Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
bioRxiv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39282280

RESUMO

A hallmark of neurodegenerative diseases is the progressive loss of proteostasis, leading to the accumulation of misfolded proteins or protein aggregates, with subsequent cytotoxicity. To combat this toxicity, cells have evolved degradation pathways (ubiquitin-proteasome system and autophagy) that detect and degrade misfolded proteins. However, studying the underlying cellular pathways and mechanisms has remained a challenge, as formation of many types of protein aggregates is asynchronous, with individual cells displaying distinct kinetics, thereby hindering rigorous time-course studies. Here, we merge a kinetically tractable and synchronous agDD-GFP system for aggregate formation with targeted gene knockdowns, to uncover degradation mechanisms used in response to acute aggregate formation. We find that agDD-GFP forms amorphous aggregates by cryo-electron tomography at both early and late stages of aggregate formation. Aggregate turnover occurs in a proteasome-dependent mechanism in a manner that is dictated by cellular aggregate burden, with no evidence of the involvement of autophagy. Lower levels of misfolded agDD-GFP, enriched in oligomers, utilizes UBE3C-dependent proteasomal degradation in a pathway that is independent of RPN13 ubiquitylation by UBE3C. Higher aggregate burden activates the NRF1 transcription factor to increase proteasome subunit transcription, and subsequent degradation capacity of cells. Loss or gain of NRF1 function alters the turnover of agDD-GFP under conditions of high aggregate burden. Together, these results define the role of UBE3C in degradation of this class of misfolded aggregation-prone proteins and reveals a role for NRF1 in proteostasis control in response to widespread protein aggregation.

2.
Mol Cell Proteomics ; : 100838, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251023

RESUMO

Dopaminergic neurons participate in fundamental physiological processes and are the cell type primarily affected in Parkinson's disease. Their analysis is challenging due to the intricate nature of their function, involvement in diverse neurological processes, heterogeneity and localization in deep brain regions. Consequently, most of the research on the protein dynamics of dopaminergic neurons has been performed in animal cells ex vivo. Here we use iPSC-derived human mid-brain specific dopaminergic neurons to study general features of their proteome biology and provide datasets for protein turnover and dynamics, including a human axonal translatome. We cover the proteome to a depth of 9,409 proteins and use dynamic SILAC to measure the half-life of more than 4,300 proteins. We report uniform turnover rates of conserved cytosolic protein complexes such as the proteasome and map the variable rates of turnover of the respiratory chain complexes in these cells. We use differential dynamic SILAC labeling in combination with microfluidic devices to analyze local protein synthesis and transport between axons and soma. We report 105 potentially novel axonal markers and detect translocation of 269 proteins between axons and the soma in the time frame of our analysis (120 hours). Importantly, we provide evidence for local synthesis of 154 proteins in the axon and their retrograde transport to the soma, among them several proteins involved in RNA editing such as ADAR1 and the RNA helicase DHX30, involved in the assembly of mitochondrial ribosomes. Our study provides a workflow and resource for future applications of quantitative proteomics in iPSC-derived human neurons.

3.
J Proteome Res ; 23(9): 4151-4162, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39189460

RESUMO

Temporal proteomics data sets are often confounded by the challenges of missing values. These missing data points, in a time-series context, can lead to fluctuations in measurements or the omission of critical events, thus hindering the ability to fully comprehend the underlying biomedical processes. We introduce a Data Multiple Imputation (DMI) pipeline designed to address this challenge in temporal data set turnover rate quantifications, enabling robust downstream analysis to gain novel discoveries. To demonstrate its utility and generalizability, we applied this pipeline to two use cases: a murine cardiac temporal proteomics data set and a human plasma temporal proteomics data set, both aimed at examining protein turnover rates. This DMI pipeline significantly enhanced the detection of protein turnover rate in both data sets, and furthermore, the imputed data sets captured new representation of proteins, leading to an augmented view of biological pathways, protein complex dynamics, as well as biomarker-disease associations. Importantly, DMI exhibited superior performance in benchmark data sets compared to single imputation methods (DSI). In summary, we have demonstrated that this DMI pipeline is effective at overcoming challenges introduced by missing values in temporal proteome dynamics studies.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Animais , Camundongos , Estudos Longitudinais , Interpretação Estatística de Dados
4.
Free Radic Biol Med ; 223: 341-356, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147070

RESUMO

The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.


Assuntos
Adaptação Fisiológica , Exercício Físico , Músculo Esquelético , Treinamento Resistido , Transdução de Sinais , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Processamento de Proteína Pós-Traducional , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação
5.
Curr Biol ; 34(16): 3836-3843.e5, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39096907

RESUMO

Insufficient sleep is a global problem with serious consequences for cognition and mental health.1 Synapses play a central role in many aspects of cognition, including the crucial function of memory consolidation during sleep.2 Interference with the normal expression or function of synapse proteins is a cause of cognitive, mood, and other behavioral problems in over 130 brain disorders.3 Sleep deprivation (SD) has also been reported to alter synapse protein composition and synapse number, although with conflicting results.4,5,6,7 In our study, we conducted synaptome mapping of excitatory synapses in 125 regions of the mouse brain and found that sleep deprivation selectively reduces synapse diversity in the cortex and in the CA1 region of the hippocampus. Sleep deprivation targeted specific types and subtypes of excitatory synapses while maintaining total synapse density (synapse number/area). Synapse subtypes with longer protein lifetimes exhibited resilience to sleep deprivation, similar to observations in aging and genetic perturbations. Moreover, the altered synaptome architecture affected the responses to neural oscillations, suggesting that sleep plays a vital role in preserving cognitive function by maintaining the brain's synaptome architecture.


Assuntos
Hipocampo , Camundongos Endogâmicos C57BL , Privação do Sono , Sono , Sinapses , Animais , Sinapses/fisiologia , Camundongos , Privação do Sono/fisiopatologia , Masculino , Sono/fisiologia , Hipocampo/fisiologia , Córtex Cerebral/fisiologia
6.
J Am Soc Mass Spectrom ; 35(8): 1826-1837, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39057601

RESUMO

Labeling with deuterium oxide (D2O) has emerged as one of the preferred approaches for measuring the synthesis of individual proteins in vivo. In these experiments, the synthesis rates of proteins are determined by modeling mass shifts in peptides during the labeling period. This modeling depends on a theoretical maximum enrichment determined by the number of labeling sites (NEH) of each amino acid in the peptide sequence. Currently, NEH is determined from one set of published values. However, it has been demonstrated that NEH can differ between species and potentially tissues. The goal of this work was to determine the number of NEH for each amino acid within a given experiment to capture the conditions unique to that experiment. We used four methods to compute the NEH values. To test these approaches, we used two publicly available data sets. In a de novo approach, we compute NEH values and the label enrichment from the abundances of three mass isotopomers. The other three methods use the complete isotope profiles and body water enrichment in deuterium as an input parameter. They determine the NEH values by (1) minimizing the residual sum of squares, (2) from the mole percent excess of labeling, and (3) the time course profile of the depletion of the relative isotope abundance of monoisotope. In the test samples, the method using residual sum of squares performed the best. The methods are implemented in a tool for determining the NEH for each amino acid within a given experiment to use in the determination of protein synthesis rates using D2O.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Animais , Aminoácidos/química , Aminoácidos/análise , Aminoácidos/metabolismo , Óxido de Deutério , Espectrometria de Massa com Cromatografia Líquida/métodos , Peptídeos/química , Peptídeos/análise , Proteínas/química , Proteínas/análise , Proteínas/metabolismo
7.
J Physiol ; 602(15): 3661-3691, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968395

RESUMO

The response to acute myotoxic injury requires stimulation of local repair mechanisms in the damaged tissue. However, satellite cells in muscle distant from acute injury have been reported to enter a functional state between quiescence and active proliferation. Here, we asked whether protein flux rates are altered in muscle distant from acute local myotoxic injury and how they compare to changes in gene expression from the same tissue. Broad and significant alterations in protein turnover were observed across the proteome in the limb contralateral to injury during the first 10 days after. Interestingly, mRNA changes had almost no correlation with directly measured protein turnover rates. In summary, we show consistent and striking changes in protein flux rates in muscle tissue contralateral to myotoxic injury, with no correlation between changes in mRNA levels and protein synthesis rates. This work motivates further investigation of the mechanisms, including potential neurological factors, responsible for this distant effect. KEY POINTS: Previous literature demonstrates that stem cells of uninjured muscle respond to local necrotic muscle tissue damage and regeneration. We show that muscle tissue that was distant from a model of local necrotic damage had functional changes at both the gene expression and the protein turnover level. However, these changes in distant tissue were more pronounced during the earlier stages of tissue regeneration and did not correlate well with each other. The results suggest communication between directly injured tissue and non-affected tissues that are distant from injury, which warrants further investigation into the potential of this mechanism as a proactive measure for tissue regeneration from damage.


Assuntos
Camundongos Endogâmicos C57BL , Músculo Esquelético , Animais , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/lesões , Camundongos , Expressão Gênica , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
8.
J Integr Plant Biol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056533

RESUMO

Protein S-acylation or palmitoylation is a reversible post-translational modification that influences many proteins encoded in plant genomes. Exciting progress in the past 3 years demonstrates that S-acylation modulates subcellular localization, interacting profiles, activity, or turnover of substrate proteins in plants, participating in developmental processes and responses to abiotic or biotic stresses. In this review, we summarize and discuss the role of S-acylation in the targeting of substrate proteins. We highlight complex roles of S-acylation in receptor signaling. We also point out that feedbacks of protein S-acyl transferase by signaling initiated from their substrate proteins may be a recurring theme. Finally, the reversibility of S-acylation makes it a rapid and efficient way to respond to environmental cues. Future efforts on exploring these important aspects of S-acylation will give a better understanding of how plants enhance their fitness under ever changing and often harsh environments.

9.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892074

RESUMO

Global warming poses a threat to plant survival, impacting growth and agricultural yield. Protein turnover, a critical regulatory mechanism balancing protein synthesis and degradation, is crucial for the cellular response to environmental changes. We investigated the effects of elevated temperature on proteome dynamics in Arabidopsis thaliana seedlings using 15N-stable isotope labeling and ultra-performance liquid chromatography-high resolution mass spectrometry, coupled with the ProteinTurnover algorithm. Analyzing different cellular fractions from plants grown under 22 °C and 30 °C growth conditions, we found significant changes in the turnover rates of 571 proteins, with a median 1.4-fold increase, indicating accelerated protein dynamics under thermal stress. Notably, soluble root fraction proteins exhibited smaller turnover changes, suggesting tissue-specific adaptations. Significant turnover alterations occurred with redox signaling, stress response, protein folding, secondary metabolism, and photorespiration, indicating complex responses enhancing plant thermal resilience. Conversely, proteins involved in carbohydrate metabolism and mitochondrial ATP synthesis showed minimal changes, highlighting their stability. This analysis highlights the intricate balance between proteome stability and adaptability, advancing our understanding of plant responses to heat stress and supporting the development of improved thermotolerant crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Marcação por Isótopo , Isótopos de Nitrogênio , Proteoma , Plântula , Arabidopsis/metabolismo , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Marcação por Isótopo/métodos , Isótopos de Nitrogênio/metabolismo , Proteoma/metabolismo , Algoritmos , Proteômica/métodos , Temperatura , Resposta ao Choque Térmico
10.
Artigo em Inglês | MEDLINE | ID: mdl-38718893

RESUMO

The affect of temperature on tissue protein synthesis rates has been reported in temperate and tropical, but not Antarctic fishes. Previous studies have generally demonstrated low growth rates in Antarctic fish species in comparison to temperate relatives and elevated levels of protein turnover. This study investigates how low temperatures effect tissue protein synthesis and hence tissue growth in a polar fish species. Groups of Antarctic, Harpagifer antarcticus and temperate, Lipophrys pholis, were acclimated to a range of overlapping water temperatures and protein synthesis was measure in white muscle (WM), liver and gastrointestinal tract (GIT). WM protein synthesis rates increased linearly with temperature in both species (H. antarcticus 0.16-0.23%.d-1, L. pholis, 0.31-0.76%.d-1), while liver (H. antarcticus 0.24-0.27%.d-1, L. pholis, 0.44-1.03%.d-1) and GIT were unaffected by temperature in H. antarcticus but increased non-linearly in L.pholis (H. antarcticus 0.22-0.26%.d-1, L. pholis, 0.40-0.86%.d-1). RNA to protein ratios were unaffected by temperature in H. antarcticus but increased weakly, in L.pholis WM and liver. In L.pholis, RNA translational efficiency increased significantly with temperature in all tissues, but only in liver in H. antarcticus. At the overlapping temperature of 3 °C, protein synthesis (WM 26%, Liver, 39%, GIT, 35%) and RNA translational efficiency (WM 273%, Liver, 271%, GIT, 300%) were significantly lower in H. antarcticus than L.pholis, while RNA to protein ratios were significantly higher (WM 270%, Liver 170%, GIT 186%). Tissue specific effects of temperature are detectable in both species. This study provides the first evidence, that tissue protein synthesis rates are constrained in Antarctic fishes.


Assuntos
Fígado , Animais , Regiões Antárticas , Fígado/metabolismo , Biossíntese de Proteínas , Trato Gastrointestinal/metabolismo , Temperatura , Aclimatação , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Perciformes/metabolismo , Perciformes/genética
11.
Am J Clin Nutr ; 120(1): 7-16, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38705358

RESUMO

The regulation of postprandial muscle protein synthesis (MPS) with or without physical activity has been an intensely studied area within nutrition and physiology. The leucine content of dietary protein and the subsequent plasma leucinemia it elicits postingestion is often considered the primary drivers of the postprandial MPS response. This concept, generally known as the leucine "trigger" hypothesis, has also been adopted within more applied aspects of nutrition. Our view is that recent evidence is driving a more nuanced picture of the regulation of postprandial MPS by revealing a compelling dissociation between ingested leucine or plasma leucinemia and the magnitude of the postprandial MPS response. Much of this lack of coherence has arisen as experimental progress has demanded relevant studies move beyond reliance on isolated amino acids and proteins to use increasingly complex protein-rich meals, whole foods, and mixed meals. Our overreliance on the centrality of leucine in this field has been reflected in 2 recent systematic reviews. In this perspective, we propose a re-evaluation of the pre-eminent role of these leucine variables in the stimulation of postprandial MPS. We view the development of a more complex intellectual framework now a priority if we are to see continued progress concerning the mechanistic regulation of postprandial muscle protein turnover, but also consequential from an applied perspective when evaluating the value of novel dietary protein sources.


Assuntos
Leucina , Proteínas Musculares , Período Pós-Prandial , Humanos , Dieta , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Leucina/metabolismo , Leucina/administração & dosagem , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas
12.
Mol Cell Proteomics ; 23(7): 100791, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797438

RESUMO

Within a cell, proteins have distinct and highly variable half-lives. As a result, the molecular ages of proteins can range from seconds to years. How the age of a protein influences its environmental interactions is a largely unexplored area of biology. To investigate the age-selectivity of cellular pathways, we developed a methodology termed "proteome birthdating" that barcodes proteins based on their time of synthesis. We demonstrate that this approach provides accurate measurements of protein turnover kinetics from a single biological sample encoding multiple labeling time-points. As a first application of the birthdated proteome, we investigated the age distribution of the human ubiquitinome. Our results indicate that the vast majority of ubiquitinated proteins in a cell consist of newly synthesized proteins and that these young proteins constitute the bulk of the degradative flux through the proteasome. Rapidly ubiquitinated nascent proteins are enriched in cytosolic subunits of large protein complexes. Conversely, proteins destined for the secretory pathway and vesicular transport have older ubiquitinated populations. Our data also identify a smaller subset of older ubiquitinated cellular proteins that do not appear to be targeted to the proteasome for rapid degradation. Together, our data provide an age census of the human ubiquitinome and establish proteome birthdating as a robust methodology for investigating the protein age-selectivity of diverse cellular pathways.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteoma , Proteínas Ubiquitinadas , Ubiquitinação , Humanos , Proteoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteômica/métodos , Proteólise , Ubiquitina/metabolismo
13.
J Anim Sci Biotechnol ; 15(1): 65, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711075

RESUMO

BACKGROUND: The study objective was to test the hypothesis that low crude protein (CP) diet with crystalline amino acids (CAA) supplementation improves Lys utilization efficiency for milk production and reduces protein turnover and muscle protein breakdown. Eighteen lactating multiparous Yorkshire sows were allotted to 1 of 2 isocaloric diets (10.80 MJ/kg net energy): control (CON; 19.24% CP) and reduced CP with "optimal" AA profile (OPT; 14.00% CP). Sow body weight and backfat were recorded on d 1 and 21 of lactation and piglets were weighed on d 1, 14, 18, and 21 of lactation. Between d 14 and 18, a subset of 9 sows (CON = 4, OPT = 5) was infused with a mixed solution of 3-[methyl-2H3]histidine (bolus injection) and [13C]bicarbonate (priming dose) first, then a constant 2-h [13C]bicarbonate infusion followed by a 6-h primed constant [1-13C]lysine infusion. Serial blood and milk sampling were performed to determine plasma and milk Lys enrichment, Lys oxidation rate, whole body protein turnover, and muscle protein breakdown. RESULTS: Over the 21-d lactation period, compared to CON, sows fed OPT had greater litter growth rate (P < 0.05). Compared to CON, sows fed OPT had greater efficiency of Lys (P < 0.05), Lys mammary flux (P < 0.01) and whole-body protein turnover efficiency (P < 0.05). Compared to CON, sows fed OPT tended to have lower whole body protein breakdown rate (P = 0.069). Muscle protein breakdown rate did not differ between OPT and CON (P = 0.197). CONCLUSION: Feeding an improved AA balance diet increased efficiency of Lys and reduced whole-body protein turnover and protein breakdown. These results imply that the lower maternal N retention observed in lactating sows fed improved AA balance diets in previous studies may be a result of greater partitioning of AA towards milk rather than greater body protein breakdown.

14.
Cell Rep Methods ; 4(5): 100760, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38677284

RESUMO

The role of protein turnover in pancreatic ductal adenocarcinoma (PDA) metastasis has not been previously investigated. We introduce dynamic stable-isotope labeling of organoids (dSILO): a dynamic SILAC derivative that combines a pulse of isotopically labeled amino acids with isobaric tandem mass-tag (TMT) labeling to measure proteome-wide protein turnover rates in organoids. We applied it to a PDA model and discovered that metastatic organoids exhibit an accelerated global proteome turnover compared to primary tumor organoids. Globally, most turnover changes are not reflected at the level of protein abundance. Interestingly, the group of proteins that show the highest turnover increase in metastatic PDA compared to tumor is involved in mitochondrial respiration. This indicates that metastatic PDA may adopt alternative respiratory chain functionality that is controlled by the rate at which proteins are turned over. Collectively, our analysis of proteome turnover in PDA organoids offers insights into the mechanisms underlying PDA metastasis.


Assuntos
Carcinoma Ductal Pancreático , Organoides , Neoplasias Pancreáticas , Proteoma , Organoides/metabolismo , Organoides/patologia , Proteoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Marcação por Isótopo , Proteômica/métodos
15.
J Biol Chem ; 300(5): 107284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614208

RESUMO

Receptor-mediated cellular uptake of specific ligands constitutes an important step in the dynamic regulation of individual protein levels in extracellular fluids. With a focus on the inflammatory lung, we here performed a proteomics-based search for novel ligands regulated by the mannose receptor (MR), a macrophage-expressed endocytic receptor. WT and MR-deficient mice were exposed to lipopolysaccharide, after which the protein content in their lung epithelial lining fluid was compared by tandem mass tag-based mass spectrometry. More than 1200 proteins were identified in the epithelial lining fluid using this unbiased approach, but only six showed a statistically different abundance. Among these, an unexpected potential new ligand, thrombospondin-4 (TSP-4), displayed a striking 17-fold increased abundance in the MR-deficient mice. Experiments using exogenous addition of TSP-4 to MR-transfected CHO cells or MR-positive alveolar macrophages confirmed that TSP-4 is a ligand for MR-dependent endocytosis. Similar studies revealed that the molecular interaction with TSP-4 depends on both the lectin activity and the fibronectin type-II domain of MR and that a closely related member of the TSP family, TSP-5, is also efficiently internalized by the receptor. This was unlike the other members of this protein family, including TSPs -1 and -2, which are ligands for a close MR homologue known as urokinase plasminogen activator receptor-associated protein. Our study shows that MR takes part in the regulation of TSP-4, an important inflammatory component in the injured lung, and that two closely related endocytic receptors, expressed on different cell types, undertake the selective endocytosis of distinct members of the TSP family.


Assuntos
Lectinas Tipo C , Lesão Pulmonar , Receptor de Manose , Lectinas de Ligação a Manose , Proteômica , Receptores de Superfície Celular , Trombospondinas , Animais , Camundongos , Células CHO , Cricetulus , Endocitose , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Ligantes , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/genética , Camundongos Knockout , Proteômica/métodos , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Trombospondinas/metabolismo , Trombospondinas/genética
16.
Genes Cells ; 29(6): 486-502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682256

RESUMO

Quality-based protein production and degradation in the endoplasmic reticulum (ER) are essential for eukaryotic cell survival. During protein maturation in the ER, misfolded or unassembled proteins are destined for disposal through a process known as ER-associated degradation (ERAD). EDEM1 is an ERAD-accelerating factor whose gene expression is upregulated by the accumulation of aberrant proteins in the ER, known as ER stress. Although the role of EDEM1 in ERAD has been studied in detail, the turnover of EDEM1 by intracellular degradation machinery, including the proteasome and autophagy, is not well understood. To clarify EDEM1 regulation in the protein level, degradation mechanism of EDEM1 was examined. Our results indicate that both ERAD and autophagy degrade EDEM1 alike misfolded degradation substrates, although each degradation machinery targets EDEM1 in different folded states of proteins. We also found that ERAD factors, including the SEL1L/Hrd1 complex, YOD1, XTP3B, ERdj3, VIMP, BAG6, and JB12, but not OS9, are involved in EDEM1 degradation in a mannose-trimming-dependent and -independent manner. Our results suggest that the ERAD accelerating factor, EDEM1, is turned over by the ERAD itself, similar to ERAD clients.


Assuntos
Autofagia , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Retículo Endoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Dobramento de Proteína , Células HEK293 , Estresse do Retículo Endoplasmático , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas
17.
Trends Cell Biol ; 34(8): 646-656, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38423854

RESUMO

Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.


Assuntos
Envelhecimento , Biossíntese de Proteínas , Proteostase , Humanos , Envelhecimento/metabolismo , Animais , Ribossomos/metabolismo , Homeostase
18.
Clin Exp Pharmacol Physiol ; 51(3): e13837, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302081

RESUMO

Although it is well established that fibromyalgia (FM) syndrome is characterized by chronic diffuse musculoskeletal hyperalgesia, very little is known about the effect of this pathology on muscle tissue plasticity. Therefore, the present study aimed to characterize the putative alterations in skeletal muscle mass in female rats subjected to a FM model by inducing chronic diffuse hyperalgesia (CDH) through double injections of acidic saline (pH 4.0) into the left gastrocnemius muscle at 5-day intervals. To determine protein turnover, the total proteolysis, proteolytic system activities and protein synthesis were evaluated in oxidative soleus muscles of pH 7.2 (control) and pH 4.0 groups at 7 days after CDH induction. All animals underwent behavioural analyses of mechanical hyperalgesia, strength and motor performance. Our results demonstrated that, in addition to hyperalgesia, rats injected with acidic saline exhibited skeletal muscle loss, as evidenced by a decrease in the soleus fibre cross-sectional area. This muscle loss was associated with increased proteasomal proteolysis and expression of the atrophy-related gene (muscle RING-finger protein-1), as well as reduced protein synthesis and decreased protein kinase B/S6 pathway activity. Although the plasma corticosterone concentration did not differ between the control and pH 4.0 groups, the removal of the adrenal glands attenuated hyperalgesia, but it did not prevent the increase in muscle protein loss in acidic saline-injected animals. The data suggests that the stress-related hypothalamic-pituitary-adrenal axis is involved in the development of hyperalgesia, but is not responsible for muscle atrophy observed in the FM model induced by intramuscular administration of acidic saline. Although the mechanisms involved in the attenuation of hyperalgesia in rats injected with acidic saline and subjected to adrenalectomy still need to be elucidated, the results found in this study suggest that glucocorticoids may not represent an effective therapeutic approach to alleviate FM symptoms.


Assuntos
Fibromialgia , Hiperalgesia , Ratos , Feminino , Animais , Hiperalgesia/tratamento farmacológico , Fibromialgia/complicações , Fibromialgia/tratamento farmacológico , Fibromialgia/patologia , Adrenalectomia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Solução Salina/farmacologia
19.
Cell Rep Methods ; 4(2): 100713, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412836

RESUMO

Protein translational control is critical for ensuring that the fetus develops correctly and that necessary organs and tissues are formed and functional. We developed an in utero method to quantify tissue-specific protein dynamics by monitoring amino acid incorporation into the proteome after pulse injection. Fetuses of pregnant mice were injected with isotopically labeled lysine and arginine via the vitelline vein at various embyonic days, and organs and tissues were harvested. By analyzing the nascent proteome, unique signatures of each tissue were identified by hierarchical clustering. In addition, the quantified proteome-wide turnover rates were calculated between 3.81E-5 and 0.424 h-1. We observed similar protein turnover profiles for analyzed organs (e.g., liver vs. brain); however, their distributions of turnover rates vary significantly. The translational kinetic profiles of developing organs displayed differentially expressed protein pathways and synthesis rates, which correlated with known physiological changes during mouse development.


Assuntos
Aminoácidos , Proteoma , Gravidez , Feminino , Camundongos , Animais , Aminoácidos/metabolismo , Proteoma/metabolismo , Lisina/metabolismo , Fígado/metabolismo , Desenvolvimento Fetal
20.
Methods Mol Biol ; 2772: 391-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411831

RESUMO

Transient gene expression in plant protoplasts facilitates the analysis of hybrid genes in a fast and reproducible manner. The technique is particularly powerful when studying basic conserved biochemical processes including de novo protein synthesis, modification, assembly, transport, and turnover. Unlike individual plants, protoplast suspensions can be divided into almost identical aliquots, allowing the analysis of independent variables with uncertainties restricted to minor pipetting errors/variations. Using the examples of protein secretion and ER retention, we describe the most advanced working practice of routinely preparing, electroporating, and analyzing Nicotiana benthamiana protoplasts. A single batch of electroporation-competent protoplasts permits up to 30 individual transfections. This is ideal to assess the influence of independent variables, such as point mutations, deletions or fusions, or the influence of a co-expressed effector gene in dose-response studies.


Assuntos
Nicotiana , Protoplastos , Nicotiana/genética , Transporte Biológico , Transporte Proteico , Eletroporação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA