Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Arch Pharm (Weinheim) ; : e2400307, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106224

RESUMO

Coronavirus disease 2019 (COVID-19) the most contagious infection caused by the unique type of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), produced a global pandemic that wreaked havoc on the health-care system, resulting in high morbidity and mortality. Several methods were implemented to tackle the virus, including the repurposing of existing medications and the development of vaccinations. The purpose of this article is to provide a complete summary of the current state and future possibilities for COVID-19 therapies. We describe the many treatment classes, such as antivirals, immunomodulators, and monoclonal antibodies, that have been repurposed or developed to treat COVID-19. We also looked at the clinical evidence for these treatments, including findings from observational studies and randomized-controlled clinical trials, and highlighted the problems and limitations of the available evidence. Furthermore, we reviewed existing clinical trials and prospective COVID-19 therapeutic options, such as novel medication candidates and combination therapies. Finally, we discussed the long-term consequences of COVID-19 and the importance of ongoing research into the development of viable treatments. This review will help physicians, researchers, and policymakers to understand the prevention and mitigation of COVID-19.

2.
Dermatol Ther (Heidelb) ; 14(8): 2059-2075, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39090514

RESUMO

Epidermolysis bullosa (EB) comprises rare genetic disorders characterized by skin and mucosal membrane blistering induced by mechanical trauma. Molecularly, pathogenic variants affect genes encoding proteins crucial for epidermal-dermal adhesion and stability. Management of severe EB is multidisciplinary, focusing on wound healing support, ensuring that patients thrive, and complication treatment. Despite extensive research over 30 years, novel therapeutic approaches face challenges. Gene therapy and protein therapy struggle with efficacy, while regenerative cell-based therapies show limited effects. Drug repurposing to target various pathogenic mechanisms has gained attention, as has in vivo gene therapy with drugs for dystrophic and junctional EB that were recently approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). However, their high cost limits global accessibility. This review examines therapeutic advancements made over the past 5 years, exploiting a systematic literature review and clinical trial data.

3.
Epilepsia ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101543

RESUMO

Stroke is a major contributor to mortality and morbidity worldwide and the most common cause of epilepsy in the elderly in high income nations. In recent years, it has become increasingly evident that both ischemic and hemorrhagic strokes induce dysfunction of the blood-brain barrier (BBB), and that this impairment can contribute to epileptogenesis. Nevertheless, studies directly comparing BBB dysfunction and poststroke epilepsy (PSE) are largely absent. Therefore, this review summarizes the role of BBB dysfunction in the development of PSE in animal models and clinical studies. There are multiple mechanisms whereby stroke induces BBB dysfunction, including increased transcytosis, tight junction dysfunction, spreading depolarizations, astrocyte and pericyte loss, reactive astrocytosis, angiogenesis, matrix metalloproteinase activation, neuroinflammation, adenosine triphosphate depletion, oxidative stress, and finally cell death. The degree to which these effects occur is dependent on the severity of the ischemia, whereby cell death is a more prominent mechanism of BBB disruption in regions of critical ischemia. BBB dysfunction can contribute to epileptogenesis by increasing the risk of hemorrhagic transformation, increasing stroke size and the amount of cerebral vasogenic edema, extravasation of excitatory compounds, and increasing neuroinflammation. Furthermore, albumin extravasation after BBB dysfunction contributes to epileptogenesis primarily via increased transforming growth factor ß signaling. Finally, seizures themselves induce BBB dysfunction, thereby contributing to epileptogenesis in a cyclical manner. In repairing this BBB dysfunction, pericyte migration via platelet-derived growth factor ß signaling is indispensable and required for reconstruction of the BBB, whereby astrocytes also play a role. Although animal stroke models have their limitations, they provide valuable insights into the development of potential therapeutics designed to restore the BBB after stroke, with the ultimate goal of improving outcomes and minimizing the occurrence of PSE. In pursuit of this goal, rapamycin, statins, losartan, semaglutide, and metformin show promise, whereby modulation of pericyte migration could also be beneficial.

4.
Int J Pharm ; : 124473, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025341

RESUMO

Globally, colorectal cancer is a major health problem that ranks in third place in terms of occurrences and second in terms of mortality worldwide. New cases increase annually, with the absence of effective therapies, especially for metastatic colorectal cancer, emphasizing the need for novel therapeutic approaches. Although conventional treatments are commonly used in oncotherapy, their success rate is low, which leads to the exploration of novel technologies. Recent efforts have focused on developing safe and efficient cancer nanocarriers. With their nanoscale properties, nanocarriers have the potential to utilize internal metabolic modifications amid cancer cells and healthy cells. Drug repurposing is an emerging strategy in cancer management as it is a faster, cheaper, and safer method than conventional drug development. However, most repurposed drugs are characterized by low-key pharmacokinetic characteristics, such as poor aqueous solubility, permeability, retention, and bioavailability. Nanoparticle formulations and delivery have expanded over the past few decades, creating opportunities for drug repurposing and promises as an advanced cancer modality. This review provides a concise and updated overview of colorectal cancer treatment regimens and their therapeutic limitations. Furthermore, the chemotherapeutic effect of various FDA-approved medications, including statins, non-steroidal anti-inflammatory drugs, antidiabetic and anthelmintic agents, and their significance in colorectal cancer management. Along with the role of various nanocarrier systems in achieving the desired therapeutic outcomes of employing these redefined drugs.

5.
IUBMB Life ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923653

RESUMO

To date, SARS-CoV-2 has caused millions of deaths, but the choice of treatment is limited. We previously established a platform for identifying Food and Drug Administration (FDA)-approved repurposed drugs for avian influenza A virus infections that could be used for coronavirus disease 2019 (COVID-19) treatment. In this study, we analyzed blood samples from two cohorts of 63 COVID-19 patients, including 19 patients with severe disease. Among the 39 FDA-approved drugs we identified for COVID-19 therapy in both cohorts, 23 drugs were confirmed by literature mining data, including 14 drugs already under COVID-19 clinical trials and 9 drugs reported for COVID-19 treatments, suggesting the remaining 16 FDA-approved drugs may be candidates for COVID-19 therapy. Additionally, we previously reported that herbal small RNAs (sRNAs) could be effective components in traditional Chinese medicine (TCM) for treating COVID-19. Based on the abundance of sRNAs, we screened the 245 TCMs in the Bencao (herbal) sRNA Atlas that we had previously established, and we found that the top 12 TCMs for COVID-19 treatment was consistent across both cohorts. We validated the efficiency of the top 30 sRNAs from each of the top 3 TCMs for COVID-19 treatment in poly(I:C)-stimulated human non-small cell lung cancer cells (A549 cells). In conclusion, our study recommends potential COVID-19 remedies using FDA-approved repurposed drugs and herbal sRNAs from TCMs.

6.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931452

RESUMO

The open-source drug library, namely, MMV Pandemic Response Box, contains 153 antiviral agents, a chemically and pharmacologically diverse mixture of early-stage, emerging anti-infective scaffolds, and mature compounds currently undergoing clinical development. Hence, the Pandemic Response Box might contain compounds that bind and interfere with target molecules or cellular pathways that are conserved or shared among the closely related viruses with enterovirus A71 (EV-A71). This study aimed to screen antiviral agents included in the Pandemic Response Box for repurposing to anti-EV-A71 activity and investigate the inhibitory effects of the compounds on viral replication. The compounds' cytotoxicity and ability to rescue infected cells were determined by % cell survival using an SRB assay. The hit compounds were verified for anti-EV-A71 activity by virus reduction assays for viral RNA copy numbers, viral protein synthesis, and mature particle production using qRT-PCR, Western blot analysis, and CCID50 assay, respectively. It was found that some of the hit compounds could reduce EV-A71 genome replication and protein synthesis. D-D7 (2-pyridone-containing human rhinovirus 3C protease inhibitor) exhibited the highest anti-EV-A71 activity. Even though D-D7 has been originally indicated as a polyprotein processing inhibitor of human rhinovirus 3C protease, it could be repurposed as an anti-EV-A71 agent.

7.
Anticancer Res ; 44(7): 2765-2768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925853

RESUMO

A "Think Tank for Osteosarcoma" medical advisory board meeting was held in Santa Monica, CA, USA on February 2-3, 2024. The goal was to develop a strategic approach to prevent recurrence of osteosarcoma. Osteosarcoma metabolism and the genomic instability of osteosarcoma, immunotherapy for osteosarcoma, CAR-T cell therapy, DeltaRex-G tumor-targeted gene therapy, repurposed drugs, alternative medicines, and personalized medicine were discussed. Only DeltaRex-G was voted on. The conclusions were the following: No intervention has been demonstrated to improve survival in a clinical trial. Additionally, the consensus (10/12 in favor) was that DeltaRex-G without immunotherapy may be administered for up to one year. Phase 2/3 randomized studies of DeltaRex-G should be performed to determine whether the incidence of recurrence could be reduced in high-risk individuals. Furthermore, a personalized approach using drugs with minimal toxicity could be attempted with the acknowledgement that there are no efficacy data to base this on. Repurposed drugs and alternative therapies should be tested in mouse models of osteosarcoma. Moreover, unmodified IL-2 primed Gamma Delta (NK) cell therapy may be used to prevent recurrence. Lastly, rapid development of CAR-T cell therapy is recommended, and an institute dedicated to the study of osteosarcoma is needed.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Osteossarcoma/terapia , Osteossarcoma/patologia , Humanos , Neoplasias Ósseas/terapia , Neoplasias Ósseas/patologia , Animais , Imunoterapia/métodos , Medicina de Precisão/métodos , Comitês Consultivos , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia
8.
Artigo em Inglês | MEDLINE | ID: mdl-38743117

RESUMO

The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak, which causes COVID-19, had a devastating impact on both people's lives and the global economy. During the course of the pandemic, the lack of specific drugs or treatments tailored for COVID-19 led to extensive repurposing of existing drugs in the pursuit of effective treatments. Some drug molecules demonstrated efficacy, while others proved ineffective. In this context, the approach of drug repurposing emerged as a novel strategy for combating COVID-19. Repurposed drugs and biologics have shown effectiveness, leading to improved clinical outcomes among patients with COVID-19. Similarly, It is equally important to assess the risk-benefit ratio associated with drugs and biologics adapted for COVID-19 treatment. Herein, we primarily focus on evaluating adverse drug events linked to repurposed COVID-19 medications, repurposed biologics, and COVID-specific drug molecules.

9.
Front Oncol ; 14: 1407511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779099

RESUMO

The diagnosis of thyroid cancer (TC) has increased dramatically in recent years. Papillary TC is the most frequent type and has shown a good prognosis. Conventional treatments for TC are surgery, hormonal therapy, radioactive iodine, chemotherapy, and targeted therapy. However, resistance to treatments is well documented in almost 20% of all cases. Genomic sequencing has provided valuable information to help identify variants that hinder the success of chemotherapy as well as to determine which of those represent potentially druggable targets. There is a plethora of targeted therapies for cancer, most of them directed toward point mutations; however, chromosomal rearrangements that generate fusion genes are becoming relevant in cancer but have been less explored in TC. Therefore, it is relevant to identify new potential inhibitors for genes that are recurrent in the formation of gene fusions. In this review, we focus on describing potentially druggable variants and propose both point variants and fusion genes as targets for drug repositioning in TC.

10.
Ageing Res Rev ; 98: 102322, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723753

RESUMO

Age-related macular degeneration (AMD) is a significant factor contributing to serious vision loss in adults above 50. The presence of posterior segment barriers serves as chief roadblocks in the delivery of drugs to treat AMD. The conventional treatment strategies use is limited due to its off-targeted distribution in the eye, shorter drug residence, poor penetration and bioavailability, fatal side effects, etc. The above-mentioned downside necessitates drug delivery using some cutting-edge technology including diverse nanoparticulate systems and microneedles (MNs) which provide the best therapeutic delivery alternative to treat AMD efficiently. Furthermore, cutting-edge treatment modalities including gene therapy and stem cell therapy can control AMD effectively by reducing the boundaries of conventional therapies with a single dose. This review discusses AMD overview, conventional therapies for AMD and their restrictions, repurposed therapeutics and their anti-AMD activity through different mechanisms, and diverse barriers in drug delivery for AMD. Various nanoparticulate-based approaches including polymeric NPs, lipidic NPs, exosomes, active targeted NPs, stimuli-sensitive NPs, cell membrane-coated NPs, inorganic NPs, and MNs are explained. Gene therapy, stem cell therapy, and therapies in clinical trials to treat AMD are also discussed. Further, bottlenecks of cutting-edge (nanoparticulate) technology-based drug delivery are briefed. In a nutshell, cutting-edge technology-based therapies can be an effective way to treat AMD.


Assuntos
Terapia Genética , Degeneração Macular , Humanos , Degeneração Macular/terapia , Terapia Genética/métodos , Terapia Genética/tendências , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Animais , Nanopartículas/uso terapêutico , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências
11.
Pharmaceutics ; 16(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399310

RESUMO

Onchocerciasis and lymphatic filariasis are two neglected tropical diseases caused by filarial nematodes that utilize insect vectors for transmission to their human hosts. Current control strategies are based on annual or biannual mass drug administration (MDA) of the drugs Ivermectin or Ivermectin plus Albendazole, respectively. These drug regimens kill the first-stage larvae of filarial worms (i.e., microfilariae) and interrupt the transmission of infections. MDA programs for these microfilaricidal drugs must be given over the lifetime of the filarial adult worms, which can reach 15 years in the case of Onchocerca volvulus. This is problematic because of suboptimal responses to ivermectin in various endemic regions and inefficient reduction of transmission even after decades of MDA. There is an urgent need for the development of novel alternative treatments to support the 2030 elimination goals of onchocerciasis and lymphatic filariasis. One successful approach has been to target Wolbachia, obligatory endosymbiotic bacteria on which filarial worms are dependent for their survival and reproduction within the human host. A 4-6-week antibiotic therapy with doxycycline, for example, resulted in the loss of Wolbachia that subsequently led to extensive apoptosis of somatic cells, germline, embryos, and microfilariae, as well as inhibition of fourth-stage larval development. However, this long-course regimen has limited use in MDA programs. As an alternative approach to the use of bacteriostatic antibiotics, in this study, we focused on autophagy-inducing compounds, which we hypothesized could disturb various pathways involved in the interdependency between Wolbachia and filarial worms. We demonstrated that several such compounds, including Niclosamide, an FDA-approved drug, Niclosamide ethanolamine (NEN), and Rottlerin, a natural product derived from Kamala trees, significantly reduced the levels of Wolbachia in vitro. Moreover, when these compounds were used in vivo to treat Brugia pahangi-infected gerbils, Niclosamide and NEN significantly decreased adult worm survival, reduced the release of microfilariae, and decreased embryonic development depending on the regimen and dose used. All three drugs given orally significantly reduced Wolbachia loads and induced an increase in levels of lysosome-associated membrane protein in worms from treated animals, suggesting that Niclosamide, NEN, and Rottlerin were effective in causing drug-induced autophagy in these filarial worms. These repurposed drugs provide a new avenue for the clearance of adult worms in filarial infections.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38310450

RESUMO

Drug repurposing is an ongoing and clever strategy that is being developed to eradicate tuberculosis amid challenges, of which one of the major challenges is the resistance developed towards antibiotics used in standard directly observed treatment, short-course regimen. Surpassing the challenges in developing anti-tuberculous drugs, some novel host-directed therapies, repurposed drugs, and drugs with novel targets are being studied, and few are being approved too. After almost 4 decades since the approval of rifampicin as a potent drug for drugsusceptible tuberculosis, the first drug to be approved for drug-resistant tuberculosis is bedaquiline. Ever since the urge to drug discovery has been at a brisk as this milestone in tuberculosis treatment has provoked the hunt for novel targets in tuberculosis. Host-directed therapy and repurposed drugs are in trend as their pharmacological and toxicological properties have already been researched for some other diseases making the trial facile. This review discusses the remonstrance faced by researchers in developing a drug candidate with a novel target, the furtherance in tuberculosis research, novel anti-tuberculosis agents approved so far, and candidates on trial including the host-directed therapy, repurposed drug and drug combinations that may prove to be potential in treating tuberculosis soon, aiming to augment the awareness in this context to the imminent researchers.

13.
Virol J ; 21(1): 5, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178163

RESUMO

Chikungunya virus (CHIKV) infection causes chikungunya, a viral disease that currently has no specific antiviral treatment. Several repurposed drug candidates have been investigated for the treatment of the disease. In order to improve the efficacy of the known drugs, combining drugs for treatment is a promising approach. The current study was undertaken to explore the antiviral activity of a combination of repurposed drugs that were reported to have anti-CHIKV activity. We explored the effect of different combinations of six effective drugs (2-fluoroadenine, emetine, lomibuvir, enalaprilat, metyrapone and resveratrol) at their non-toxic concentrations against CHIKV under post infection treatment conditions in Vero cells. Focus-forming unit assay, real time RT-PCR, immunofluorescence assay, and western blot were used to determine the virus titre. The results revealed that the combination of 2-fluoroadenine with either metyrapone or emetine or enalaprilat exerted inhibitory activity against CHIKV under post-infection treatment conditions. The effect of these drug combinations was additive in nature compared to the effect of the individual drugs. The results suggest an additive anti-viral effect of these drug combinations against CHIKV. The findings could serve as an outline for the development of an innovative therapeutic approach in the future to treat CHIKV-infected patients.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Chlorocebus aethiops , Humanos , Células Vero , Emetina/farmacologia , Emetina/uso terapêutico , Enalaprilato/farmacologia , Enalaprilato/uso terapêutico , Metirapona/farmacologia , Metirapona/uso terapêutico , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Combinação de Medicamentos
14.
Genes (Basel) ; 14(12)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136956

RESUMO

PIK3CA-related disorders encompass many rare and ultra-rare conditions caused by somatic genetic variants that hyperactivate the PI3K-AKT-mTOR signaling pathway, which is essential for cell cycle control. PIK3CA-related disorders include PIK3CA-related overgrowth spectrum (PROS), PIK3CA-related vascular malformations and PIK3CA-related non-vascular lesions. Phenotypes are extremely heterogeneous and overlapping. Therefore, diagnosis and management frequently involve various health specialists. Given the rarity of these disorders and the limited number of centers offering optimal care, the Scientific Committee of the Italian Macrodactyly and PROS Association has proposed a revision of the most recent recommendations for the diagnosis, molecular testing, clinical management, follow-up, and treatment strategies. These recommendations give insight on molecular diagnosis, eligible samples, preferable sequencing, and validation methods and management of negative results. The purpose of this paper is to promote collaboration between health care centers and clinicians with a joint shared approach. Finally, we suggest the direction of present and future research studies, including new systemic target therapies, which are currently under evaluation in several clinical trials, such as specific inhibitors that can be employed to downregulate the signaling pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Consenso , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Itália
15.
Front Chem ; 11: 1276760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954960

RESUMO

The COVID-19 pandemic was declared due to the spread of the novel coronavirus, SARS-CoV-2. Viral infection is caused by the interaction between the SARS-CoV-2 receptor binding domain (RBD) and the human ACE2 receptor (hACE2). Previous computational studies have identified repurposed small molecules that target the RBD, but very few have screened drugs in the RBD-hACE2 interface. When studies focus solely on the binding affinity between the drug and the RBD, they ignore the effect of hACE2, resulting in an incomplete analysis. We screened ACE inhibitors and previously identified SARS-CoV-2 inhibitors for binding to the RBD-hACE2 interface, and then conducted 500 ns of unrestrained molecular dynamics (MD) simulations of fosinopril, fosinoprilat, lisinopril, emodin, diquafosol, and physcion bound to the interface to assess the binding characteristics of these ligands. Based on MM-GBSA analysis, all six ligands bind favorably in the interface and inhibit the RBD-hACE2 interaction. However, when we repeat our simulation by first binding the drug to the RBD before interacting with hACE2, we find that fosinopril, fosinoprilat, and lisinopril result in a strongly interacting trimeric complex (RBD-drug-hACE2). Hydrogen bonding and pairwise decomposition analyses further suggest that fosinopril is the best RBD inhibitor. However, when lisinopril is bound, it stabilizes the trimeric complex and, therefore, is not an ideal potential drug candidate. Overall, these results reveal important atomistic interactions critical to the binding of the RBD to hACE2 and highlight the significance of including all protein partners in the evaluation of a potential drug candidate.

16.
Nutrients ; 15(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836529

RESUMO

Cancer is amenable to low-cost treatments, given that it has a significant metabolic component, which can be affected through diet and lifestyle change at minimal cost. The Warburg hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis. Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are covered in the latter half of this review to guide future cancer treatment.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Glicólise , Metabolismo Energético , Resultado do Tratamento
17.
J Med Virol ; 95(9): e29077, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37675861

RESUMO

Long coronavirus disease (COVID) has emerged as a global health issue, affecting a substantial number of people worldwide. However, the underlying mechanisms that contribute to the persistence of symptoms in long COVID remain obscure, impeding the development of effective diagnostic and therapeutic interventions. In this study, we utilized computational methods to examine the gene expression profiles of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and their associations with the wide range of symptoms observed in long COVID patients. Using a comprehensive data set comprising over 255 symptoms affecting multiple organ systems, we identified differentially expressed genes and investigated their functional similarity, leading to the identification of key genes with the potential to serve as biomarkers for long COVID. We identified the participation of hub genes associated with G-protein-coupled receptors (GPCRs), which are essential regulators of T-cell immunity and viral infection responses. Among the identified common genes were CTLA4, PTPN22, KIT, KRAS, NF1, RET, and CTNNB1, which play a crucial role in modulating T-cell immunity via GPCR and contribute to a variety of symptoms, including autoimmunity, cardiovascular disorders, dermatological manifestations, gastrointestinal complications, pulmonary impairments, reproductive and genitourinary dysfunctions, and endocrine abnormalities. GPCRs and associated genes are pivotal in immune regulation and cellular functions, and their dysregulation may contribute to the persistent immune responses, chronic inflammation, and tissue abnormalities observed in long COVID. Targeting GPCRs and their associated pathways could offer promising therapeutic strategies to manage symptoms and improve outcomes for those experiencing long COVID. However, the complex mechanisms underlying the condition require continued study to develop effective treatments. Our study has significant implications for understanding the molecular mechanisms underlying long COVID and for identifying potential therapeutic targets. In addition, we have developed a comprehensive website (https://longcovid.omicstutorials.com/) that provides a curated list of biomarker-identified genes and treatment recommendations for each specific disease, thereby facilitating informed clinical decision-making and improved patient management. Our study contributes to the understanding of this debilitating disease, paving the way for improved diagnostic precision, and individualized therapeutic interventions.


Assuntos
Perfilação da Expressão Gênica , Síndrome de COVID-19 Pós-Aguda , Síndrome de COVID-19 Pós-Aguda/tratamento farmacológico , Síndrome de COVID-19 Pós-Aguda/genética , Síndrome de COVID-19 Pós-Aguda/patologia , Humanos , Feminino , Criança , Medicina de Precisão , Receptores Acoplados a Proteínas G , Biomarcadores/análise , Masculino
18.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569714

RESUMO

Parkinson's disease (PD) is a movement disorder caused by a dopamine deficit in the brain. Current therapies primarily focus on dopamine modulators or replacements, such as levodopa. Although dopamine replacement can help alleviate PD symptoms, therapies targeting the underlying neurodegenerative process are limited. The study objective was to use artificial intelligence to rank the most promising repurposed drug candidates for PD. Natural language processing (NLP) techniques were used to extract text relationships from 33+ million biomedical journal articles from PubMed and map relationships between genes, proteins, drugs, diseases, etc., into a knowledge graph. Cross-domain text mining, hub network analysis, and unsupervised learning rank aggregation were performed in SemNet 2.0 to predict the most relevant drug candidates to levodopa and PD using relevance-based HeteSim scores. The top predicted adjuvant PD therapies included ebastine, an antihistamine for perennial allergic rhinitis; levocetirizine, another antihistamine; vancomycin, a powerful antibiotic; captopril, an angiotensin-converting enzyme (ACE) inhibitor; and neramexane, an N-methyl-D-aspartate (NMDA) receptor agonist. Cross-domain text mining predicted that antihistamines exhibit the capacity to synergistically alleviate Parkinsonian symptoms when used with dopamine modulators like levodopa or levodopa-carbidopa. The relationship patterns among the identified adjuvant candidates suggest that the likely therapeutic mechanism(s) of action of antihistamines for combatting the multi-factorial PD pathology include counteracting oxidative stress, amending the balance of neurotransmitters, and decreasing the proliferation of inflammatory mediators. Finally, cross-domain text mining interestingly predicted a strong relationship between PD and liver disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Dopamina/uso terapêutico , Inteligência Artificial , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Antagonistas dos Receptores Histamínicos/uso terapêutico
19.
Contemp Clin Trials ; 132: 107292, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454729

RESUMO

BACKGROUND: In response to the COVID-19 global pandemic, multiple platform trials were initiated to accelerate evidence generation of potential therapeutic interventions. Given a rapidly evolving and dynamic pandemic, platform trials have a key advantage over traditional randomized trials: multiple interventions can be investigated under a master protocol sharing a common infrastructure. METHODS: This paper focuses on nine platform trials that were instrumental in advancing care in COVID-19 in the hospital and community setting. A semi-structured qualitative interview was conducted with the principal investigators and lead statisticians of these trials. Information from the interviews and public sources were tabulated and summarized across trials, and recommendations for best practice for the next health crisis are provided. RESULTS: Based on the information gathered takeaways were identified as 1) the existence of some aspect of trial design or conduct (e.g., existing network of investigators or colleagues, infrastructure for data capture and relevant statistical expertise) was a key success factor; 2) the choice of treatments (e.g., repurposed drugs) had major impact on the trials as did the choice of primary endpoint; and 3) the lack of coordination across trials was flagged as an area for improvement. CONCLUSION: These trials deployed during the COVID-19 pandemic demonstrate how to achieve both speed and quality of evidence generation regarding clinical benefit (or not) of existing therapies to treat new pathogens in a pandemic setting. As a group, these trials identified treatments that worked, and many that did not, in a matter of months.


Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2
20.
Trials ; 24(1): 435, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37370174

RESUMO

BACKGROUND: The duration and regimen of tuberculosis (TB) treatment is currently based predominantly on whether the M. tuberculosis (Mtb) strain is drug-sensitive (DS) or multidrug-resistant (MDR) with doses adjusted by patients' weight only. The systematic stratification of patients for personalized treatment does not exist for TB. As each TB case is different, individualized treatment regimens should be applied to obtain better outcomes. In this scenario, novel therapeutic approaches are urgently needed to (1) improve outcomes and (2) shorten treatment duration, and host-directed therapies (HDT) might be the best solution. Within HDT, repurposed drugs represent a shortcut in drug development and can be implemented at the short term. As hyperinflammation is associated with worse outcomes, HDT with an anti-inflammatory effect might improve outcomes by reducing tissue damage and thus the risk of permanent sequelae. METHODS: SMA-TB is a multicentre randomized, phase IIB, placebo-controlled, three-arm, double-blinded clinical trial (CT) that has been designed in the context of the EC-funded SMA-TB Project ( www.smatb.eu ) in which we propose to use 2 common non-steroidal anti-inflammatory drugs (NSAID), acetylsalicylic acid (ASA) and ibuprofen (Ibu), as an HDT for use as adjunct therapy added to, and compared with, the standard of care (SoC) World Health Organization (WHO)-recommended TB regimen in TB patients. A total of 354 South African and Georgian adults diagnosed with confirmed pulmonary TB will be randomized into SoC TB treatment + placebo, SoC + acetylsalicylic acid or SoC + ibuprofen. DISCUSSION: SMA-TB will provide proof of concept of the HDT as a co-adjuvant treatment and identify the suitability of the intervention for different population groups (different epidemiological settings and drug susceptibility) in the reduction of tissue damage and risk of bad outcomes for TB patients. This regimen potentially will be more effective and targeted: organ saving, reducing tissue damage and thereby decreasing the length of treatment and sequelae, increasing cure rates and pathogen clearance and decreasing transmission rates. It will result in better clinical practice, care management and increased well-being of TB patients. TRIAL REGISTRATION: Clinicaltrials.gov NCT04575519. Registered on October 5, 2020.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Adulto , Humanos , Anti-Inflamatórios/uso terapêutico , Antituberculosos/efeitos adversos , Aspirina/efeitos adversos , Ibuprofeno/efeitos adversos , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Tuberculose Pulmonar/diagnóstico , Organização Mundial da Saúde , Ensaios Clínicos Fase II como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA