finding an average domain size of 230 nm, several times larger than the average grain size in the film. These experiments allow us to discern key properties of the Cr2O3 thin film, including the boundary magnetic moment density, the variation of critical temperature throughout the film, the mechanism of domain formation, and the strength of exchange coupling between individual grains comprising the film. Our work offers novel insights into the magnetic ordering mechanism of Cr2O3 and firmly establishes single-spin magnetometry as a versatile and widely applicable tool for addressing antiferromagnetic thin films on the nanoscale.

11.
Adv Mater ; 31(3): e1806263, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30461087

RESUMO

The molecular radicals, systems with unpaired electrons of open-shell electronic structures, set the stage for a multidisciplinary science frontier relevant to the cooperative magnetic exchange interaction and magnetoelectric effect. Here ferroelectricity together with magnetic spin exchange coupling in molecular radical hydrocarbon solids is reported, representing a new class of magnetoelectrics. Electronic correlation through radical-radical interactions plays a decisive role in the coupling between magnetic and charge orders. A substantial photoconductance and visible-light photovoltaic effect are found in radical hydrocarbons. The ability to simultaneously control and retrieve the changes in magnetic and electrical responses opens up a new breadth of applications, such as radical magnetoelectrics, magnets, and optoelectronics.

12.
ACS Appl Mater Interfaces ; 9(44): 39094-39104, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29035029

RESUMO

Composite materials consisting of two dissimilar ferroic phases are an excellent alternative to single-phase multiferroics for a wide range of magnetoelectric technologies. In composites with strain-mediated magnetoelectric coupling the response is strongly dependent on the characteristics of the interface between the two mechanically coupled phases. Among the different material approaches considered, cofired ceramic composites offer improved reliability in applications and are more adequate for free-forming and miniaturization. However, their magnetoelectric response often suffers from poor reproducibility, which has been reiteratively associated with the quality of the interfaces with little experimental support. Here, we report an in-depth study of the local material properties across the interfaces of 0.36BiScO3-0.64PbTiO3/NiFe2O4 multilayer ceramic composites, processed by spark plasma sintering of nanocrystalline powders. Tailored microstructures and low residual stress levels were obtained by adjusting the sintering mismatch between the two ferroic phases, which also resulted in fully functional interfaces and enhanced magnetoelectric responses.

13.
Sensors (Basel) ; 17(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561784

RESUMO

Among magnetoelectric (ME) heterostructures, ME laminates of the type Metglas-like/PVDF (magnetostrictive+piezoelectric constituents) have shown the highest induced ME voltages, usually detected at the magnetoelastic resonance of the magnetostrictive constituent. This ME coupling happens because of the high cross-correlation coupling between magnetostrictive and piezoelectric material, and is usually associated with a promising application scenario for sensors or actuators. In this work we detail the basis of the operation of such devices, as well as some arising questions (as size effects) concerning their best performance. Also, some examples of their use as very sensitive magnetic fields sensors or innovative energy harvesting devices will be reviewed. At the end, the challenges, future perspectives and technical difficulties that will determine the success of ME composites for sensor applications are discussed.

14.
ACS Appl Mater Interfaces ; 9(22): 18956-18965, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28508622

RESUMO

The detailed understanding of magnetoelectric (ME) coupling in multiferroic oxide heterostructures is still a challenge. In particular, very little is known to date concerning the impact of the chemical interface structure and unwanted impurities that may be buried within short-period multiferroic BiFeO3-BaTiO3 superlattices during growth. Here, we demonstrate how trace impurities and elemental concentration gradients contribute to high ME voltage coefficients in thin-film superlattices, which are built from 15 double layers of BiFeO3-BaTiO3. Surprisingly, the highest ME voltage coefficient of 55 V cm-1 Oe-1 at 300 K was measured for a superlattice with a few atomic percent of Ba and Ti that diffused into the nominally 5 nm thin BiFeO3 layers, according to analytical transmission electron microscopy. In addition, highly sensitive enhancements of the cation signals were observed in depth profiles by secondary ion mass spectrometry at the interfaces of BaTiO3 and BiFeO3. As these interface features correlate with the ME performance of the samples, they point to the importance of charge effects at the interfaces, that is, to a possible charge mediation of ME coupling in oxide superlattices. The challenge is to provide cleaner materials and processes, as well as a well-defined control of the chemical interface structure, to push forward the application of oxide superlattices in multiferroic ME devices.

15.
Adv Mater ; 29(8)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27943524

RESUMO

An FeGa@P(VDF-TrFE) wire-shaped magnetoelectric nanorobot is designed and fabricated to demonstrate a proof-of-concept integrated device, which features wireless locomotion and on-site triggered therapeutics with a single external power source (i.e., a magnetic field). The device can be precisely steered toward a targeted location wirelessly by rotating magnetic fields and perform on-demand magnetoelectrically assisted drug release to kill cancer cells.


Assuntos
Nanofios , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Campos Magnéticos
16.
Small ; 12(33): 4502-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27378088

RESUMO

The ultimate or end point of functional materials development is the realization of strong coupling between all energy regimes (optical, electronic, magnetic, and elastic), enabling the same material to be utilized for multifunctionalities. However, the integration of multifunctionalities in soft materials with the existence of various coupling is still in its early stage. Here, the coupling between ferroelectricity and charge transfer by combining bis(ethylenedithio)tetrathiafulvalene-C60 charge-transfer crystals with ferroelectric polyvinylidene fluoride polymer matrix is reported, which enables external stimuli-controlled polarization, optoelectronic and magnetic field sensing properties. Such flexible composite films also display a superior strain-dependent capacitance and resistance change with a giant piezoresistance coefficient of 7.89 × 10(-6) Pa(-1) . This mutual coupled material with the realization of enhanced couplings across these energy domains opens up the potential for multisensing applications.

17.
Adv Mater ; 28(26): 5322-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27146726

RESUMO

Centimeter-sized segregated stacking TTF-C60 single crystals are crystallized by a mass-transport approach combined with solvent-vapor evaporation for the first time. The intermolecular charge-transfer interaction in the long-range ordered superstructure enables the crystals to demonstrate external stimuli-controlled multifunctionalities and angle/electrical-potential-dependent luminescence.

18.
ACS Appl Mater Interfaces ; 8(11): 7553-63, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26939641

RESUMO

Magnetoelectric coupling at multiferroic interfaces is a promising route toward the nonvolatile electric-field control of magnetization. Here, we use optical measurements to study the static and dynamic variations of the interface magnetization induced by an electric field in Co/PbZr0.2Ti0.8O3 (Co/PZT) bilayers at room temperature. The measurements allow us to identify different coupling mechanisms. We further investigate the local electronic and magnetic structure of the interface by means of transmission electron microscopy, soft X-ray magnetic circular dichroism, and density functional theory to corroborate the coupling mechanism. The measurements demonstrate a mixed linear and quadratic optical response to the electric field, which results from a magneto-electro-optical effect. We propose a decomposition method of the optical signal to discriminate between different components involved in the electric field-induced polarization rotation of the reflected light. This allows us to extract a signal that we can ascribe to interface magnetoelectric coupling. The associated surface magnetization exhibits a clear hysteretic variation of odd symmetry with respect to the electric field and nonzero remanence. The interface coupling is remarkably stable over a wide frequency range (1-50 kHz), and the application of a bias magnetic field is not necessary for the coupling to occur. These results show the potential of exploiting interface coupling with the prospect of optimizing the performance of magnetoelectric memory devices in terms of stability, as well as fast and dissipationless operation.

19.
ACS Appl Mater Interfaces ; 7(27): 15017-22, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26110461

RESUMO

The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials; however, their ME switching is often accompanied by significant hysteresis and coercivity that represents for some applications a severe weakness. To overcome this obstacle, this work focuses on the development of a new type of ME polymer nanocomposites that exhibits a tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric copolymer poly(vinylindene fluoride-trifluoroethylene) (P(VDF-TrFE)) matrix. No substantial differences were detected in the time-stable piezoelectric response of the composites (∼-28 pC·N(1-)) with distinct ferrite fillers and for the same ferrite content of 10 wt %. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10 wt % ferrite content revealed that the ME induced voltage increases with increasing dc magnetic field until a maximum of 6.5 mV·cm(-1)·Oe(1-), at an optimum magnetic field of 0.26 T, and 0.8 mV·cm(-1)·Oe(1-), at an optimum magnetic field of 0.15 T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. In contrast, the ME response of ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, and ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.

20.
ACS Appl Mater Interfaces ; 7(21): 11224-9, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25950199

RESUMO

The past decade has witnessed increased research effort on multiphase magnetoelectric (ME) composites. In this scope, this paper presents the application of novel materials for the development of anisotropic magnetoelectric sensors based on δ-FeO(OH)/P(VDF-TrFE) composites. The composite is able to precisely determine the amplitude and direction of the magnetic field. A new ME effect is reported in this study, as it emerges from the magnetic rotation of the δ-FeO(OH) nanosheets inside the piezoelectric P(VDF-TrFE) polymer matrix. δ-FeO(OH)/P(VDF-TrFE) composites with 1, 5, 10, and 20 δ-FeO(OH) filler weight percentage in three δ-FeO(OH) alignment states (random, transversal, and longitudinal) have been developed. Results have shown that the modulus of the piezoelectric response (10-24 pC·N(-1)) is stable at least up to three months, the shape and magnetization maximum value (3 emu·g(-1)) is dependent on δ-FeO(OH) content, and the obtained ME voltage coefficient, with a maximum of ∼0.4 mV·cm(-1)·Oe(-1), is dependent on the incident magnetic field direction and intensity. In this way, the produced materials are suitable for innovative anisotropic sensor and actuator applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA