Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(37): e2408262121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226352

RESUMO

Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer's disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.


Assuntos
Doença de Alzheimer , Endossomos , Proteínas Relacionadas a Receptor de LDL , Proteínas de Membrana Transportadoras , Linhagem , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Endossomos/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Feminino , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação de Sentido Incorreto , Transporte Proteico , Multimerização Proteica , Idoso , Pessoa de Meia-Idade , Células HEK293
2.
Plants (Basel) ; 13(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273954

RESUMO

The tight regulation of protein composition within the plasma membranes of plant cells is crucial for the proper development of plants and for their ability to respond to a changing environment. Upon being endocytosed, integral membrane proteins can be secreted, sorted into multivesicular bodies/late endosomes, and degraded in the lytic vacuole, or recycled back to the plasma membrane to continue functioning. The evolutionarily conserved retromer complex has attracted the interest of plant cell biologists for over a decade as it has emerged as a key regulator of the trafficking of endocytosed integral plasma membrane proteins. Recently, a related recycling complex that shares a subunit with retromer was described in metazoan species. Named "retriever", homologs to the proteins that comprise this new recycling complex and its accessory proteins are found within plant lineages. Initial experiments indicate that there is conservation of function between metazoan and plant retriever proteins, suggesting that it is prudent to re-evaluate the available plant retromer data with the added potential of a plant retriever complex.

3.
Adv Sci (Weinh) ; : e2308823, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287146

RESUMO

Asynchronous nuclear and cytoplasmic maturation in human oocytes is believed to cause morphological anomalies after controlled ovarian hyperstimulation. Vacuolar protein sorting 34 (VPS34) is renowned for its pivotal role in regulating autophagy and endocytic trafficking. To investigate its impact on oocyte development, oocyte-specific knockout mice (ZcKO) are generated, and these mice are completely found infertile, with embryonic development halted at 2- to 4-cell stage. This infertility is related with a disruption on autophagic/mitophagic flux in ZcKO oocytes, leading to subsequent failure of zygotic genome activation (ZGA) in derived 2-cell embryos. The findings further elucidated the regulation of VPS34 on the activity and subcellular translocation of RAS-related GTP-binding protein 7 (RAB7), which is critical not only for the maturation of late endosomes and lysosomes, but also for initiating mitophagy via retrograde trafficking. VPS34 binds directly with RAB7 and facilitates its activity conversion through TBC1 domain family member 5 (TBC1D5). Consistent with the cytoplasmic vacuolation observed in ZcKO oocytes, defects in multiple vesicle trafficking systems are also identified in vacuolated human oocytes. Furthermore, activating VPS34 with corynoxin B (CB) treatment improved oocyte quality in aged mice. Hence, VPS34 activation may represent a novel approach to enhance oocyte quality in human artificial reproduction.

4.
Expert Opin Ther Targets ; 28(8): 701-712, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39175128

RESUMO

INTRODUCTION: Vacuolar Protein Sorting 35 (VPS35) is pivotal in the retromer complex, governing transmembrane protein trafficking within cells, and its dysfunction is implicated in neurodegenerative diseases. A missense mutation, Asp620Asn (D620N), specifically ties to familial late-onset Parkinson's, while reduced VPS35 levels are observed in Alzheimer's, amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and tauopathies. VPS35's absence in certain neurons during development can initiate neurodegeneration, highlighting its necessity for neural health. Present therapeutic research mainly targets the clearance of harmful protein aggregates and symptom management. Innovative treatments focusing on VPS35 are under investigation, although fully understanding the mechanisms and optimal targeting strategies remain a challenge. AREAS COVERED: This review offers a detailed account of VPS35's discovery, its role in neurodegenerative mechanisms - especially in Parkinson's and Alzheimer's - and its link to other disorders. It shines alight on recent insights into VPS35's function in development, disease, and as a therapeutic target. EXPERT OPINION: VPS35 is integral to cellular function and disease association, making it a significant candidate for developing therapies. Progress in modulating VPS35's activity may lead to breakthrough treatments that not only slow disease progression but may also act as biomarkers for neurodegeneration risk, marking a step forward in managing these complex conditions.


Assuntos
Terapia de Alvo Molecular , Doenças Neurodegenerativas , Proteínas de Transporte Vesicular , Humanos , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/tratamento farmacológico , Proteínas de Transporte Vesicular/metabolismo , Animais , Transporte Proteico , Doença de Parkinson/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Mutação de Sentido Incorreto , Desenvolvimento de Medicamentos
5.
New Phytol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180241

RESUMO

The retromer complex is a conserved sorting machinery that maintains cellular protein homeostasis by transporting vesicles containing cargo proteins to defined destinations. It is known to sort proteins at the vacuole membranes for retrograde trafficking, preventing their degradation in the vacuole. However, the detailed mechanism of retromer recruitment to the vacuole membrane has not yet been elucidated. Here, we show that the vacuolar SNARE complex MoPep12-MoVti1-MoVam7-MoYkt6 regulates retromer-mediated vesicle trafficking by recruiting the retromer to the vacuole membrane, which promotes host invasion in Magnaporthe oryzae. Such recruitment is also essential for the retrieval of the autophagy regulator MoAtg8 and enables appressorium-mediated host penetration. Furthermore, the vacuolar SNARE subunits are involved in suppressing the host defense response by regulating the deployment of retromer-MoSnc1-mediated effector secretion. Altogether, our results provide insights into the mechanism of vacuolar SNAREs-dependent retromer recruitment which is necessary for pathogenicity-related membrane trafficking events in the rice blast fungus.

6.
Proc Natl Acad Sci U S A ; 121(33): e2405041121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116126

RESUMO

Endosomal membrane trafficking is mediated by specific protein coats and formation of actin-rich membrane domains. The Retromer complex coordinates with sorting nexin (SNX) cargo adaptors including SNX27, and the SNX27-Retromer assembly interacts with the Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex which nucleates actin filaments establishing the endosomal recycling domain. Crystal structures, modeling, biochemical, and cellular validation reveal how the FAM21 subunit of WASH interacts with both Retromer and SNX27. FAM21 binds the FERM domain of SNX27 using acidic-Asp-Leu-Phe (aDLF) motifs similar to those found in the SNX1 and SNX2 subunits of the ESCPE-1 complex. Overlapping FAM21 repeats and a specific Pro-Leu containing motif bind three distinct sites on Retromer involving both the VPS35 and VPS29 subunits. Mutation of the major VPS35-binding site does not prevent cargo recycling; however, it partially reduces endosomal WASH association indicating that a network of redundant interactions promote endosomal activity of the WASH complex. These studies establish the molecular basis for how SNX27-Retromer is coupled to the WASH complex via overlapping and multiplexed motif-based interactions required for the dynamic assembly of endosomal membrane recycling domains.


Assuntos
Endossomos , Nexinas de Classificação , Proteínas de Transporte Vesicular , Humanos , Endossomos/metabolismo , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/química , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/química , Ligação Proteica , Cristalografia por Raios X , Sítios de Ligação , Modelos Moleculares
7.
Brain Res ; 1845: 149204, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39197569

RESUMO

Parkinson's disease (PD) is indeed a complex neurodegenerative disorder recognized by the progressive depletion of dopaminergic neurons in the brain, particularly in the substantia nigra region, leading to motor impairments and other symptoms. But at the molecular level, the study about PD still lacks. As the number of cases worldwide continues to increase, it is critical to focus on the cellular and molecular mechanisms of the disease's presentation and neurodegeneration to develop novel therapeutic approaches. At the molecular level, the complexity is more due to the involvement of vacuolar protein sorting 35 (VPS35) and sonic hedgehog (SHH) signaling in PD (directly or indirectly), leading to one of the most prominent hallmarks of the disease, which is an accumulation of α-synuclein. This elevated pathogenesis may result from impaired autophagy due to mutation in the case of VPS35 and impairment in SHH signaling at the molecular level. The traditional understanding of PD is marked by the disruption of dopaminergic neurons and dopaminergic signaling, which exacerbates symptoms of motor function deficits. However, the changes at the molecular level that are being disregarded also impact the overall health of the dopaminergic system. Gaining insight into these two unique mechanisms is essential to determine whether they give neuroprotection or have no effect on the health of neurons. Hence, here we tried to simplify the understanding of the role of VPS35 and SHH signaling to comprehend it in one direction.

8.
J Neurochem ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022884

RESUMO

Vacuolar protein sorting 35 (VPS35), a critical component of the retromer complex, plays a pivotal role in the pathogenesis of neurodegenerative diseases (NDs). It is involved in protein transmembrane sorting, facilitating the transport from endosomes to the trans-Golgi network (TGN) and plasma membrane. Recent investigations have compellingly associated mutations in the VPS35 gene with neurodegenerative disorders such as Parkinson's and Alzheimer's disease. These genetic alterations are implicated in protein misfolding, disrupted autophagic processes, mitochondrial dysregulation, and synaptic impairment. Furthermore, VPS35 exerts a notable impact on neurogenesis by influencing neuronal functionality, protein conveyance, and synaptic performance. Dysregulation or mutation of VPS35 may escalate the progression of neurodegenerative conditions, underscoring its pivotal role in safeguarding neuronal integrity. This review comprehensively discusses the role of VPS35 and its functional impairments in NDs. Furthermore, we provide an overview of the impact of VPS35 on neurogenesis and further explore the intricate relationship between neurogenesis and NDs. These research advancements offer novel perspectives and valuable insights for identifying potential therapeutic targets in the treatment of NDs.

9.
Elife ; 132024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028260

RESUMO

During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2, together with the Frizzled receptor CFZ-2, positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Movimento Celular , Via de Sinalização Wnt , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Receptores Frizzled/metabolismo , Receptores Frizzled/genética
10.
Dev Cell ; 59(18): 2443-2459.e7, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38870942

RESUMO

Retrograde transport of WLS (Wntless) from endosomes to trans-Golgi network (TGN) is required for efficient Wnt secretion during development. However, the molecular players connecting endosomes to TGN during WLS trafficking are limited. Here, we identified a role for Eyes Absent (EYA) proteins during retrograde trafficking of WLS to TGN in human cell lines. By using worm, fly, and zebrafish models, we found that the EYA-secretory carrier-associated membrane protein 3 (SCAMP3) axis is evolved in vertebrates. EYAs form a complex and interact with retromer on early endosomes. Retromer-bound EYA complex recruits SCAMP3 to endosomes, which is necessary for the fusion of WLS-containing endosomes to TGN. Loss of EYA complex or SCAMP3 leads to defective transport of WLS to TGN and failed Wnt secretion. EYA mutations found in patients with hearing loss form a dysfunctional EYA-retromer complex that fails to activate Wnt signaling. These findings identify the EYA complex as a component of retrograde trafficking of WLS from the endosome to TGN.


Assuntos
Endossomos , Peptídeos e Proteínas de Sinalização Intracelular , Transporte Proteico , Humanos , Endossomos/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rede trans-Golgi/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/genética , Peixe-Zebra/metabolismo , Via de Sinalização Wnt , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Complexo de Golgi/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Células HeLa , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Receptores Acoplados a Proteínas G
11.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38895404

RESUMO

The retromer complex mediates retrograde transport of protein cargos from endosomes to the trans-Golgi network (TGN). γ-secretase is a multisubunit protease that cleaves the transmembrane domain of its target proteins. Mutations in genes encoding subunits of retromer or γ-secretase can cause familial Alzheimer disease (AD) and other degenerative neurological diseases. It has been reported that retromer interacts with γ-secretase, but the consequences of this interaction are not known. Here, we report that retromer-mediated retrograde protein trafficking in cultured human epithelial cells is impaired by inhibition of γ-secretase activity or by genetic elimination of γ-secretase. γ-secretase inhibitor XXI and knockout of PS1, the catalytic subunit of γ-secretase, inhibit endosome to TGN trafficking of retromer-dependent retrograde cargos, divalent metal transporter 1 isoform II (DMT1-II), cation-independent mannose-6-phosphate receptor (CIMPR), and shiga toxin. Trafficking of retromer-independent cargos, such as cholera toxin and a CIMPR mutant that does not bind to retromer was not affected by γ-secretase inhibition. XXI treatment and PS1 KO inhibit interaction of γ-secretase with retromer but do not inhibit the association of cargo with retromer or with γ-secretase in intact cells. Similarly, these treatments do not affect the level of Rab7-GTP, which regulates retromer-cargo interaction. These results suggest that the γ-secretase-retromer interaction facilitates retromer-mediated retrograde trafficking.

12.
J Cell Sci ; 137(13)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38884339

RESUMO

Early endosomes sort transmembrane cargo either for lysosomal degradation or retrieval to the plasma membrane or the Golgi complex. Endosomal retrieval in eukaryotes is governed by the anciently homologous retromer or retriever complexes. Each comprises a core tri-protein subcomplex, membrane-deformation proteins and interacting partner complexes, together retrieving a variety of known cargo proteins. Trichomonas vaginalis, a sexually transmitted human parasite, uses the endomembrane system for pathogenesis. It has massively and selectively expanded its endomembrane protein complement, the evolutionary path of which has been largely unexplored. Our molecular evolutionary study of retromer, retriever and associated machinery in parabasalids and its free-living sister lineage of Anaeramoeba demonstrates specific expansion of the retromer machinery, contrasting with the retriever components. We also observed partial loss of the Commander complex and sorting nexins in Parabasalia but complete retention in Anaeramoeba. Notably, we identified putative parabasalid sorting nexin analogs. Finally, we report the first retriever protein localization in a non-metazoan group along with retromer protein localization in T. vaginalis.


Assuntos
Endossomos , Endossomos/metabolismo , Transporte Proteico , Trichomonas vaginalis/metabolismo , Trichomonas vaginalis/genética , Filogenia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Evolução Molecular , Humanos , Complexo de Golgi/metabolismo , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Animais
13.
Biochem Soc Trans ; 52(3): 1233-1241, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38747700

RESUMO

PROPPINs constitute a conserved protein family with multiple members being expressed in many eukaryotes. PROPPINs have mainly been investigated for their role in autophagy, where they co-operate with several core factors for autophagosome formation. Recently, novel functions of these proteins on endo-lysosomal compartments have emerged. PROPPINs support the division of these organelles and the formation of tubulo-vesicular cargo carriers that mediate protein exit from them, such as those generated by the Retromer coat. In both cases, PROPPINs provide membrane fission activity. Integrating information from yeast and human cells this review summarizes the most important molecular features that allow these proteins to facilitate membrane fission and thus provide a critical element to endo-lysosomal protein traffic.


Assuntos
Autofagia , Endossomos , Lisossomos , Humanos , Lisossomos/metabolismo , Autofagia/fisiologia , Endossomos/metabolismo , Animais , Transporte Proteico , Membranas Intracelulares/metabolismo
14.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38805688

RESUMO

Nature has been a rich source of pharmaceutical compounds, producing 80% of our currently prescribed drugs. The feijoa plant, Acca sellowiana, is classified in the family Myrtaceae, native to South America, and currently grown worldwide to produce feijoa fruit. Feijoa is a rich source of bioactive compounds with anticancer, anti-inflammatory, antibacterial, and antifungal activities; however, the mechanism of action of these compounds is largely not known. Here, we used chemical genetic analyses in the model organism Saccharomyces cerevisiae to investigate the mechanism of action of a feijoa-derived ethanol adduct of vescalagin (EtOH-vescalagin). Genome-wide barcode sequencing analysis revealed yeast strains lacking genes in iron metabolism, zinc metabolism, retromer function, or mitochondrial function were hypersensitive to 0.3 µM EtOH-vescalagin. This treatment increased expression of iron uptake proteins at the plasma membrane, which was a compensatory response to reduced intracellular iron. Likewise, EtOH-vescalagin increased expression of the Cot1 protein in the vacuolar membrane that transports zinc into the vacuole to prevent cytoplasmic accumulation of zinc. Each individual subunit in the retromer complex was required for the iron homeostatic mechanism of EtOH-vescalagin, while only the cargo recognition component in the retromer complex was required for the zinc homeostatic mechanism. Overexpression of either retromer subunits or high-affinity iron transporters suppressed EtOH-vescalagin bioactivity in a zinc-replete condition, while overexpression of only retromer subunits increased EtOH-vescalagin bioactivity in a zinc-deficient condition. Together, these results indicate that EtOH-vescalagin bioactivity begins with extracellular iron chelation and proceeds with intracellular transport of zinc via the retromer complex. More broadly, this is the first report of a bioactive compound to further characterize the poorly understood interaction between zinc metabolism and retromer function.


Assuntos
Etanol , Frutas , Homeostase , Taninos Hidrolisáveis , Ferro , Saccharomyces cerevisiae , Zinco , Zinco/metabolismo , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/metabolismo , Ferro/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Etanol/metabolismo , Frutas/metabolismo , Quelantes de Ferro/farmacologia , Genômica/métodos
15.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612739

RESUMO

In the last two decades, alpha-synuclein (alpha-syn) assumed a prominent role as a major component and seeding structure of Lewy bodies (LBs). This concept is driving ongoing research on the pathophysiology of Parkinson's disease (PD). In line with this, alpha-syn is considered to be the guilty protein in the disease process, and it may be targeted through precision medicine to modify disease progression. Therefore, designing specific tools to block the aggregation and spreading of alpha-syn represents a major effort in the development of disease-modifying therapies in PD. The present article analyzes concrete evidence about the significance of alpha-syn within LBs. In this effort, some dogmas are challenged. This concerns the question of whether alpha-syn is more abundant compared with other proteins within LBs. Again, the occurrence of alpha-syn compared with non-protein constituents is scrutinized. Finally, the prominent role of alpha-syn in seeding LBs as the guilty structure causing PD is questioned. These revisited concepts may be helpful in the process of validating which proteins, organelles, and pathways are likely to be involved in the damage to meso-striatal dopamine neurons and other brain regions involved in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Corpos de Lewy , Corpo Estriado , Progressão da Doença
16.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38582079

RESUMO

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Tauopatias , Proteínas tau , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/genética , Diferenciação Celular , Mutação , Autofagia
17.
Protein Sci ; 33(5): e4980, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607248

RESUMO

Endosomal trafficking ensures the proper distribution of lipids and proteins to various cellular compartments, facilitating intracellular communication, nutrient transport, waste disposal, and the maintenance of cell structure. Retromer, a peripheral membrane protein complex, plays an important role in this process by recruiting the associated actin-polymerizing WASH complex to establish distinct sorting domains. The WASH complex is recruited through the interaction of the VPS35 subunit of retromer with the WASH complex subunit FAM21. Here, we report the identification of two separate fragments of FAM21 that interact with VPS35, along with a third fragment that binds to the VPS29 subunit of retromer. The crystal structure of VPS29 bound to a peptide derived from FAM21 shows a distinctive sharp bend that inserts into a conserved hydrophobic pocket with a binding mode similar to that adopted by other VPS29 effectors. Interestingly, despite the network of interactions between FAM21 and retromer occurring near the Parkinson's disease-linked mutation (D620N) in VPS35, this mutation does not significantly impair the direct association with FAM21 in vitro.


Assuntos
Endossomos , Doença de Parkinson , Humanos , Mutação , Transporte Proteico , Proteínas de Transporte Vesicular/genética
18.
Biochim Biophys Acta Biomembr ; 1866(4): 184305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408696

RESUMO

The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.


Assuntos
Proteínas de Transporte , Proteínas de Transporte Vesicular , Proteínas de Transporte/química , Proteínas de Transporte Vesicular/metabolismo , Nexinas de Classificação/metabolismo , Transporte Proteico , Proteolipídeos/metabolismo
19.
Plant Cell Rep ; 43(2): 53, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315261

RESUMO

KEY MESSAGE: Retromer protein AtVPS29 upregulates the SLY1 protein and downregulates the RGA protein, positively stimulating the development of the root meristematic zone, which indicates an important role of AtVPS29 in gibberellin signaling. In plants, the large retromer complex is known to play roles in multiple development processes, including cell polarity, programmed cell death, and root hair growth in Arabidopsis. However, many of its roles in plant development remain unknown. Here, we show that Arabidopsis trimeric retromer protein AtVPS29 (vacuolar protein sorting 29) modulates gibberellin signaling. The SLEEPY1 (SLY1) protein, known as a positive regulator of gibberellic acid (GA) signaling, exhibited lower abundance in vps29-3 mutants compared to wild-type (WT) plants. Conversely, the DELLA repressor protein, targeted by the E3 ubiquitin ligase SCF (Skp, Cullin, F-box) complex and acting as a negative regulator of GA signaling, showed increased abundance in vps29-3 mutants compared to WT. The vps29-3 mutants exhibited decreased sensitivity to exogenous GA supply in contrast to WT, despite an upregulation in the expression of GA receptor genes within the vps29-3 mutants. In addition, the expression of the GA synthesis genes was downregulated in vps29-3 mutants, implying that the loss of AtVPS29 causes the downregulation of GA synthesis and signaling. Furthermore, vps29-3 mutants exhibited a reduced meristematic zone accompanied by a decreased cell number. Together, these data indicate that AtVPS29 positively regulates SLY1-mediated GA signaling and plant growth.


Assuntos
Alquil e Aril Transferases , Proteínas de Arabidopsis , Arabidopsis , Giberelinas , Proteínas de Transporte Vesicular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Mutação , Proteínas Repressoras/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA