Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Theranostics ; 14(12): 4713-4729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239520

RESUMO

Background: Mesenchymal stem/stromal cells (MSCs) maintain tissue homeostasis in response to microenvironmental perturbations. Toll-like receptors (TLRs) are key sensors for exogenous and endogenous signals produced during injury. In this study, we aimed to investigate whether TLRs affect the homeostatic functions of MSCs after injury. Methods: We examined the expression of TLR2, TLR3 and TLR4 in MSCs, and analyzed the functional significance of TLR2 activation using single-cell RNA sequencing. Additionally, we investigated the effects and mechanisms of TLR2 and its downstream activation in MSCs on the MSCs themselves, on monocytes/macrophages, and in a mouse model of sterile injury-induced inflammatory corneal angiogenesis. Results: MSCs expressed TLR2, which was upregulated by monocytes/macrophages. Activation of TLR2 in MSCs promoted their immunoregulatory and angiostatic functions in monocytes/macrophages and in mice with inflammatory corneal angiogenesis, whereas TLR2 inhibition attenuated these functions. Single-cell RNA sequencing revealed AKR1C1, a gene encoding aldo-keto reductase family 1 member C1, as the most significantly inducible gene in MSCs upon TLR2 stimulation, though its stimulation did not affect cell compositions. AKR1C1 protected MSCs against ferroptosis, increased secretion of anti-inflammatory cytokines, and enhanced their ability to drive monocytes/macrophages towards immunoregulatory phenotypes, leading to the amelioration of inflammatory corneal neovascularization in mice. Conclusion: Our findings suggest that activation of TLR2-AKR1C1 signaling in MSCs serves as an important pathway for the survival and homeostatic activities of MSCs during injury.


Assuntos
Macrófagos , Células-Tronco Mesenquimais , Receptor 2 Toll-Like , Animais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Humanos , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Neovascularização da Córnea/genética , Monócitos/metabolismo , Masculino , Receptor 4 Toll-Like/metabolismo , Modelos Animais de Doenças , Transdução de Sinais
2.
Adv Sci (Weinh) ; : e2405886, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101234

RESUMO

Microsatellite-stable colorectal cancer (MSS-CRC) exhibits resistance to programmed cell death protein-1 (PD-1) therapy. Improving the infiltration and tumor recognition of cytotoxic T-lymphocytes (CTLs) is a promising strategy, but it encounters huge challenges from drug delivery and mechanisms aspects. Here, a zeolitic imidazolate framework (ZIF) coated with apoptotic body membranes derived from MSS-CRC cells is engineered for the co-delivery of ginsenoside Rg1 (Rg1) and atractylenolide-I (Att) to MSS-CRC, named as Ab@Rg1/Att-ZIF. This system is selectively engulfed by Ly-6C+ monocytes during blood circulation and utilizes a "hitchhiking" mechanism to migrate toward the core of MSS-CRC. Ab@Rg1/Att-ZIF undergoes rapid disassembly in the tumor, released Rg1 promotes the processing and transportation of tumor antigens in dendritic cells (DCs), enhancing their maturation. Meanwhile, Att enhances the activity of the 26S proteasome complex in tumor cells, leading to increased expression of major histocompatibility complex class-I (MHC-I). These coordinated actions enhance the infiltration and recognition of CTLs in the center of MSS-CRC, significantly improving the tumor inhibition of PD-1 treatment from ≈5% to ≈69%. This innovative design, involving inflammation-guided precise drug co-delivery and a rational combination, achieves synergistic engineering of the tumor microenvironment, providing a novel strategy for successful PD-1 treatment of MSS-CRC.

3.
Cells ; 13(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39195257

RESUMO

Fine inhalable particulate matter (PM) triggers an inflammatory response in the airways and activates mononuclear cells, mediators of tissue homeostasis, and tumour-promoting inflammation. We have assessed ex vivo responses of human monocytes and monocyte-derived macrophages to standardised air pollutants: carbon black, urban dust, and nanoparticulate carbon black, focusing on their pro-inflammatory and DNA-damaging properties. None of the PM (100 µg/mL/24 h) was significantly toxic to the cells, aside from inducing oxidative stress, fractional DNA damage, and inhibiting phagocytosis. TNFα was only slightly increased. PM nanoparticles increase the expression and activate DNA-damage-related histone H2A.X as well as pro-inflammatory NF-κB. We have shown that the urban dust stimulates the pathway of DNA damage/repair via the selective post-translational phosphorylation of H2A.X while nanoparticulate carbon black increases inflammation via activation of NF-κB. Moreover, the inflammatory response to lipopolysaccharide was significantly stronger in macrophages pre-exposed to urban dust or nanoparticulate carbon black. Our data show that airborne nanoparticles induce PM-specific, epigenetic alterations in the subsets of cultured mononuclear cells, which may be quantified using binary fluorescence scatterplots. Such changes intercede with inflammatory signalling and highlight important molecular and cell-specific epigenetic mechanisms of tumour-promoting inflammation.


Assuntos
Poluentes Atmosféricos , Inflamação , NF-kappa B , Nanopartículas , Neoplasias , Material Particulado , Transdução de Sinais , Fuligem , Humanos , Inflamação/patologia , Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nanopartículas/química , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/efeitos adversos , Material Particulado/toxicidade , Fuligem/toxicidade , Fuligem/efeitos adversos , NF-kappa B/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Histonas/metabolismo , Dano ao DNA , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
4.
Sci Rep ; 14(1): 14012, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890346

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous hematological tumor with poor immunotherapy effect. This study was to develop a monocyte/macrophage-related prognostic risk score (MMrisk) and identify new therapeutic biomarkers for AML. We utilized differentially expressed genes (DEGs) in combination with single-cell RNA sequencing to identify monocyte/macrophage-related genes (MMGs). Eight genes were selected for the construction of a MMrisk model using univariate Cox regression analysis and LASSO regression analysis. We then validated the MMrisk on two GEO datasets. Lastly, we investigated the immunologic characteristics and advantages of immunotherapy and potential targeted drugs for MMrisk groups. Our study identified that the MMrisk is composed of eight MMGs, including HOPX, CSTB, MAP3K1, LGALS1, CFD, MXD1, CASP1 and BCL2A1. The low MMrisk group survived longer than high MMrisk group (P < 0.001). The high MMrisk group was positively correlated with B cells, plasma cells, CD4 memory cells, Mast cells, CAFs, monocytes, M2 macrophages, Endothelial, tumor mutation, and most immune checkpoints (PD1, Tim-3, CTLA4, LAG3). Furthermore, drug sensitivity analysis showed that AZD.2281, Axitinib, AUY922, ABT.888, and ATRA were effective in high-risk MM patients. Our research shows that MMrisk is a potential biomarker which is helpful to identify the molecular characteristics of AML immunology.


Assuntos
Leucemia Mieloide Aguda , Macrófagos , Monócitos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/mortalidade , Monócitos/imunologia , Monócitos/metabolismo , Prognóstico , Macrófagos/imunologia , Macrófagos/metabolismo , Feminino , Biomarcadores Tumorais/genética , Masculino , Pessoa de Meia-Idade , Imunoterapia/métodos , Transcriptoma , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica
5.
Cells ; 13(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38891092

RESUMO

Binge drinking in obese patients positively correlates with accelerated liver damage and liver-related death. However, the underlying mechanism and the effect of alcohol use on the progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) remain unexplored. Here, we show that short-term feeding of a metabolic-dysfunction-associated steatohepatitis (MASH) diet plus daily acute alcohol binges for three days induce liver injury and activation of the NLRP3 inflammasome. We identify that a MASH diet plus acute alcohol binges promote liver inflammation via increased infiltration of monocyte-derived macrophages, neutrophil recruitment, and NET release in the liver. Our results suggest that both monocyte-derived macrophages and neutrophils are activated via NLRP3, while the administration of MCC950, an NLRP3 inhibitor, dampens these effects.In this study, we reveal important intercellular communication between hepatocytes and neutrophils. We discover that the MASH diet plus alcohol induces IL-1ß via NLRP3 activation and that IL-1ß acts on hepatocytes and promotes the production of CXCL1 and LCN2. In turn, the increase in these neutrophils recruits chemokines and causes further infiltration and activation of neutrophils in the liver. In vivo administration of the NLRP3 inhibitor, MCC950, improves the early phase of MetALD by preventing liver damage, steatosis, inflammation, and immune cells recruitment.


Assuntos
Interleucina-1beta , Fígado , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infiltração de Neutrófilos , Neutrófilos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Fígado/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Interleucina-1beta/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Masculino , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos , Inflamassomos/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/patologia , Consumo Excessivo de Bebidas Alcoólicas/complicações , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Comunicação Celular/efeitos dos fármacos , Sulfonas/farmacologia , Sulfonamidas/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Furanos/farmacologia , Humanos , Indenos/farmacologia , Dieta , Transdução de Sinais/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Fígado Gorduroso/patologia , Fígado Gorduroso/metabolismo , Sulfóxidos/farmacologia
6.
AIDS Res Hum Retroviruses ; 40(9): 531-542, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38787309

RESUMO

Despite antiretroviral therapy (ART), people living with HIV (PLWH) are at increased risk of developing cardiovascular disease (CVD) and HIV-associated neurocognitive disorder (HAND), among other comorbidities. Studies from ART-treated individuals identified galectin-3 (gal-3) and interleukin (IL)-18 as CVD biomarkers, galectin-9 (gal-9) as a HAND biomarker, and sCD163, a marker of monocyte/macrophage activation, as a biomarker of both. We asked if plasma gal-3, gal-9, and IL-18 are associated with an individual comorbidity or increase in both with animals that develop AIDS with both pathologies versus (CVD-path) alone or simian immunodeficiency virus encephalitis (SIVE) alone. We found that no biomarkers were selective between individual pathologies, and all biomarkers increased with co-development of CVD-path and SIVE (gal-3, p = 0.11; gal-9, p = 0.001; IL-18, p = 0.007; sCD163, p < 0.001; %BrdU p = 0.02). Although gal-3, gal-9, and IL-18 did not distinguish between pathologies, they correlated strongly with one another, with sCD163, a marker of monocyte/macrophage activation, and the %BrdU monocytes, a marker of monocyte turnover. Compared to animals with CVD-path or SIVE alone, animals that co-developed both pathologies had consistently elevated IL-18 throughout infection (p = 0.02) and increased sCD163 in late infection (p = 0.01). These data indicate that gal-3, gal-9, and IL-18 are associated with monocyte/macrophage activation by sCD163 and monocyte turnover by the %BrdU+ monocytes more so than CVD-path or SIVE.


Assuntos
Biomarcadores , Galectina 3 , Galectinas , Interleucina-18 , Ativação de Macrófagos , Monócitos , Síndrome de Imunodeficiência Adquirida dos Símios , Galectinas/sangue , Interleucina-18/sangue , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Galectina 3/sangue , Biomarcadores/sangue , Humanos , Macaca mulatta , Masculino , Receptores de Superfície Celular/sangue , Antígenos CD/sangue , Vírus da Imunodeficiência Símia , Doenças Cardiovasculares , Macrófagos/metabolismo , Macrófagos/virologia , Antígenos de Diferenciação Mielomonocítica/sangue , Proteínas Sanguíneas/metabolismo
7.
Int J Immunogenet ; 51(3): 130-142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462560

RESUMO

Osteoarthritis (OA) is one of the most common degenerative diseases characterised by joint pain, swelling and decreased mobility, with its main pathological features being articular synovitis, cartilage degeneration and osteophyte formation. Inflammatory cytokines and chemokines secreted by activated immunocytes can trigger various inflammatory and immune responses in articular cartilage and synovium, contributing to the genesis and development of OA. A series of monocyte/macrophage chemokines, including monocyte chemotaxis protein (MCP)-1/CCL2, MCP2/CCL8, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1ß/CCL4, MIP-3α/CCL20, regulated upon activation, normal T-cell expressed and secreted /CCL5, CCL17 and macrophage-derived chemokine/CCL22, was proven to transmit cell signals by binding to G protein-coupled receptors on recipient cell surface, mediating and promoting inflammation in OA joints. However, the underlying mechanism of these chemokines in the pathogenesis of OA remains still elusive. Here, published literature was reviewed, and the function and mechanisms of monocyte/macrophage chemokines in OA pathogenesis were summarised. The symptoms and disease progression of OA were found to be effectively alleviated when the expression of these chemokines is inhibited. Elucidating these mechanisms could contribute to further understand how OA develops and provide potential targets for the early diagnosis of arthritis and drug treatment to delay or even halt OA progression.


Assuntos
Quimiocinas , Macrófagos , Monócitos , Osteoartrite , Humanos , Osteoartrite/imunologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Quimiocinas/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Cartilagem Articular/patologia , Cartilagem Articular/imunologia , Cartilagem Articular/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo
8.
Basic Res Cardiol ; 119(1): 35-56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244055

RESUMO

The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.


Assuntos
Aterosclerose , Placa Aterosclerótica , Feminino , Humanos , Placa Aterosclerótica/patologia , Ativação de Macrófagos/genética , Aterosclerose/patologia , Macrófagos , Monócitos
9.
Sci Total Environ ; 912: 168308, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37977403

RESUMO

Recent studies have discovered that tiny particles of microplastics (MPs) at the nano-scale level can enter the body of organisms from the environment, potentially causing metabolic ailments. However, further investigation is required to understand the alterations in the immune microenvironment associated with non-alcoholic fatty liver disease (NAFLD) occurrence following exposure to MPs. Experiments were performed using mice, which were given a normal chow or high-fat diet (NCD or HFD, respectively) plus free drinking of sterile water with or without MPs, respectively. Employing an impartial technique known as unbiased single-cell RNA-sequencing (scRNA-seq), the cellular (single-cell) pathology landscape of NAFLD and related changes in the identified immune cell populations induced following MPs plus HFD treatment were assessed. The results showed that mice in the HFD groups had remarkably greater NAFLD activity scores than those from the NCD groups. Moreover, administration of MPs plus HFD further worsened the histopathological changes in the mice's liver, leading to hepatic steatosis, inflammatory cell infiltrations and ballooning degeneration. Following the construction of a sing-cell resolution transcriptomic atlas of 43,480 cells in the mice's livers of the indicated groups, clear cellular heterogeneity and potential cell-to-cell cross-talk could be observed. Specifically, we observed that MPs exacerbated the pro-inflammatory response and influenced the stemness of hepatocytes during HFD feeding. Importantly, treatment with MPs significantly increase the infiltration of the infiltrating liver-protecting Vsig4+ macrophages in the liver of the NAFLD mouse model while remarkably decreasing the angiogenic S100A6+ macrophage subpopulation. Furthermore, mice treated with MPs plus HFD exhibited significantly increased recruitment of CD4+ cells and heightened exhaustion of CD8+ T cells than those from the control group, characteristics typically associated with the dysregulation of immune homeostasis and severe inflammatory damage. Overall, this study offers valuable perspectives into comprehending the potential underlying cellular mechanisms and regulatory aspects of the microenvironment regarding MPs in the development of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Doenças não Transmissíveis , Camundongos , Animais , Microplásticos/metabolismo , Plásticos/metabolismo , Análise da Expressão Gênica de Célula Única , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
10.
Front Immunol ; 14: 1240946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965349

RESUMO

Despite effective antiretroviral therapy, HIV co-morbidities remain where central nervous system (CNS) neurocognitive disorders and cardiovascular disease (CVD)-pathology that are linked with myeloid activation are most prevalent. Comorbidities such as neurocogntive dysfunction and cardiovascular disease (CVD) remain prevalent among people living with HIV. We sought to investigate if cardiac pathology (inflammation, fibrosis, cardiomyocyte damage) and CNS pathology (encephalitis) develop together during simian immunodeficiency virus (SIV) infection and if their co-development is linked with monocyte/macrophage activation. We used a cohort of SIV-infected rhesus macaques with rapid AIDS and demonstrated that SIV encephalitis (SIVE) and CVD pathology occur together more frequently than SIVE or CVD pathology alone. Their co-development correlated more strongly with activated myeloid cells, increased numbers of CD14+CD16+ monocytes, plasma CD163 and interleukin-18 (IL-18) than did SIVE or CVD pathology alone, or no pathology. Animals with both SIVE and CVD pathology had greater numbers of cardiac macrophages and increased collagen and monocyte/macrophage accumulation, which were better correlates of CVD-pathology than SIV-RNA. Animals with SIVE alone had higher levels of activated macrophage biomarkers and cardiac macrophage accumulation than SIVnoE animals. These observations were confirmed in HIV infected individuals with HIV encephalitis (HIVE) that had greater numbers of cardiac macrophages and fibrosis than HIV-infected controls without HIVE. These results underscore the notion that CNS and CVD pathologies frequently occur together in HIV and SIV infection, and demonstrate an unmet need for adjunctive therapies targeting macrophages.


Assuntos
Complexo AIDS Demência , Síndrome da Imunodeficiência Adquirida , Doenças Cardiovasculares , Encefalite , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/fisiologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Fibrose
11.
Antioxidants (Basel) ; 12(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37760011

RESUMO

Excessive alcohol consumption impairs the immune system, induces oxidative stress, and triggers the activation of peripheral blood (PB) monocytes, thereby contributing to alcoholic liver disease (ALD). We analyzed the M1/M2 phenotypes of circulating classical monocytes and macrophage-derived monocytes (MDMs) in excessive alcohol drinkers (EADs). PB samples from 20 EADs and 22 healthy controls were collected for isolation of CD14+ monocytes and short-term culture with LPS/IFNγ, IL4/IL13, or without stimulation. These conditions were also used to polarize MDMs into M1, M2, or M0 phenotypes. Cytokine production was assessed in the blood and culture supernatants. M1/M2-related markers were analyzed using mRNA expression and surface marker detection. Additionally, the miRNA profile of CD14+ monocytes was analyzed. PB samples from EADs exhibited increased levels of pro-inflammatory cytokines. Following short-term culture, unstimulated blood samples from EADs showed higher levels of soluble TNF-α and IL-8, whereas monocytes expressed increased levels of surface TNF-α and elevated mRNA expression of pro-inflammatory cytokines and inducible nitric oxide synthase. MDMs from EADs showed higher levels of TNF-α and CD206 surface markers and increased IL-10 production. LPS/IFNγ induced higher mRNA expression of Nrf2 only in the controls. miRNA analysis revealed a distinctive miRNA profile that is potentially associated with liver carcinogenesis and ALD through inflammation and oxidative stress. This study confirms the predominantly pro-inflammatory profile of PB monocytes among EADs and suggests immune exhaustion features in MDMs.

12.
J Periodontal Res ; 58(5): 948-958, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37409514

RESUMO

BACKGROUND: Periodontal disease is an inflammatory disease of periodontal tissues that is closely connected with systemic diseases. During periodontitis, the inappropriate recruitment and activation of monocytes-macrophages causes an increase in osteoclast activity and disrupts bone homeostasis. Therefore, it is a promising therapeutic strategy to treat periodontitis by regulating the functions of monocytes-macrophages. Litcubanine A (LA) is an isoquinoline alkaloid extracted from the traditional Chinese medicine Litsea cubeba, which was proven to have reproducible anti-inflammatory effects, but its regulatory role on bone homeostasis in periodontitis is still not clear. METHODS: In this study, zebrafish experiments and a mouse ligature-induced periodontitis model were performed, and histological analysis was used to investigate the effect of LA on macrophage chemotaxis under the inflammatory environment. Real-time PCR was used to detect the regulatory effect of LA (100 nM ~ 100 µM) on the chemotaxis function of macrophages induced by LPS. Apoptosis assay and flow cytometry were used to elucidate the influence of LA on macrophage apoptosis and proliferation. To further clarify the regulatory role of LA on macrophage osteoclast differentiation, real-time PCR, histological analysis, western blot, and micro-computed tomography (micro-CT) were performed in vivo and in vitro to verify the impact of LA on bone homeostasis. RESULTS: Compared with the control group, the chemotaxis function of macrophage was significantly attenuated by LA in vivo. LA could significantly inhibit the expression of genes encoding the chemokine receptors Ccr1 and Cxcr4, and its ligand chemokine Cxcl12 in macrophages, and suppresses the differentiation of osteoclastic precursors to osteoclasts through the MAPK signaling pathway. There were significantly lower osteoclast differentiation and bone loss in the LA group compared with the control in the ligature-induced periodontitis model. CONCLUSION: LA is a promising candidate for the treatment of periodontitis through its reproducible functions of inhibiting monocyte-macrophage chemotaxis and osteoclast differentiation.


Assuntos
Osteoclastos , Periodontite , Camundongos , Animais , Osteoclastos/metabolismo , Monócitos , Quimiotaxia , Microtomografia por Raio-X , Peixe-Zebra , Periodontite/metabolismo , Macrófagos , Modelos Animais de Doenças , Diferenciação Celular
13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(3): 880-888, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37356955

RESUMO

OBJECTIVE: To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism. METHODS: THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot. RESULTS: 1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1ß, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway. CONCLUSION: Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.


Assuntos
Fator 88 de Diferenciação Mieloide , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Macrófagos/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B
14.
Front Immunol ; 14: 1098056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911682

RESUMO

Background: The monocyte-macrophage-dendritic cell (DC) (MMD) system exerts crucial functions that may modulate fibrogenesis in nonalcoholic steatohepatitis (NASH). In this study, we explored the cell characteristics, distribution and developmental trajectory of the liver MMD system in NASH mice with fibrosis and clarified characteristic genes of the MMD system involved in liver fibrosis progression in NASH mice and patients. Methods: Single cells in liver tissue samples from NASH and normal mice were quantified using single-cell RNA sequencing (scRNA-seq) analysis. Differentially expressed genes (DEGs) in the MMD system by pseudotime analysis were validated by tyramide signal amplification (TSA)-immunohistochemical staining (IHC) and analyzed by second harmonic generation (SHG)/two-photon excitation fluorescence (TPEF). Results: Compared with control mice, there were increased numbers of monocytes, Kupffer cells, and DCs in two NASH mouse models. From the transcriptional profiles of these single cells, we identified 8 monocyte subsets (Mono1-Mono8) with different molecular and functional properties. Furthermore, the pseudotime analysis showed that Mono5 and Mono6 were at the beginning of the trajectory path, whereas Mono2, Mono4, Kupffer cells and DCs were at a terminal state. Genes related to liver collagen production were at the late stage of this trajectory path. DEGs analysis revealed that the genes Fmnl1 and Myh9 in the MMD system were gradually upregulated during the trajectory. By TSA-IHC, the Fmnl1 and Myh9 expression levels were increased and associated with collagen production and fibrosis stage in NASH mice and patients. Conclusions: Our transcriptome data provide a novel landscape of the MMD system that is involved in advanced NASH disease status. Fmnl1 and Myh9 expression in the MMD system was associated with the progression of NASH fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Monócitos/metabolismo , Células de Kupffer/metabolismo , Fibrose , Expressão Gênica
15.
Front Pharmacol ; 14: 1109576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895942

RESUMO

Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases (ASCVD), characterized by persistent chronic inflammation in the vessel wall, in which monocytes/macrophages play a key role. It has been reported that innate immune system cells can assume a persistent proinflammatory state after short stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be influenced by this persistent hyperactivation of the innate immune system, which is termed trained immunity. Trained immunity has also been implicated as a key pathological mechanism, leading to persistent chronic inflammation in AS. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs in mature innate immune cells and their bone marrow progenitors. Natural products are promising candidates for novel pharmacological agents that can be used to prevent or treat cardiovascular diseases (CVD). A variety of natural products and agents exhibiting antiatherosclerotic abilities have been reported to potentially interfere with the pharmacological targets of trained immunity. This review describes in as much detail as possible the mechanisms involved in trained immunity and how phytochemicals of this process inhibit AS by affecting trained monocytes/macrophages.

16.
Heliyon ; 9(2): e13295, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816302

RESUMO

To explore the relationship between diabetes and intervertebral disc degeneration in mice and the associated underlying mechanism. Four-week-old male Kunming mice were used to model diabetes using a high-fat diet combined with streptozotocin injection. After 6 months, morphological and pathological changes in L4-L6 intervertebral discs were detected by magnetic resonance imaging, micro-CT and histological staining. Immunostaining of CD31, F4/80 and CD16/32 receptors was used to detect vascular invasion and inflammatory infiltration in endplates; the exact changes were then explored by the transmission electron microscopy. The nucleus pulposus of the control and the diabetic group had a clear boundary and regular shape without collapse, while endplate calcification and chondrocyte abnormality in the diabetic group were more obvious. Immunofluorescence confirmed that compared to control, expression levels of CD31 (vascular endothelial marker) and F4/80 (monocyte/macrophage marker) in the diabetic group were significantly increased (P < 0.05), with an elevated number of F4/80 (+)/CD16/32 (+) cells (P < 0.05). The morphology of endplates was observed by transmission electron microscopy, which showed monocytes/macrophage accumulation in the endplate of the diabetic group, accompanied by increased vascular density, collagen fiber distortion and chondrocyte abnormality. In a conclusion, diabetes promotes endplate degeneration with vascular invasion, monocyte/macrophage infiltration and inflammation in mice.

17.
Rheumatology (Oxford) ; 62(10): 3469-3479, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36802235

RESUMO

OBJECTIVE: Trained immunity (TI) is a de facto memory program of innate immune cells, characterized by immunometabolic and epigenetic changes sustaining enhanced production of cytokines. TI evolved as a protective mechanism against infections; however, inappropriate activation can cause detrimental inflammation and might be implicated in the pathogenesis of chronic inflammatory diseases. In this study, we investigated the role of TI in the pathogenesis of giant cell arteritis (GCA), a large-vessel vasculitis characterized by aberrant macrophage activation and excess cytokine production. METHODS: Monocytes from GCA patients and from age- and sex-matched healthy donors were subjected to polyfunctional studies, including cytokine production assays at baseline and following stimulation, intracellular metabolomics, chromatin immunoprecipitation-qPCR, and combined ATAC/RNA sequencing. Immunometabolic activation (i.e. glycolysis) was assessed in inflamed vessels of GCA patients with FDG-PET and immunohistochemistry (IHC), and the role of this pathway in sustaining cytokine production was confirmed with selective pharmacologic inhibition in GCA monocytes. RESULTS: GCA monocytes exhibited hallmark molecular features of TI. Specifically, these included enhanced IL-6 production upon stimulation, typical immunometabolic changes (e.g. increased glycolysis and glutaminolysis) and epigenetic changes promoting enhanced transcription of genes governing pro-inflammatory activation. Immunometabolic changes of TI (i.e. glycolysis) were a feature of myelomonocytic cells in GCA lesions and were required for enhanced cytokine production. CONCLUSIONS: Myelomonocytic cells in GCA activate TI programs sustaining enhanced inflammatory activation with excess cytokine production.


Assuntos
Arterite de Células Gigantes , Humanos , Arterite de Células Gigantes/patologia , Monócitos/metabolismo , Imunidade Treinada , Inflamação , Citocinas
18.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835137

RESUMO

Carboxypeptidase U (CPU, TAFIa, CPB2) is a potent attenuator of fibrinolysis that is mainly synthesized by the liver as its inactive precursor proCPU. Aside from its antifibrinolytic properties, evidence exists that CPU can modulate inflammation, thereby regulating communication between coagulation and inflammation. Monocytes and macrophages play a central role in inflammation and interact with coagulation mechanisms resulting in thrombus formation. The involvement of CPU and monocytes/macrophages in inflammation and thrombus formation, and a recent hypothesis that proCPU is expressed in monocytes/macrophages, prompted us to investigate human monocytes and macrophages as a potential source of proCPU. CPB2 mRNA expression and the presence of proCPU/CPU protein were studied in THP-1, PMA-stimulated THP-1 cells and primary human monocytes, M-CSF-, IFN-γ/LPS-, and IL-4-stimulated-macrophages by RT-qPCR, Western blotting, enzyme activity measurements, and immunocytochemistry. CPB2 mRNA and proCPU protein were detected in THP-1 and PMA-stimulated THP-1 cells as well as in primary monocytes and macrophages. Moreover, CPU was detected in the cell medium of all investigated cell types and it was demonstrated that proCPU can be activated into functionally active CPU in the in vitro cell culture environment. Comparison of CPB2 mRNA expression and proCPU concentrations in the cell medium between the different cell types provided evidence that CPB2 mRNA expression and proCPU secretion in monocytes and macrophages is related to the degree to which these cells are differentiated. Our results indicate that primary monocytes and macrophages express proCPU. This sheds new light on monocytes and macrophages as local proCPU sources.


Assuntos
Carboxipeptidase B2 , Macrófagos , Monócitos , Humanos , Carboxipeptidase B2/genética , Carboxipeptidase B2/metabolismo , Diferenciação Celular/genética , Inflamação , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Monócitos/metabolismo , RNA Mensageiro
19.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L507-L520, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791050

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by increased collagen accumulation that is progressive and nonresolving. Although fibrosis progression may be regulated by fibroblasts and alveolar macrophage (AM) interactions, this cellular interplay has not been fully elucidated. To study AM-fibroblast interactions, cells were isolated from IPF and normal human lung tissue and cultured independently or together in direct 2-D coculture, direct 3-D coculture, indirect transwell, and in 3-D hydrogels. AM influence on fibroblast function was assessed by gene expression, cytokine/chemokine secretion, and hydrogel contractility. Normal AMs cultured in direct contact with fibroblasts downregulated extracellular matrix (ECM) gene expression whereas IPF AMs had little to no effect. Fibroblast contractility was assessed by encapsulating cocultures in 3-D collagen hydrogels and monitoring gel diameter over time. Both normal and IPF AMs reduced baseline contractility of normal fibroblasts but had little to no effect on IPF fibroblasts. When stimulated with Toll-like receptor (TLR) agonists, IPF AMs increased production of pro-inflammatory cytokines TNFα and IL-1ß, compared with normal AMs. TLR ligand stimulation did not alter fibroblast contraction, but stimulation with exogenous TNFα and TGFß did alter contraction. To determine if the observed changes required cell-to-cell contact, AM-conditioned media and transwell systems were utilized. Transwell culture showed decreased ECM gene expression changes compared with direct coculture and conditioned media from AMs did not alter fibroblast contraction regardless of disease state. Taken together, these data indicate that normal fibroblasts are more responsive to AM crosstalk, and that AM influence on fibroblast behavior depends on cell proximity.


Assuntos
Fibrose Pulmonar Idiopática , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/metabolismo , Técnicas de Cocultura , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Citocinas/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Células Cultivadas
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-982145

RESUMO

OBJECTIVE@#To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism.@*METHODS@#THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot.@*RESULTS@#1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1β, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway.@*CONCLUSION@#Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.


Assuntos
Humanos , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Macrófagos/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA