Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Neurosci Lett ; 839: 137935, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151574

RESUMO

OBJECTIVE: Bipolar disorder (BD) is a debilitating neuropsychiatric disorder, which is associated with genetic variation through "vast but mixed" Genome-Wide Association Studies (GWAS). Transcriptome-Wide Association Study (TWAS) is more effective in explaining genetic factors that influence complex diseases and can help identifying risk genes more reliably. So, this study aims to identify potential BD risk genes in pedigrees with TWAS. METHODS: We conducted a TWAS analysis with expression quantitative trait loci (eQTL) analysis on extended BD pedigrees, and the BD genome-wide association study (GWAS) summary data acquired from the Psychiatric Genomics Consortium (PGC). Furthermore, the BD-associated genes identified by TWAS were validated by mRNA expression profiles from the Gene Expression Omnibus (GEO) Datasets (GSE23848 and GSE46416). Functional enrichment and annotation analysis were implemented by RStudio (version 4.2.0). RESULTS: TWAS identified 362 genes with P value < 0.05, and 18 genes remain significant after Bonferroni correction, such as SEMA3G (PTWAS=1.07 × 10-11), ALOX5AP (PTWAS=3.12 × 10-8), and PLEC (PTWAS=1.27 × 10-7). Further 6 overlapped genes were detected in integrative analysis, such as UQCRB (PTWAS=0.0020, PmRNA=0.0000), TMPRSS9 (PTWAS=0.0405, PmRNA=0.0032), and SNX10 (PTWAS=0.0104, PmRNA=0.0015). Using genes identified by TWAS, Gene Ontology (GO) enrichment analysis identified 40 significant GO terms, such as mitochondrial ATP synthesis coupled electron transport, mitochondrial respiratory, aerobic electron transport chain, oxidative phosphorylation, mitochondrial membrane proteins, and ubiquinone activity. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis identified significant 15 pathways for BD, such as Oxidative phosphorylation, endocannabinoids signaling, neurodegeneration, and reactive oxide species. CONCLUSIONS: We found a set of BD-associated genes and pathways, validating the important role of neurodevelopmental abnormalities, inflammatory responses, and mitochondrial dysfunction in the pathology of BD, offering novel information for comprehending the genetic basis of BD.

2.
Comput Struct Biotechnol J ; 23: 2883-2891, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39108678

RESUMO

Crop pedigrees incorporate information on the kinship and genetic evolutionary history of breeding materials. Complete and accurate pedigree information is vital for effective genetic improvement of crops and maximal exploitation of heterosis in crop production. It is difficult for breeders to accurately extrapolate the selection of germplasm resources with missing genealogical information based on breeding experience. In this study, an algorithm called PidTools was developed, consisting of five sets of algorithms from three core modules, for accurate pedigree identification analysis. The algorithms and associated tools are suitable for all crops, for the reconstruction and visualization of a complete pedigree for breeding materials. The algorithm and tools were validated with the model crop maize. A genotype database was constructed using Maize6H-60K array data from 5791 maize inbred lines. The pedigree of the maize inbred line Jing72464 was identified without prior provision of any parental information. The pedigree information for Zheng58 was fully identified at the genome-wide scale. With regard to group identification, the parents of a doubled-haploid group were identified based on the genotyping data. The pedigree of 21 Dan340 derived lines were visualized using PidTools. The algorithms are incorporated into a user-friendly online analytical platform, PidTools-WS, with an associated customizable toolkit program, PidTools-CLI. These analytical tools and the present results provide useful information for future maize breeding. The PidTools online analysis platform is available at https://PidTools.plantdna.site/.

3.
JSES Int ; 8(4): 815-821, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035665

RESUMO

Background: Common genetic variants with small effect sizes have been associated with rotator cuff tearing although very few rare, highly penetrant variants have been identified. The purpose of this pilot study was to identify dominant coding variants that segregated with affected individuals in pedigrees at high risk for rotator cuff tears (RCTs). We hypothesize that rare variants contribute to symptomatic RCTs and that they can be identified in related cases with a full-thickness tear requiring surgical management. Methods: We used the Utah Population Database to identify pedigrees that exhibited a significant excess of individuals who had undergone surgical repair of a full-thickness RCT. We analyzed whole exome sequence analysis to identify rare coding variants in 9 independent affected cousin pairs (first or second cousins) who had undergone arthroscopic surgery for repair of a full-thickness RCT (mean age at diagnosis 68 years). Validation of association of the candidate variants with risk for rotator cuff tearing was accomplished utilizing data from the UK Biobank and a separate cohort of unrelated cases of full-thickness RCTs. Results: A total of 82 rare (minor allele frequency <0.005) coding variants were identified as shared in at least one cousin pair affected with full-thickness rotator cuff tearing belonging to a high-risk pedigree, which included variants in RUNX1, ADAM12, TGFBR2, APBB1, PDLIM7, LTBP1, MAP3K4, and MAP3K1. Analysis of 39 of these variants with data available in the UK Biobank (3899 cases with rotator cuff injury and 11,697 matched controls; mean case age 59.9 years) identified a significant association with the APBB1 gene (OR = 2.37, P = .007, uncorrected). The PDLIM7 allele was found to be in significant excess in RCT cases in a separate cohort of Utah patients with full-thickness RCTs (10 carriers out of 458 independent, unrelated patients; minor allele frequency of 0.022) compared to a minor allele frequency of 0.0058 for the European (non-Finnish) control population rate (749 carriers out of 128612 tested) (chi-square test: 19.3 [P < .001]). Discussion: The analysis of closely related individuals with confirmed full-thickness RCTs from high-risk pedigrees has identified 82 rare, shared candidate genetic predisposition coding variants. Association of the PDLIM7 allele with risk for tear was confirmed in an independent cohort of RCTs. Further analysis of the variant alleles is required for confirmation of these genes in rotator cuff tearing.

4.
Genet Med ; 26(9): 101171, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38828701

RESUMO

PURPOSE: Female CHEK2 c.1100delC heterozygotes are eligible for additional breast surveillance because of an increased breast cancer risk. Increased risks for other cancers have been reported. We studied whether CHEK2 c.1100delC is associated with an increased risk for other cancers within these families. METHODS: Including 10,780 individuals from 609 families, we calculated standardized incidence rates (SIRs) and absolute excess risk (AER, per 10,000 person-years) by comparing first-reported cancer derived from the pedigrees with general Dutch population rates from 1970 onward. Attained-age analyses were performed for sites in which significant increased risks were found. Considering the study design, we primarily focused on cancer risk in women. RESULTS: We found significant increased risks of colorectal cancer (CRC; SIR = 1.43, 95% CI = 1.14-1.76; AER = 1.43) and hematological cancers (SIR = 1.32; 95% CI = 1.02-1.67; AER = 0.87). CRC was significantly more frequent from age 45 onward. CONCLUSION: A significantly increased risk of CRC, and hematological cancers in women was found, starting at a younger age than expected. Currently, colorectal surveillance starts at age 45 in high-risk individuals. Our results suggest that some CHEK2 c.1100delC families might benefit from this surveillance as well; however, further research is needed to determine who may profit from this additional colorectal surveillance.

5.
Cell ; 187(15): 3904-3918.e8, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38851187

RESUMO

We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.


Assuntos
DNA Mitocondrial , Linhagem , Humanos , DNA Mitocondrial/genética , Feminino , Islândia , Masculino , Mutação , Taxa de Mutação
6.
Genetics ; 227(3)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38722645

RESUMO

Sex-biased demography, including sex-biased survival or migration, can alter allele frequency changes across the genome. In particular, we can expect different patterns of genetic variation on autosomes and sex chromosomes due to sex-specific differences in life histories, as well as differences in effective population size, transmission modes, and the strength and mode of selection. Here, we demonstrate the role that sex differences in life history played in shaping short-term evolutionary dynamics across the genome. We used a 25-year pedigree and genomic dataset from a long-studied population of Florida Scrub-Jays (Aphelocoma coerulescens) to directly characterize the relative roles of sex-biased demography and inheritance in shaping genome-wide allele frequency trajectories. We used gene dropping simulations to estimate individual genetic contributions to future generations and to model drift and immigration on the known pedigree. We quantified differential expected genetic contributions of males and females over time, showing the impact of sex-biased dispersal in a monogamous system. Due to female-biased dispersal, more autosomal variation is introduced by female immigrants. However, due to male-biased transmission, more Z variation is introduced by male immigrants. Finally, we partitioned the proportion of variance in allele frequency change through time due to male and female contributions. Overall, most allele frequency change is due to variance in survival and births. Males and females make similar contributions to autosomal allele frequency change, but males make higher contributions to allele frequency change on the Z chromosome. Our work shows the importance of understanding sex-specific demographic processes in characterizing genome-wide allele frequency change in wild populations.


Assuntos
Frequência do Gene , Linhagem , Masculino , Feminino , Animais , Modelos Genéticos
7.
J Hist Biol ; 57(1): 51-87, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38345736

RESUMO

The case of the Juke family is one of the most notable episodes of the history of eugenics in the USA. The Jukes were initially brought to the fore in the 1870s by a famous investigation that aimed at estimating the interplay of heredity and environment in determining the problems of poverty and crime. This inquiry triggered a harsh confrontation between two polar interpretations of the study, an "environmentalist" one and a "hereditarian" one. It was with the later reassessment of the case made by the Eugenics American Office (ERO) in the 1910s that the controversy was considered closed with the victory of the eugenicists' hereditarian stance. As a result, the family was made a living proof of the alleged hereditary nature of crime and pauperism and a case study in support of the eugenicists' plea for the sterilization of people deemed the bearers of hereditary defectiveness. In this article, I explore the role played by pedigrees and other diagrammatic representations in the eugenicists' appropriation of the meaning of the case of the Juke family and the role played by this appropriation in asserting the superiority of the ERO's method of work over rival approaches.


Assuntos
Eugenia (Ciência) , Eugenia (Ciência)/história , História do Século XX , Humanos , História do Século XIX , Estados Unidos , Linhagem , Hereditariedade
8.
Genetics ; 226(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38289724

RESUMO

In a genetically admixed population, admixed individuals possess genealogical and genetic ancestry from multiple source groups. Under a mechanistic model of admixture, we study the number of distinct ancestors from the source populations that the admixture represents. Combining a mechanistic admixture model with a recombination model that describes the probability that a genealogical ancestor is a genetic ancestor, for a member of a genetically admixed population, we count genetic ancestors from the source populations-those genealogical ancestors from the source populations who contribute to the genome of the modern admixed individual. We compare patterns in the numbers of genealogical and genetic ancestors across the generations. To illustrate the enumeration of genetic ancestors from source populations in an admixed group, we apply the model to the African-American population, extending recent results on the numbers of African and European genealogical ancestors that contribute to the pedigree of an African-American chosen at random, so that we also evaluate the numbers of African and European genetic ancestors who contribute to random African-American genomes. The model suggests that the autosomal genome of a random African-American born in the interval 1960-1965 contains genetic contributions from a mean of 162 African (standard deviation 47, interquartile range 127-192) and 32 European ancestors (standard deviation 14, interquartile range 21-43). The enumeration of genetic ancestors can potentially be performed in other diploid species in which admixture and recombination models can be specified.


Assuntos
Negro ou Afro-Americano , Genética Populacional , Humanos , Negro ou Afro-Americano/genética , População Europeia/genética
9.
Biomolecules ; 13(3)2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36979477

RESUMO

Skewed X chromosome inactivation (XCI-S) has been reported to be associated with some X-linked diseases. Several methods have been proposed to estimate the degree of XCI-S (denoted as γ) for quantitative and qualitative traits based on unrelated females. However, there is no method available for estimating γ based on general pedigrees. Therefore, in this paper, we propose a Bayesian method to obtain the point estimate and the credible interval of γ based on the mixture of general pedigrees and unrelated females (called mixed data for brevity), which is also suitable for only general pedigrees. We consider the truncated normal prior and the uniform prior for γ. Further, we apply the eigenvalue decomposition and Cholesky decomposition to our proposed methods to accelerate the computation speed. We conduct extensive simulation studies to compare the performances of our proposed methods and two existing Bayesian methods which are only applicable to unrelated females. The simulation results show that the incorporation of general pedigrees can improve the efficiency of the point estimation and the precision and the accuracy of the interval estimation of γ. Finally, we apply the proposed methods to the Minnesota Center for Twin and Family Research data for their practical use.


Assuntos
Cromossomos Humanos X , Inativação do Cromossomo X , Humanos , Feminino , Teorema de Bayes , Inativação do Cromossomo X/genética , Linhagem , Família
10.
Methods Mol Biol ; 2560: 67-71, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36481883

RESUMO

Family pedigrees allow for a more thorough understanding of human genetic disorders. They are used to help establish patterns of inheritance and to identify individuals at risk of disease. Pedigree analysis can be helpful in identifying genetic disorders that demonstrate mechanisms such autosomal dominant or recessive inheritance, X-linked inheritance, and anticipation.


Assuntos
Retinose Pigmentar , Humanos , Retinose Pigmentar/genética
11.
Gene ; 851: 146956, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36341727

RESUMO

MOTIVATION: Next-generation sequencing (NGS) technologies are decisive for discovering disease-causing variants, although their cost limits their utility in a clinical setting. A cost-mitigating alternative is an extremely low coverage whole-genome sequencing (XLC-WGS). We investigated its use to identify causal variants within a multi-generational pedigree of individuals with retinitis pigmentosa (RP). Causing progressive vision loss, RP is a group of genetically heterogeneous eye disorders with approximately 60 known causal genes. RESULTS: We performed XLC-WGS in seventeen members of this pedigree, including three individuals with a confirmed diagnosis of RP. Sequencing data were processed using Illumina's DRAGEN pipeline and filtered using Illumina's genotype quality score metric (GQX). The resulting variants were analyzed using Expert Variant Interpreter (eVai) from enGenome as a prioritization tool. A nonsense known mutation (c.1625C > G; p.Ser542*) in exon 4 of the RP1 gene emerged as the most likely causal variant. We identified two homozygous carriers of this variant among the three sequenced RP cases and three heterozygous individuals with sufficient coverage of the RP1 locus. Our data show the utility of combining pedigree information with XLC-WGS as a cost-effective approach to identify disease-causing variants.


Assuntos
Proteínas do Olho , Retinose Pigmentar , Humanos , Códon sem Sentido , Análise Mutacional de DNA , Proteínas do Olho/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Linhagem , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Sequenciamento Completo do Genoma
12.
Genome Biol ; 23(1): 253, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510265

RESUMO

BACKGROUND: Short tandem repeats (STRs) compose approximately 3% of the genome, and mutations at STR loci have been linked to dozens of human diseases including amyotrophic lateral sclerosis, Friedreich ataxia, Huntington disease, and fragile X syndrome. Improving our understanding of these mutations would increase our knowledge of the mutational dynamics of the genome and may uncover additional loci that contribute to disease. To estimate the genome-wide pattern of mutations at STR loci, we analyze blood-derived whole-genome sequencing data for 544 individuals from 29 three-generation CEPH pedigrees. These pedigrees contain both sets of grandparents, the parents, and an average of 9 grandchildren per family. RESULTS: We use HipSTR to identify de novo STR mutations in the 2nd generation of these pedigrees and require transmission to the third generation for validation. Analyzing approximately 1.6 million STR loci, we estimate the empirical de novo STR mutation rate to be 5.24 × 10-5 mutations per locus per generation. Perfect repeats mutate about 2 × more often than imperfect repeats. De novo STRs are significantly enriched in Alu elements. CONCLUSIONS: Approximately 30% of new STR mutations occur within Alu elements, which compose only 11% of the genome, but only 10% are found in LINE-1 insertions, which compose 17% of the genome. Phasing these mutations to the parent of origin shows that parental transmission biases vary among families. We estimate the average number of de novo genome-wide STR mutations per individual to be approximately 85, which is similar to the average number of observed de novo single nucleotide variants.


Assuntos
Família Estendida , Repetições de Microssatélites , Humanos , Mutação , Linhagem , Genoma
13.
Genes (Basel) ; 13(8)2022 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-36011314

RESUMO

Y chromosome short tandem repeat polymorphisms (Y-STRs) are important in many areas of human genetics. Y chromosomal STRs, being normally utilized in the field of forensics, exhibit low haplotype diversity in consanguineous populations and fail to discriminate among male relatives from the same pedigree. Rapidly mutating Y-STRs (RM Y-STRs) have received much attention in the past decade. These 13 RM Y-STRs have high mutation rates (>10−2) and have considerably higher haplotype diversity and discrimination capacity than conventionally used Y-STRs, showing remarkable power when it comes to differentiation in paternal lineages in endogamous populations. Previously, we analyzed two to four generations of 99 pedigrees with 1568 pairs of men covering one to six meioses from all over Pakistan and 216 male relatives from 18 deep-rooted endogamous Sindhi pedigrees covering one to seven meioses. Here, we present 861 pairs of men from 62 endogamous pedigrees covering one to six meioses from the Punjabi population of Punjab, Pakistan. Mutations were frequently observed at DYF399 and DYF403, while no mutation was observed at DYS526a/b. The rate of differentiation ranged from 29.70% (first meiosis) to 80.95% (fifth meiosis), while overall (first to sixth meiosis) differentiation was 59.46%. Combining previously published data with newly generated data, the overall differentiation rate was 38.79% based on 5176 pairs of men related by 1−20 meioses, while Yfiler differentiation was 9.24% based on 3864 pairs. Using father−son pair data from the present and previous studies, we also provide updated RM Y-STR mutation rates.


Assuntos
Cromossomos Humanos Y , Taxa de Mutação , Cromossomos Humanos Y/genética , Humanos , Masculino , Repetições de Microssatélites/genética , Paquistão , Linhagem
14.
Data Brief ; 42: 108311, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35928588

RESUMO

We present simulated exome-sequencing data for 150 families from a North American admixed population, ascertained to contain at least four members affected with lymphoid cancer. These data include information on the ascertained families as well as single-nucleotide variants on the exome of affected family members. We provide a brief overview of the simulation steps and links to the associated software scripts. The resulting data are useful to identify genomic patterns and disease inheritance in families with multiple disease-affected members.

15.
Mutat Res Rev Mutat Res ; 789: 108417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35690414

RESUMO

This commentary reflects on the importance of mentoring in science education. It is written from the perspective of a geneticist and historian of science, but its implications extend to many other fields. A lineage of mentoring is traced from the author's educational experience back through several centuries in the form of an intellectual pedigree.


Assuntos
Tutoria , Humanos , Mentores
16.
Genes (Basel) ; 13(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35741768

RESUMO

The current hypothesis, along with the opinion of the breeders, is that a cat with two copies of the white spotting allele (SS) has white on more than half of its body, while a cat with only one copy (Ss) has white on less than half of its body. The present study was based on the analysis of two large pedigree databases of Siberian cats (23,905 individuals in PawPeds and 21,650 individuals in Felis Polonia database). The distribution of the amount of white spotting in the offspring of cats with different amounts of white was investigated. Significant differences compared to expected distributions were observed. In many cases the amount of white in cats that were supposed to be homozygous was less than 50% of the body, while in many supposedly heterozygous cats a very large amount of white (over 50%) was observed. This phenomenon was also presented on the verified examples of the specific families excluding possible errors in determining the amount of white by the breeder. The collected evidence suggests that there are other factors involved in the inheritance of the amount of white in cats and the current hypothesis should be revised.


Assuntos
Cor de Cabelo , Padrões de Herança , Alelos , Animais , Gatos/genética , Linhagem , Fenótipo
17.
Mol Ecol Resour ; 22(7): 2546-2558, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35510790

RESUMO

Researchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sampled individuals. Here, we compare six commonly used genome-based relatedness estimators (kinship genetic distance [KGD], Wang maximum likelihood [TrioML], Queller and Goodnight [Rxy ], Kinship INference for Genome-wide association studies [KING-robust), and pairwise relatedness [RAB ], allele-sharing coancestry [AS]) across five species bred in captivity-including three birds and two mammals-with varying degrees of reliable pedigree data, using reduced-representation and whole genome resequencing data. Genome-based relatedness estimates varied widely across estimators, sequencing methods, and species, yet the most consistent results for known first order relationships were found using Rxy , RAB , and AS. However, AS was found to be less consistently correlated with known pedigree relatedness than either Rxy or RAB . Our combined results indicate there is not a single genome-based estimator that is ideal across different species and data types. To determine the most appropriate genome-based relatedness estimator for each new data set, we recommend assessing the relative: (1) correlation of candidate estimators with known relationships in the pedigree and (2) precision of candidate estimators with known first-order relationships. These recommendations are broadly applicable to conservation breeding programmes, particularly where genome-based estimates of relatedness can complement and complete poorly pedigreed populations. Given a growing interest in the application of wild pedigrees, our results are also applicable to in situ wildlife management.


Assuntos
Cruzamento , Estudo de Associação Genômica Ampla , Alelos , Animais , Animais Selvagens , Humanos , Mamíferos , Modelos Genéticos , Linhagem
18.
Hum Mutat ; 43(9): 1259-1267, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35460575

RESUMO

Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two-generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four-generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21-71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations.


Assuntos
DNA Mitocondrial , Doenças Mitocondriais , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/genética , Linhagem , Seleção Genética
19.
J Transl Genet Genom ; 5(2): 112-123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888494

RESUMO

AIM: High-risk pedigrees (HRPs) are a powerful design to map highly penetrant risk genes. We previously described Shared Genomic Segment (SGS) analysis, a mapping method for single large extended pedigrees that also addresses genetic heterogeneity inherent in complex diseases. SGS identifies shared segregating chromosomal regions that may inherit in only a subset of cases. However, single large pedigrees that are individually powerful (at least 15 meioses between studied cases) are scarce. Here, we expand the SGS strategy to incorporate evidence from two extended HRPs by identifying the same segregating risk locus in both pedigrees and allowing for some relaxation in the size of each HRP. METHODS: Duo-SGS is a procedure to combine single-pedigree SGS evidence. It implements statistically rigorous duo-pedigree thresholding to determine genome-wide significance levels that account for optimization across pedigree pairs. Single-pedigree SGS identifies optimal segments shared by case subsets at each locus across the genome, with nominal significance assessed empirically. Duo-SGS combines the statistical evidence for SGS segments at the same genomic location in two pedigrees using Fisher's method. One pedigree is paired with all others and the best duo-SGS evidence at each locus across the genome is established. Genome-wide significance thresholds are determined through distribution-fitting and the Theory of Large Deviations. We applied the duoSGS strategy to eleven extended, myeloma HRPs. RESULTS: We identified one genome-wide significant region at 18q21.33 (0.85 Mb, P = 7.3 × 10-9) which contains one gene, CDH20. Thirteen regions were genome-wide suggestive: 1q42.2, 2p16.1, 3p25.2, 5q21.3, 5q31.1, 6q16.1, 6q26, 7q11.23, 12q24.31, 13q13.3, 18p11.22, 18q22.3 and 19p13.12. CONCLUSION: Our results provide novel risk loci with segregating evidence from multiple HRPs and offer compelling targets and specific segment carriers to focus a future search for functional variants involved in inherited risk formyeloma.

20.
Mol Ecol ; 30(15): 3703-3715, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051005

RESUMO

Classic Mendelian inheritance is the bedrock of population genetics and underpins pedigree-based management of animal populations. However, assumptions of Mendelian inheritance might not be upheld in conservation breeding programmes if early viability selection occurs, even when efforts are made to equalise genetic contributions of breeders. To test this possibility, we investigated deviations from Mendelian proportions in a captive metapopulation of the endangered Tasmanian devil. This marsupial population is ideal for addressing evolutionary questions in conservation due to its large size, range of enclosure types (varying in environmental conditions), good genomic resources (which aid interpretation), and the species' biology. Devil mothers give birth to more offspring than they can nurse in the pouch, providing the potential for intense viability selection amongst embryos. We used data from 140 known sire-dam-offspring triads to isolate within-family selection from population-level mechanisms (such as mate choice or inbreeding), and compared observed offspring genotypes at 123 targeted SNPs to neutral (i.e., Mendelian) expectations. We found lower offspring heterozygosity than expected, and subtle patterns that varied across a gradient of management intensity from zoo-like enclosures to semi-wild environments for some loci. Meiotic drive or maternal-foetal incompatibilities are consistent with our results, although we cannot statistically confirm these mechanisms. We found some evidence that maternal genotype affects annual litter size, suggesting that family-level patterns are driven by differential offspring mortality before birth or during early development. Our results show that deviations from Mendelian inheritance can occur in conservation programmes, despite best-practice management to prevent selection.


Assuntos
Espécies em Perigo de Extinção , Marsupiais , Animais , Feminino , Genética Populacional , Endogamia , Marsupiais/genética , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA