Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Bioengineering (Basel) ; 11(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927758

RESUMO

Hemodynamics in intracranial aneurysm strongly depends on the non-Newtonian blood behavior due to the large number of suspended cells and the ability of red blood cells to deform and aggregate. However, most numerical investigations on intracranial hemodynamics adopt the Newtonian hypothesis to model blood flow and predict aneurysm occlusion. The aim of this study was to analyze the effect of the blood rheological model on the hemodynamics of intracranial aneurysms in the presence or absence of endovascular treatment. A numerical investigation was performed under pulsatile flow conditions in a patient-specific aneurysm with and without the insertion of an appropriately reconstructed flow diverter stent (FDS). The numerical simulations were performed using Newtonian and non-Newtonian assumptions for blood rheology. In all cases, FDS placement reduced the intra-aneurysmal velocity and increased the relative residence time (RRT) on the aneurysmal wall, indicating progressive thrombus formation and aneurysm occlusion. However, the Newtonian model largely overestimated RRT values and consequent aneurysm healing with respect to the non-Newtonian models. Due to the non-Newtonian blood properties and the large discrepancy between Newtonian and non-Newtonian simulations, the Newtonian hypothesis should not be used in the study of the hemodynamics of intracranial aneurysm, especially in the presence of endovascular treatment.

2.
Comput Biol Med ; 176: 108604, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761502

RESUMO

OBJECTIVE: In young patients, aortic valve disease is often treated by placement of a pulmonary autograft (PA) which adapts to its new environment through growth and remodeling. To better understand the hemodynamic forces acting on the highly distensible PA in the acute phase after surgery, we developed a fluid-structure interaction (FSI) framework and comprehensively compared hemodynamics and wall shear-stress (WSS) metrics with a computational fluid dynamic (CFD) simulation. METHODS: The FSI framework couples a prestressed non-linear hyperelastic arterial tissue model with a fluid model using the in-house coupling code CoCoNuT. Geometry, material parameters and boundary conditions are based on in-vivo measurements. Hemodynamics, time-averaged WSS (TAWSS), oscillatory shear index (OSI) and topological shear variation index (TSVI) are evaluated qualitatively and quantitatively for 3 different sheeps. RESULTS: Despite systolic-to-diastolic volumetric changes of the PA in the order of 20 %, the point-by-point correlation of TAWSS and OSI obtained through CFD and FSI remains high (r > 0.9, p < 0.01) for TAWSS and (r > 0.8, p < 0.01) for OSI). Instantaneous WSS divergence patterns qualitatively preserve similarities, but large deformations of the PA leads to a decrease of the correlation between FSI and CFD resolved TSVI (r < 0.7, p < 0.01). Moderate co-localization between FSI and CFD is observed for low thresholds of TAWSS and high thresholds of OSI and TSVI. CONCLUSION: FSI might be warranted if we were to use the TSVI as a mechano-biological driver for growth and remodeling of PA due to varying intra-vascular flow structures and near wall hemodynamics because of the large expansion of the PA.


Assuntos
Hemodinâmica , Modelos Cardiovasculares , Artéria Pulmonar , Hemodinâmica/fisiologia , Artéria Pulmonar/fisiologia , Artéria Pulmonar/fisiopatologia , Hidrodinâmica , Animais , Humanos , Simulação por Computador , Valva Pulmonar/cirurgia , Valva Pulmonar/fisiologia , Autoenxertos , Estresse Mecânico
3.
J Neurosurg Case Lessons ; 7(10)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437674

RESUMO

BACKGROUND: The treatment of vertebrobasilar junction (VBJ) aneurysms is challenging. Although flow diverters (FDs) are a possible treatment option, geometrical conditions hinder intervention. VBJ aneurysms possess dual inflow vessels from the bilateral vertebral arteries (VAs), one of which is ideally occluded prior to FD treatment. However, it remains unclear which VA should be occluded. OBSERVATIONS: A 75-year-old male with a growing VBJ complex aneurysm exhibiting invagination toward the brainstem and causing perifocal edema required intervention. Preoperative computational fluid dynamics (CFD) analysis demonstrated that left VA occlusion would result in more stagnant flow and less impingement of flow than right VA occlusion. According to the simulated strategy, surgical clipping of the left VA just proximal to the aneurysm was performed, followed by FD placement from the basilar artery trunk to the right VA. The patient demonstrated tolerance of the VA occlusion, and follow-up computed tomography angiography at 18 months after FD treatment confirmed the disappearance of the aneurysm. LESSONS: Preoperative flow dynamics simulations using CFD analysis can reveal an optimal treatment strategy involving a hybrid surgery that combines FD placement and direct surgical occlusion for a VBJ complex aneurysm.

4.
Clin Neurol Neurosurg ; 237: 108153, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38350174

RESUMO

OBJECTIVES: The geometry of carotid bifurcation is a crucial contributing factor to the localization of atherosclerotic lesions. Currently, studies on carotid bifurcation geometry are limited to the region near to bifurcation. This study aimed to determine the influence of carotid bifurcation geometry on the blood flow using numerical simulations considering magnitude of haemodynamic parameters in the extended regions of carotid artery. METHODS: In the present study, haemodynamic analysis is carried out using the non-Newtonian viscosity model for patient-specific geometries consisting of both Left and Right carotid arteries. A 3D patient-specific geometric model is generated using MIMICS, and a numerical model is created using ANSYS. RESULTS: The results obtained from patient-specific cases are compared. The influence of geometric features such as lumen diameter, bifurcation angle, and tortuosity on the haemodynamics parameters such as velocity, WSS, pressure, Oscillatory Shear Index (OSI), and Time-Averaged Wall Shear Stress (TAWSS) are compared. CONCLUSION: The results demonstrate significant changes in the flow regime due to the geometric shape of the carotid artery. It is observed that the lower value of TAWSS occurs near the bifurcation region and carotid bulb region. In addition, the higher value of the (OSI) is observed in the Internal Carotid Artery (ICA) and the tortuous carotid artery region. However, it is also observed that apart from the bifurcation angle, other factors, such as tortuosity and area ratio, play a significant role in the flow dynamics of the carotid artery.


Assuntos
Artérias Carótidas , Hemodinâmica , Humanos , Artérias Carótidas/diagnóstico por imagem , Artéria Carótida Interna/diagnóstico por imagem , Viscosidade , Velocidade do Fluxo Sanguíneo/fisiologia , Estresse Mecânico
5.
Artigo em Inglês | MEDLINE | ID: mdl-38323804

RESUMO

This article investigates the effect of the cuff size of arterial bypass grafts and the flow conditions on the hemodynamics in the anastomosis (connection) to the artery, using numerical simulations. We consider a fluid-structure interaction problem which is solved based on a partitioned scheme. Additionally, we employ computational fluid dynamics to investigate the effect of a rigid wall assumption. The work focuses on clinically relevant hemodynamic quantities associated with the development of intimal hyperplasia. We also include a model for the prediction of hemolysis into the simulation. The results show that even minor changes of the cuff size can result into significant differences in the corresponding quantities of interest. The importance of the inflow path is shown to be lower than that of the cuff size. The usually employed rigid wall assumption is found to be adequate to address wall shear stress oscillations but falls short on predicting maximum and minimum wall shear stress-related quantities of interest.

6.
Eur Heart J Cardiovasc Imaging ; 25(3): 404-412, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37878753

RESUMO

AIMS: Patients with bicuspid aortic valve (BAV) and aortic regurgitation have higher rate of aortic complications compared with patients with BAV and stenosis, as well as BAV without valvular disease. Aortic regurgitation alters blood haemodynamics not only in systole but also during diastole. We therefore sought to investigate wall shear stress (WSS) during the whole cardiac cycle in BAV with aortic regurgitation. METHODS AND RESULTS: Fifty-seven subjects that underwent 4D flow cardiovascular magnetic resonance imaging were included: 13 patients with BAVs without valve disease, 14 BAVs with aortic regurgitation, 15 BAVs with aortic stenosis, and 22 normal controls with tricuspid aortic valve. Peak and time averaged WSS in systole and diastole and the oscillatory shear index (OSI) in the ascending aorta were computed. Student's t-tests were used to compare values between the four groups where the data were normally distributed, and the non-parametric Wilcoxon rank sum tests were used otherwise. BAVs with regurgitation had similar peak and time averaged WSS compared with the patients with BAV without valve disease and with stenosis, and no regions of elevated WSS were found. BAV with aortic regurgitation had twice as high OSI as the other groups (P ≤ 0.001), and mainly in the outer mid-to-distal ascending aorta. CONCLUSION: OSI uniquely characterizes altered WSS patterns in BAVs with aortic regurgitation, and thus could be a haemodynamic marker specific for this specific group that is at higher risk of aortic complications. Future longitudinal studies are needed to verify this hypothesis.


Assuntos
Insuficiência da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Humanos , Insuficiência da Valva Aórtica/diagnóstico por imagem , Estudos Transversais , Constrição Patológica , Imageamento por Ressonância Magnética , Valva Aórtica/diagnóstico por imagem , Hemodinâmica , Espectroscopia de Ressonância Magnética , Estresse Mecânico
7.
Comput Methods Biomech Biomed Engin ; 27(3): 347-364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36880851

RESUMO

In this numerical study, areas of the carotid bifurcation and of a distal stenosis in the internal carotid artery are closely observed to evaluate the patient's current risks of ischemic stroke. An indicator for the vessel wall defects is the stress exerted by blood on the vessel tissue, typically expressed by the amplitude of the wall shear stress vector (WSS) and its oscillatory shear index. To detect negative shear stresses corresponding with reversal flow, we perform orientation-based shear evaluation. We investigate the longitudinal component of the wall shear vector, where tangential vectors aligned longitudinally with the vessel are necessary. However, resulting from imaging segmentation resolution of patients' computed tomography angiography scans and stenotic regions, the geometry model's mesh is non-smooth on its surface areas and the automatically generated tangential vector field is discontinuous and multi-directional, making an interpretation of our orientation-based risk indicators unreliable. We improve the evaluation of longitudinal shear stress by applying the projection of the vessel's centerline to the surface to construct smooth tangential field aligned longitudinally with the vessel. We validate our approach for the longitudinal WSS component and the corresponding oscillatory index by comparing them to results obtained using automatically generated tangents in both rigid and elastic vessel modeling and to amplitude-based indicators. We present the major benefit of our longitudinal WSS evaluation based on its directionality for the cardiovascular risk assessment, which is the detection of negative WSS indicating persistent reversal or transverse flow. This is impossible in the case of the amplitude-based WSS.


Assuntos
Artérias Carótidas , Modelos Cardiovasculares , Humanos , Artérias Carótidas/diagnóstico por imagem , Artéria Carótida Interna/diagnóstico por imagem , Constrição Patológica , Estresse Mecânico , Velocidade do Fluxo Sanguíneo , Resistência ao Cisalhamento
8.
Artigo em Inglês | MEDLINE | ID: mdl-38146852

RESUMO

The left anterior descending artery (LAD) is a significant coronary artery and a facilitator of oxygenated blood to the heart muscles. Thus, any occurrence of an aneurysm in LAD requires immediate medical attention. It is often inclined toward fatality if coupled with a blockage due to stenosis. Given the high relevance of understanding such models, invasive techniques under all parametric circumstances are hard to achieve. So, a theoretical approach with a cost-effective intervention of mathematical modeling becomes essential. In our current work, we analyze the model with the numerical technique of a modified form of SIMPLE pressure-correction based algorithm and perform parametric studies for the flow field with degree of stenosis, degree of aneurysm, heart rate, and distance separating aneurysm and stenosis as parameters. The study reveals a direct proportionality relation between the number of recirculation zones and heart rate through instantaneous streamline plots. Alongside this, the demonstration of an increase in the risk of rupture of the aneurysm with a decrease in the distance between stenosis and aneurysm, using the physical parameters associated with blood flow, is another key finding. Further, we examine the effect of the flow field on heat transfer and the consequent temperature profiles.


Assuntos
Aneurisma , Estenose Coronária , Humanos , Vasos Coronários , Constrição Patológica , Frequência Cardíaca , Hemodinâmica , Modelos Cardiovasculares
9.
Micromachines (Basel) ; 14(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37763824

RESUMO

The viscosity of fluid plays a major role in the flow dynamics of microchannels. Viscous drag and shear forces are the primary tractions for microfluidic fluid flow. Capillary blood vessels with a few microns diameter are impacted by the rheology of blood flowing through their conduits. Hence, regenerated capillaries should be able to withstand such impacts. Consequently, there is a need to understand the flow physics of culture media through the lumen of the substrate as it is one of the vital promoting factors for vasculogenesis under optimal shear conditions at the endothelial lining of the regenerated vessel. Simultaneously, considering the diffusive role of capillaries for ion exchange with the surrounding tissue, capillaries have been found to reorient themselves in serpentine form for modulating the flow conditions while developing sustainable shear stress. In the current study, S-shaped (S1) and delta-shaped (S2) serpentine models of capillaries were considered to evaluate the shear stress distribution and the oscillatory shear index (OSI) and relative residual time (RRT) of the derivatives throughout the channel (due to the phenomena of near-wall stress fluctuation), along with the influence of culture media rheology on wall stress parameters. The non-Newtonian power-law formulation was implemented for defining rheological viscosity of the culture media. The flow actuation of the media was considered to be sinusoidal and physiological, realizing the pulsatile blood flow behavior in the circulatory network. A distinct difference in shear stress distributions was observed in both the serpentine models. The S1 model showed higher change in shear stress in comparison to the S2 model. Furthermore, the non-Newtonian viscosity formulation was found to produce more sustainable shear stress near the serpentine walls compared to the Newtonian formulation fluid, emphasizing the influence of rheology on stress generation. Further, cell viability improved in the bending regions of serpentine channels compared to the long run section of the same channel.

10.
Comput Biol Med ; 163: 107198, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354818

RESUMO

Hemodynamic mechanisms of the formation and growth of intracranial aneurysms (IA) in monozygotic twins (MTs) are still under-reported. To partially fill such knowledge gap, this study employed an experimentally validated numerical model to compare hemodynamics in 3 anatomical and 5 ablation study neurovascular models from a rare pair of MTs in terms of 7 critical hemodynamic parameters. Numerical results showed significant differences in hemodynamics between the MTs, although they share the same genes, indicating that genetic mutation and environmental factors might affect neurovascular morphologies and cause hemodynamic changes. After virtual removals of IAs in the ablation study, the locations where the aneurysmal sac/bleb generated in bifurcated anterior cerebral arteries (ACAs) register a locally high instantaneous wall shear stress (IWSS) of 52.9 and 70.1 Pa at the systolic peak in twin A and twin B, respectively. Same scenario can be observed in the distribution of instantaneous wall shear stress gradient (IWSSG), with 571.1 Pa/mm for twin A and 301.3 Pa/mm for twin B due to aggressive blood impingements, leading to IA generation. The fenestrated complex approaching ACA bifurcations in twin A may assist IA growth and rupture, via. Causing abnormal IWSS of 116.3 Pa, IWSSG of 832.5 Pa/mm, and oscillatory shear index (OSI) of 0.49. The bleb in twin B has high risks of progression and possible rupture as the IA suffers relatively low IWSS and high OSI. Additionally, IA generation can change blood flow rates in each connected artery, then affecting blood supplies to associated tissues and organs.


Assuntos
Aneurisma Intracraniano , Humanos , Artérias , Hemodinâmica , Hidrodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Estresse Mecânico , Gêmeos Monozigóticos
11.
Front Neurol ; 14: 1108904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333010

RESUMO

Objective: To analyze how wall enhancement affects hemodynamics and cerebral ischemic risk factors in vertebrobasilar non-saccular intracranial aneurysms (VBNIAs). Materials and methods: Ten consecutive non-saccular aneurysms were collected, including three transitional vertebrobasilar dolichoectasia (TVBD). A wall enhancement model was quantitatively constructed to analyze how wall enhancement interacts with hemodynamics and cerebral ischemic factors. Results: Enhanced area revealed low wall shear stress (WSS) and wall shear stress gradient (WSSG), with high oscillatory shear index (OSI), relative residence time (RRT), and gradient oscillatory number (GON) while the vortex and slow flow region in fusiform aneurysms are similar to TVBD fusiform aneurysms. With low OSI, high RRT and similar GON in the dilated segment, the enhanced area still manifests low WSS and WSSG in the slow flow area with no vortex. In fusiform aneurysms, wall enhancement was negatively correlated with WSS (except for case 71, all p values < 0.05, r = -0.52 ~ -0.95), while wall enhancement was positively correlated with OSI (except for case 5, all p values < 0.05, r = 0.50 ~ 0.83). For the 10 fusiform aneurysms, wall enhancement is significantly positively correlated with OSI (p = 0.0002, r = 0.75) and slightly negatively correlated with WSS (p = 0.196, r = -0.30) throughout the dataset. Aneurysm length, width, low wall shear stress area (LSA), high OSI, low flow volume (LFV), RRT, and high aneurysm-to-pituitary stalk contrast ratio (CRstalk) area plus proportion may be predictive of cerebral ischemia. Conclusion: A wall enhancement quantitative model was established for vertebrobasilar non-saccular aneurysms. Low WSS was negatively correlated with wall enhancement, while high OSI was positively correlated with wall enhancement. Fusiform aneurysm hemodynamics in TVBD are similar to simple fusiform aneurysms. Cerebral ischemia risk appears to be correlated with large size, high OSI, LSA, and RRT, LFV, and wall enhancement.

12.
Ultrasound Med Biol ; 49(8): 1830-1836, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37270353

RESUMO

OBJECTIVE: The arteriovenous fistula (AVF) is an essential vascular access for hemodialysis patients. AVF stenosis may occur at sites with abnormal wall shear stress (WSS) and oscillatory shear index (OSI), which are caused by the complex flow in the AVF. At present, an effective method for rapid determination of the WSS and OSI of the AVF is lacking. The objective of this study was to apply an ultrasound-based method for determination of the WSS and OSI to explore the risk sites of the AVF. METHODS: In this study, the ultrasound vector flow imaging technique V Flow was applied to measure the WSS and OSI at four different regions of the AVF to detect and analyze the risk sites: (i) anastomosis region, (ii) curved region, (iii) proximal vein and (iv) distal vein. Twenty-one patients were included in this study. The relative residence time was calculated based on the measured WSS and OSI. RESULTS: The curved region had the lowest WSS; the anastomosis region had a significantly higher OSI (p < 0.05) compared with the venous regions, and the curved region had a significantly higher RRT (p < 0.05) compared with the proximal vein region. CONCLUSION: V Flow is a feasible tool for studying WSS variations in AVF. The possible risk site in the AVF may be located in the anastomosis and curved regions, where the latter could present a higher risk for AVF stenosis.


Assuntos
Fístula Arteriovenosa , Veias , Humanos , Velocidade do Fluxo Sanguíneo , Constrição Patológica , Fístula Arteriovenosa/diagnóstico por imagem , Diálise Renal , Estresse Mecânico , Hemodinâmica
13.
Bioengineering (Basel) ; 10(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36978707

RESUMO

Aortic dissection is a life-threatening vascular disease associated with high rates of morbidity and mortality, especially in medically underserved communities. Understanding patients' blood flow patterns is pivotal for informing evidence-based treatment as they greatly influence the disease outcome. The present study investigates the flow patterns in the false lumen of three aorta dissections (fully perfused, partially thrombosed, and fully thrombosed) in the chronic phase, and compares them to a healthy aorta. Three-dimensional geometries of aortic true and false lumens (TLs and FLs) are reconstructed through an ad hoc developed and minimally supervised image analysis procedure. Computational fluid dynamics (CFD) is performed through a finite volume unsteady Reynolds-averaged Navier-Stokes approach assuming rigid wall aortas, Newtonian and homogeneous fluid, and incompressible flow. In addition to flow kinematics, we focus on time-averaged wall shear stress and oscillatory shear index that are recognized risk factors for aneurysmal degeneration. Our analysis shows that partially thrombosed dissection is the most prone to false lumen degeneration. In all dissections, the arteries connected to the false lumen are generally poorly perfused. Further, both true and false lumens present higher turbulence levels than the healthy aorta, and critical stagnation points. Mesh sensitivity and a thorough comparison against literature data together support the reliability of the CFD methodology. Image-based CFD simulations are efficient tools to assess the possibility of aortic dissection to lead to aneurysmal degeneration, and provide new knowledge on the hemodynamic characteristics of dissected versus healthy aortas. Similar analyses should be routinely included in patient-specific hemodynamics investigations, to plan and design tailored therapeutic strategies, and to timely assess their effectiveness.

14.
Comput Biol Med ; 154: 106609, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724610

RESUMO

An abdominal aortic aneurysm (AAA) is a critical health condition with a risk of rupture, where the diameter of the aorta enlarges more than 50% of its normal diameter. The incidence rate of AAA has increased worldwide. Currently, about three out of every 100,000 people have aortic diseases. The diameter and geometry of AAAs influence the hemodynamic forces exerted on the arterial wall. Therefore, a reliable assessment of hemodynamics is crucial for predicting the rupture risk. Wall shear stress (WSS) is an important metric to define the level of the frictional force on the AAA wall. Excessive levels of WSS deteriorate the remodeling mechanism of the arteries and lead to abnormal conditions. At this point, WSS-related hemodynamic parameters, such as time-averaged WSS (TAWSS), oscillatory shear index (OSI), endothelial cell activation potential (ECAP), and relative residence time (RRT) provide important information to evaluate the shear environment on the AAA wall in detail. Calculation of these parameters is not straightforward and requires a physical understanding of what they represent. In addition, computational fluid dynamics (CFD) solvers do not readily calculate these parameters when hemodynamics is simulated. This review aims to explain the WSS-derived parameters focusing on how these represent different characteristics of disturbed hemodynamics. A representative case is presented for spatial and temporal formulation that would be useful for interested researchers for practical calculations. Finally, recent hemodynamics investigations relating WSS-related parameters with AAA rupture risk assessment are presented. This review will be useful to understand the physical representation of WSS-related parameters in cardiovascular flows and how they can be calculated practically for AAA investigations.


Assuntos
Aneurisma da Aorta Abdominal , Hemodinâmica , Humanos , Medição de Risco , Estresse Mecânico , Células Endoteliais , Modelos Cardiovasculares
15.
Biotechnol Bioeng ; 120(5): 1254-1268, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36633017

RESUMO

Effects of hemodynamic shear stress on endothelial cells have been extensively investigated using the "swirling well" method, in which cells are cultured in dishes or multiwell plates placed on an orbital shaker. A wave rotates around the well, producing complex patterns of shear. The method allows chronic exposure to flow with high throughput at low cost but has two disadvantages: a number of shear stress characteristics change in a broadly similar way from the center to the edge of the well, and cells at one location in the well may release mediators into the medium that affect the behavior of cells at other locations, exposed to different shears. These properties make it challenging to correlate cell properties with shear. The present study investigated simple alterations to ameliorate these issues. Flows were obtained by numerical simulation. Increasing the volume of fluid in the well-altered dimensional but not dimensionless shear metrics. Adding a central cylinder to the base of the well-forced fluid to flow in a square toroidal channel and reduced multidirectionality. Conversely, suspending a cylinder above the base of the well made the flow highly multidirectional. Increasing viscosity in the latter model increased the magnitude of dimensional but not dimensionless metrics. Finally, tilting the well changed the patterns of different wall shear stress metrics in different ways. Collectively, these methods allow similar flows over most of the cells cultured and/or allow the separation of different shear metrics. A combination of the methods overcomes the limitations of the baseline model.


Assuntos
Técnicas de Cultura de Células , Células Endoteliais , Hemodinâmica , Simulação por Computador , Estresse Mecânico
16.
Ann Thorac Cardiovasc Surg ; 29(1): 29-39, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36418107

RESUMO

PURPOSE: Computational fluid dynamics has enabled the evaluation of coronary flow reserve. The purpose of this study was to clarify the hemodynamic variation and reserve potential of the left internal thoracic artery (LITA). METHODS: Four patients were selected on the basis of various native coronary stenosis patterns and graft design. The wall shear stress and oscillatory shear index were measured, and one patient was selected. Next, we created three hypothetical lesions with 75%, 90%, and 99% stenosis in front of the graft anastomosis, and compared the changes in LITA blood flow and coronary flow distribution. RESULTS: In the 75% to 90% stenosis model, blood flow was significantly higher in the native coronary flow proximal to the coronary artery bypass anastomosis regardless of time phase. In the 99% stenosis model, blood flow from the LITA was significantly dominant compared to native coronary flow at the proximal site of anastomosis. The range of LITA flow variability was the largest at 99% stenosis, with a difference of 70 ml/min. CONCLUSION: The 99% stenosis model showed the highest LITA flow. The range of LITA flow variability is large, suggesting that it may vary according to the rate of native coronary stenosis.


Assuntos
Estenose Coronária , Artéria Torácica Interna , Humanos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/cirurgia , Artéria Torácica Interna/diagnóstico por imagem , Artéria Torácica Interna/cirurgia , Constrição Patológica , Angiografia Coronária , Resultado do Tratamento , Hemodinâmica , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/etiologia , Estenose Coronária/cirurgia
17.
Vasc Endovascular Surg ; 57(1): 26-34, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36083843

RESUMO

Background and aims: This study describes and demonstrates the applicability of a novel in silico method for modeling progressive carotid artery stenosis using the oscillatory shear index (OSI) as the basis of stenosis. Methods: Three-dimensional reconstructions of 11 carotid arteries were generated using patient-derived magnetic resonance angiography and duplex ultrasound data. Computational fluid dynamic simulations were sequentially generated following computational stenosis assessment, and corresponding changes in OSI were observed and used as measure of morphological stabilization. Results: 6 carotid models showed progressive stenosis with statistically significant increases in regions of high OSI (OSI >.2, P < .05) with eventual carotid occlusion in 1 of the cases. Three models remained free or nearly free of increased OSI, whereas 1 model showed an overall decrease in high OSI regions (P < .05) and another trended in that direction but did not achieve statistical significance (P = .145). Conclusions: To our knowledge, this is the first computational model describing progressive stenosis in any peripheral artery including the carotid. Taken together, this study provides a novel framework for computational hemodynamic investigations on progressive atherosclerosis in the carotid artery.


Assuntos
Estenose das Carótidas , Humanos , Estenose das Carótidas/diagnóstico por imagem , Constrição Patológica , Modelos Cardiovasculares , Fluxo Sanguíneo Regional , Resultado do Tratamento , Artérias Carótidas , Hemodinâmica
18.
Ann Biomed Eng ; 51(2): 296-307, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35881266

RESUMO

We predicted human lower extremity vein bypass graft remodeling by hemodynamics. Computed tomography and duplex ultrasound scans of 55 patients were performed at 1 week and 1, 6, and 12 months post-implantation to obtain wall shear stress (WSS) and oscillatory shear index (OSI) at 1-mm intervals via computational fluid dynamics simulations. Graft remodeling was quantified by computed tomography-measured lumen diameter changes in the early (1 week-1 month), intermediate (1-6 months), and late (6-12 months) periods. Linear mixed-effect models were constructed to examine the overall relationship between remodeling and initial hemodynamics using the average data of all cross sections within the same graft. A significant association of graft remodeling with WSS (p < 0.001) and time (p = 0.001) was found; however, the effect size decreased with time (every 2.7 dyne/cm2 increase of WSS was associated with a 0.39, 0.35, 0.002 mm diameter increase in the three periods, respectively). The association of remodeling with OSI was significant only in the intermediate period (every 0.1 increase of OSI was associated with a 0.25 mm lumen diameter decrease, p = 0.004). Therefore, the association of graft lumen remodeling with local hemodynamics has a distinct temporal pattern; WSS and OSI are predictive of remodeling only in certain postoperative periods.


Assuntos
Hemodinâmica , Veias , Humanos , Procedimentos Cirúrgicos Vasculares , Extremidade Inferior/diagnóstico por imagem , Estresse Mecânico
19.
Comput Methods Biomech Biomed Engin ; 26(8): 986-998, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35882063

RESUMO

Aortic aneurysm is one of the most common aortic diseases that can lead to unfortunate consequences. Numerical simulations have an important role in the prediction of the aftereffects of vascular diseases including aneurysm. In this research, numerical simulation of pulsatile blood flow is performed for a 3-dimensional patient-specific model of a thoracic aortic aneurysm (TAA). Since the choice of blood viscosity model may have a significant impact on the simulation results, the effects of four non-Newtonian models of blood viscosity namely Carreau, Casson, Herschel-Bulkley, power low, and the Newtonian model on the wall shear stress (WSS) distribution, shear rate, and oscillatory shear index (OSI) have been analyzed. Simulation results showed that all the non-Newtonian and Newtonian models generally, predict similar patterns for blood flow and shear rate. At high flow rates in the cardiac cycle, the WSS value for all the models are similar to each other except for the power-law model due to the shear thinning behavior. All models predict high values of OSI on the inner wall of the ascending aorta and broad areas of the inner wall of the aneurysm sac. However, the Newtonian model predicts the OSI less than the non-Newtonian models in some areas of the aneurysm sac. Results indicated that the Newtonian model generally can predict the hemodynamic parameters of the blood flow similar to the non-Newtonian but for more precise analysis and to predict the regions prone to rupture and atherosclerosis, choosing a proper non-Newtonian model is recommended.


Assuntos
Aneurisma da Aorta Torácica , Modelos Cardiovasculares , Humanos , Viscosidade , Hemodinâmica , Aneurisma da Aorta Torácica/diagnóstico por imagem , Fluxo Pulsátil/fisiologia , Simulação por Computador , Estresse Mecânico , Velocidade do Fluxo Sanguíneo/fisiologia
20.
Quant Imaging Med Surg ; 12(12): 5462-5473, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36465823

RESUMO

Background: To investigate the distribution and regional variation of wall shear stress (WSS) in the curved middle cerebral artery (MCA) in healthy individuals using four-dimensional (4D) flow magnetic resonance imaging (MRI). Methods: A total of 44 healthy participants (18 males; mean ages: 27.16±5.69 years) were included in this cross-sectional study. The WSS parameters of mean, minimum, and maximum values, the coefficient of variation of time-averaged WSS (TAWSSCV), and the maximum values of the oscillatory shear index (OSI) were calculated and compared in the curved proximal (M1) segments. Three cross-sectional planes were selected: the location perpendicular to the beginning of the long axis of the curved M1 segment of the MCA (proximal section), the most curved M1 location (curved M1 section), and the location before the insular (M2) segment bifurcation (distal section). The WSS and OSI parameters of the proximal, curved, and distal sections of the curved M1 segment were compared, including the inner and outer curvatures of the curved M1 section. Results: Of the curved M1 segments, the curved M1 section had significantly lower minimum TAWSS values than the proximal (P=0.031) and distal sections (P=0.002), and the curved M1 section had significantly higher maximum OSI values than the distal section (P=0.001). The TAWSSCV values at the curved M1 section were significantly higher than the proximal (P=0.001) and distal sections (P<0.001). At the curved M1 section, the inner curvature showed a significantly lower minimum TAWSS (P=0.013) and higher maximum OSI values (P=0.002) than the outer curvature. Conclusions: There are distribution variation of WSS and OSI parameters at the curved M1 section of the curved MCA, and the inner curvature of the curved M1 section has the lowest WSS and highest OSI distribution. The local hemodynamic features of the curved MCA may be related to the predilection for atherosclerotic plaque development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA