Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 21(4)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33267094

RESUMO

It is one of the most important and long-standing issues of physics to derive the irreversibility out of a time-reversal symmetric equation of motion. The present paper considers the breaking of the time-reversal symmetry in open quantum systems and the emergence of an arrow of time. We claim that the time-reversal symmetric Schrödinger equation can have eigenstates that break the time-reversal symmetry if the system is open in the sense that it has at least a countably infinite number of states. Such eigenstates, namely the resonant and anti-resonant states, have complex eigenvalues. We show that, although these states are often called "unphysical", they observe the probability conservation in a particular way. We also comment that the seemingly Hermitian Hamiltonian is non-Hermitian in the functional space of the resonant and anti-resonant states, and hence there is no contradiction in the fact that it has complex eigenvalues. We finally show how the existence of the states that break the time-reversal symmetry affects the quantum dynamics. The dynamics that starts from a time-reversal symmetric initial state is dominated by the resonant states for t > 0 ; this explains the phenomenon of the arrow of time, in which the decay excels the growth. The time-reversal symmetry holds in that the dynamic ending at a time-reversal symmetric final state is dominated by the anti-resonant states for t < 0 .

2.
ACS Sens ; 3(5): 960-966, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29708330

RESUMO

We analyze and optimize the performance of coupled plasmonic nanoantennas for refractive index sensing. The investigated structure supports a sub- and super-radiant mode that originates from the weak coupling of a dipolar and quadrupolar mode, resulting in a Fano-type spectral line shape. In our study, we vary the near-field coupling of the two modes and particularly examine the influence of the spectral detuning between them on the sensing performance. Surprisingly, the case of matched resonance frequencies does not provide the best sensor. Instead, we find that the right amount of coupling strength and spectral detuning allows for achieving the ideal combination of narrow line width and sufficient excitation strength of the subradiant mode, and therefore results in optimized sensor performance. Our findings are confirmed by experimental results and first-order perturbation theory. The latter is based on the resonant state expansion and provides direct access to resonance frequency shifts and line width changes as well as the excitation strength of the modes. Based on these parameters, we define a figure of merit that can be easily calculated for different sensing geometries and agrees well with the numerical and experimental results.


Assuntos
Nanoestruturas , Refratometria , Limite de Detecção
3.
J Phys Chem Lett ; 5(4): 641-7, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26270830

RESUMO

Attachment of chemical substituents (such as polar moieties) constitutes an efficient and convenient way to modify physical and chemical properties of conjugated polymers and oligomers. Associated modifications in the molecular electronic states can be comprehensively described by examining scattering of excitons in the polymer's backbone at the scattering center representing the chemical substituent. Here, we implement effective tight-binding models as a tool to examine the analytical properties of the exciton scattering matrices in semi-infinite polymer chains with substitutions. We demonstrate that chemical interactions between the substitution and attached polymer are adequately described by the analytical properties of the scattering matrices. In particular, resonant and bound electronic excitations are expressed via the positions of zeros and poles of the scattering amplitude, analytically continued to complex values of exciton quasi-momenta. We exemplify the formulated concepts by analyzing excited states in conjugated phenylacetylenes substituted by perylene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA