Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Phys Biol ; 21(6)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39278237

RESUMO

Rheotaxis is a fundamental mechanism of sperm cells that guides them in navigating towards the oocyte. The present study investigates the phenomenon of sperm rheotaxis in Newtonian and non-Newtonian fluid media, which for the first time explores a viscosity range equivalent to that of the oviductal fluid of the female reproductive tract in rectilinear microfluidic channels. Three parameters, the progressive velocity while performing rheotaxis, the radius of rotation during rheotaxis, and the percentage of rheotactic sperm cells in the bulk and near-wall regions of the microfluidic channel were measured. Numerical simulations of the flow were conducted to estimate the shear rate, flow velocity, and the drag force acting on the sperm head at specific locations where the sperms undergo rheotaxis. Increasing the flow velocity resulted in a change in the position of rheotactic sperm from the bulk center to the near wall region, an increase and subsequent decrease in the sperm's upstream progressive velocity, and a decrease in the radius of rotation. We observed that with an increase in viscosity, rheotactic sperms migrate to the near wall regions at lower flow rates, the upstream progressive velocity of the sperm decreases for Newtonian and increases for non-Newtonian media, and the radius of rotation increases for Newtonian and decreases for non-Newtonian media. These results quantify the effects of fluid properties such as viscosity and flow rate on sperm rheotaxis and navigation, thereby paving the way for manipulating sperm behavior in microfluidic devices, potentially leading to advancements in assisted reproduction techniques.


Assuntos
Motilidade dos Espermatozoides , Espermatozoides , Viscosidade , Espermatozoides/fisiologia , Masculino , Microfluídica/métodos
2.
J Biomech ; 176: 112336, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39321474

RESUMO

Several investigations have recently been conducted using microfluidic channels to sort highly motile sperm and thereby increase the probability of fertilization. To further enhance the efficiency of sperm sorting, predicting sperm movement in microfluidic channels through simulation techniques could be beneficial. In this study, we constructed a sperm swimming model based on the concept of an agent-based model. This model allows analysis at the same spatio-temporal scale similar to microfluidic channels. Sperm movement was simplistically modeled as a random walk, utilizing the distribution of sperm velocity and deflection angle obtained from experimental data. We have developed a thigmotaxis model to describe the phenomenon where sperm near the wall exhibit a reduced tendency to move away from it. Additionally, we created a rheotaxis model, in which sperm reorient in the direction opposite to the flow depending on the shear rate. Using these models, we investigated sperm behaviors within a microchannel featuring a tapered area. The results reveal that sperm accumulate within the tapered area, leading to a significant increase in sperm concentration for specific flow velocity ranges in the microchannel. This model provides valuable information for predicting the effects of sperm sorting in various microfluidic channels.

3.
Neural Dev ; 19(1): 14, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068495

RESUMO

Gephyrin is thought to play a critical role in clustering glycine receptors at synapses within the central nervous system (CNS). The main in vivo evidence for this comes from Gephyrin (Gphn)-null mice, where glycine receptors are depleted from synaptic regions. However, these mice die at birth, possibly due to impaired molybdenum cofactor (MoCo) synthesis, an essential role Gephyrin assumes throughout an animal. This complicates the interpretation of synaptic phenotypes in Gphn-null mice and raises the question whether the synaptic and enzymatic functions of Gephyrin can be investigated separately. Here, we generated a gephyrinb zebrafish mutant, vo84, that almost entirely lacks Gephyrin staining in the spinal cord. gephyrinbvo84 mutants exhibit normal gross morphology at both larval and adult stages. In contrast to Gphn-null mice, gephyrinbvo84 mutants exhibit normal motor activity and MoCo-dependent enzyme activity. Instead, gephyrinbvo84 mutants display impaired rheotaxis and increased mortality in late development. To investigate what may mediate these defects in gephyrinbvo84 mutants, we examined the cell density of neurons and myelin in the spinal cord and found no obvious changes. Surprisingly, in gephyrinbvo84 mutants, glycine receptors are still present in the synaptic regions. However, their abundance is reduced, potentially contributing to the observed defects. These findings challenge the notion that Gephyrin is absolutely required to cluster glycine receptors at synapses and reveals a new role of Gephyrin in regulating glycine receptor abundance and rheotaxis. They also establish a powerful new model for studying the mechanisms underlying synaptic, rather than enzymatic, functions of Gephyrin.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Mutação , Medula Espinal , Sinapses , Peixe-Zebra , Animais , Sinapses/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Medula Espinal/metabolismo , Mutação/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Receptores de Glicina/metabolismo , Receptores de Glicina/genética , Cofatores de Molibdênio , Pteridinas , Neurônios/metabolismo , Bainha de Mielina/metabolismo , Atividade Motora/fisiologia , Atividade Motora/genética , Animais Geneticamente Modificados
4.
Biosens Bioelectron ; 258: 116353, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696966

RESUMO

Male infertility is a pervasive global reproductive challenge, primarily attributed to a decline in semen quality. Addressing this concern, there has been a growing focus on spermatozoa sorting in assisted reproductive technology. This study introduces a groundbreaking development in the form of a thermotaxis and rheotaxis microfluidic (TRMC) device designed for efficient motile spermatozoa sorting within a short 15-min timeframe. The TRMC device mimics the natural sperm sorting mechanism of the oviduct, selecting spermatozoa with superior motility and DNA integrity. The experimental outcomes demonstrate a remarkable enhancement in the percentage of progressive spermatozoa following sorting, soaring from 3.90% to an impressive 96.11% when subjected to a temperature decrease from 38 °C to 35 °C. Notably, sperm motility exhibited a substantial 69% improvement. The TRMC device exhibited a commendable recovery rate of 60.93%, surpassing current clinical requirements. Furthermore, the sorted spermatozoa displayed a notable reduction in the DNA fragmentation index to 6.94%, signifying a substantial 90% enhancement in DNA integrity. This remarkable advancement positions the TRMC device as highly suitable for applications in in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), offering a promising solution to male infertility challenges.


Assuntos
Dispositivos Lab-On-A-Chip , Motilidade dos Espermatozoides , Espermatozoides , Masculino , Espermatozoides/fisiologia , Espermatozoides/citologia , Humanos , Desenho de Equipamento , Infertilidade Masculina , Técnicas Biossensoriais/instrumentação , Separação Celular/instrumentação , Fragmentação do DNA , Temperatura
5.
J Fish Biol ; 105(1): 177-185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38684192

RESUMO

Several factors influence whether an organism remains in its local habitat. Parasites can, for example, influence host movement by impacting their behavior, physiology, and morphology. In rivers, fish that swim efficiently against the current are able to maintain their position without being displaced downstream, a behavior referred to as positive rheotaxis. We hypothesized that both the presence and number of ectoparasites on a host would affect the ability of fish to avoid downstream displacement and thus prevent them from remaining in their habitat. We used the guppy-Gyrodactylus host-ectoparasite model to test whether parasite presence and parasite load had an effect on fish rheotaxis. We quantified rheotaxis of sham-infected and parasite-infected fish in a circular flow tank in the laboratory prior to infection and 5-6 days postinfection. Both parasite-infected and sham-infected individuals expressed similar levels of positive rheotaxis prior to infection and after infection. However, with increasing parasite numbers, guppies covered less distance in the upstream direction and spent more time in slower flow zones. These results suggest that higher numbers of Gyrodactylus ectoparasites negatively influence rheotactic movements. Further research is needed to understand the ecological and evolutionary implications of this ectoparasite on fish movement.


Assuntos
Doenças dos Peixes , Carga Parasitária , Poecilia , Animais , Poecilia/fisiologia , Poecilia/parasitologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Resposta Táctica/fisiologia , Rios
6.
Andrology ; 12(6): 1236-1252, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38148634

RESUMO

BACKGROUND: Obtaining functional sperm cells is the first step to treat infertility. With the ever-increasing trend in male infertility, clinicians require access to effective solutions that are able to single out the most viable spermatozoa, which would max out the chance for a successful pregnancy. The new generation techniques for sperm selection involve microfluidics, which offers laminar flow and low Reynolds number within the platforms can provide unprecedented opportunities for sperm selection. Previous studies showed that microfluidic platforms can provide a novel approach to this challenge and since then researchers across the globe have attacked this problem from multiple angles. OBJECTIVE: In this review, we seek to provide a much-needed bridge between the technical and medical aspects of microfluidic sperm selection. Here, we provide an up-to-date list on microfluidic sperm selection procedures and its application in assisted reproductive technology laboratories. SEARCH METHOD: A literature search was performed in Web of Science, PubMed, and Scopus to select papers reporting microfluidic sperm selection using the keywords: microfluidic sperm selection, self-motility, non-motile sperm selection, boundary following, rheotaxis, chemotaxis, and thermotaxis. Papers published before March 31, 2023 were selected. OUTCOMES: Our results show that most studies have used motility-based properties for sperm selection. However, microfluidic platforms are ripe for making use of other properties such as chemotaxis and especially rheotaxis. We have identified that low throughput is one of the major hurdles to current microfluidic sperm selection chips, which can be solved via parallelization. CONCLUSION: Future work needs to be performed on numerical simulation of the microfluidics chip prior to fabrication as well as relevant clinical assessment after the selection procedure. This would require a close collaboration and understanding among engineers, biologists, and medical professionals. It is interesting that in spite of two decades of microfluidics sperm selection, numerical simulation and clinical studies are lagging behind. It is expected that microfluidic sperm selection platforms will play a major role in the development of fully integrated start-to-finish assisted reproductive technology systems.


Assuntos
Microfluídica , Técnicas de Reprodução Assistida , Espermatozoides , Masculino , Humanos , Espermatozoides/fisiologia , Microfluídica/métodos , Infertilidade Masculina/terapia , Motilidade dos Espermatozoides/fisiologia
7.
Biomed Eng Lett ; 13(4): 671-680, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872996

RESUMO

Microfluidic systems with the ability to mimic the female reproductive tract (FRT) and sperm features have emerged as promising methods to separate sperm with higher quality for the assistant reproductive technology. Thereby, we designed and fabricated a microfluidic system based on FRT features with a focus on rheotaxis and thigmotaxis for passive sperm separation. In this regard, four various geometries (linear, square, zigzag, and sinusoidal) were designed, and the effect of rheotaxis and thigmotaxis were investigated. Although separated sperm in all microchannels were 100% motile, non-linear geometries were more effective than linear geometry in the term of separating the progressive sperm with high quality. In the presence of upstream flow, periodical changes in the slope of walls (in non-linear geometries) give rise to the periodical facing sperm with a high flow rate in the middle of microchannels, which was a reason for the high quality of separated sperm. However, because of sharp corners in the square and zigzag microchannels that create dead zones with a lack of upstream flow, which is noticeable via simulation results, these geometries have obstacles against sperm swimming toward the outlet, which was proved by image analysis. The sinusoidal geometry showed the highest enhancement level of the designed geometries compared to the linear geometry. Separated sperm exhibited 34.7% normal morphology, 100% motility, and 100% viability in the sinusoidal geometry. Therefore, the periodic change in the position of sperm from one wall to another wall can be a strategy for separating sperm with high quality. Graphical abstract: In the present study, we used a microfluidic system for studying the combined effects of thigmotaxis and rheotaxis for sperm separation process to achieve the successful Assisted reproductive technology (ART). The designed PDMS-based microfluidic system had four various geometries, including linear, square, zigzag, and sinusoidal. The functionality of separated sperm was evaluated by sperm tracking (ImageJ), motility assay (CASA software), and morphology assay (Papanicolaou ultrafast staining). Probing various geometries revealed 100% motility. In non-linear geometries, sperm's periodic detachment from the walls gave rise to the periodic interaction with the high flow velocity in the center of the channel, resulting in the separation of high-quality sperm with progressive motility. The collected data proved the influence of thigmotaxis on the quality of separated sperm. Morphologically improvement in separated sperm from the sinusoidal geometry was significant than others, which means the sinusoidal structure would be the best candidate for the sperm separation process. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-023-00294-8.

8.
Syst Biol Reprod Med ; 69(1): 57-63, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36409632

RESUMO

Sperm rheotaxis refers to the ability of sperm cells to align their swimming direction with or against fluid flow. Positive rheotaxis (PR) is the tendency of sperm cells to swim against the flow. Herein, we describe sperm rheotaxis in fertile and infertile males, using a microfluidic platform and focus on rheotaxis as a potential marker of male fertility. A previously reported computer-assisted sperm analysis (CASA) plugin for Image-J was used to detect and analyze the motion of human sperm cells in microfluidic environments. The fabricated microchannels mimic the female reproductive tracts and use an image-processing program to monitor sperm swimming behavior in semen samples from fertile and infertile men. We have constructed an image-processing pipeline. The image-processing pipeline incorporated strengthens object detection and particle tracking to adapt to sperm that are out of focus while swimming on the same track. PR% was defined as the number of PR sperm cells over the number of motile sperm cells. The results showed that the percentage of PR correlates with fertility, wherein the fertile male specimens showed a higher PR% than the other groups (P < 0.05). There is no difference in progressive motility between the control group (fertile men with normal sperm analysis) and group 1 (G1; infertile men with normal sperm analysis). However, PR% was lower (P < 0.05) in the G1 group (13.5 ± 0.4%) compared to the control group (40.3 ± 3.3%) and group 2 (G2; infertile with reduced sperm motility) (15.3 ± 4.6%). Thus, PR% may be used as a novel parameter to explain infertility even in situations where basic sperm analysis following the World Health Organization (WHO) guidelines is unable to do so. We propose to use PR% as a novel parameter for sperm analysis and as a method of sperm selection in assisted reproductive technology.


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Masculino , Feminino , Motilidade dos Espermatozoides , Espermatozoides , Fertilidade
9.
Open Res Eur ; 3: 188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38645796

RESUMO

Quality sperm selection is essential to ensure the effectiveness of assisted reproductive techniques (ART). However, the methods employed for sperm selection in ART often yield suboptimal outcomes, contributing to lower success rates. In recent years, microfluidic devices have emerged as a promising avenue for investigating the natural swimming behavior of spermatozoa and developing innovative approaches for quality sperm selection. Despite their potential, the commercial translation of microfluidic-based technologies has remained limited. This comprehensive review aims to critically evaluate the inherent potential of lab-on-chip technology in unraveling sophisticated mechanisms encompassing rheotaxis, thermotaxis, and chemotaxis. By reviewing the current state-of-the-art associated with microfluidic engineering and the swimming of spermatozoa, the goal is to shed light on the multifaceted factors that have impeded the broader commercialization of these cutting-edge technologies and recommend a commercial that can surmount the prevailing constraints. Furthermore, this scholarly exploration seeks to enlighten and actively engage reproductive clinicians in the profound potential and implications of microfluidic methodologies within the context of human infertility.

10.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430778

RESUMO

Cisplatin is an effective anticancer agent, but also causes permanent hearing loss by damaging hair cells-the sensory receptors essential for hearing. There is an urgent clinical need to protect cochlear hair cells in patients undergoing cisplatin chemotherapy. The zebrafish lateral line organ contains hair cells and has been frequently used in studies to screen for otoprotective compounds. However, these studies have employed a wide range of cisplatin dosages and exposure times. We therefore performed a comprehensive evaluation of cisplatin ototoxicity in the zebrafish lateral line with the goal of producing a standardized, clinically relevant protocol for future studies. To define the dose- and time-response patterns of cisplatin-induced hair-cell death, we treated 6-day-old larvae for 2 h in 50 µM-1 mM cisplatin and allowed them to recover. We observed delayed hair cell death, which peaked at 4-8 h post-exposure. Cisplatin also activated a robust inflammatory response, as determined by macrophage recruitment and phagocytosis of hair cells. However, selective depletion of macrophages did not affect hair cell loss. We also examined the effect of cisplatin treatment on fish behavior and found that cisplatin-induced lateral line injury measurably impaired rheotaxis. Finally, we examined the function of remaining hair cells that appeared resistant to cisplatin treatment. We observed significantly reduced uptake of the cationic dye FM1-43 in these cells relative to untreated controls, indicating that surviving hair cells may be functionally impaired. Cumulatively, these results indicate that relatively brief exposures to cisplatin can produce hair cell damage and delayed hair cell death. Our observations provide guidance on standardizing methods for the use of the zebrafish model in studies of cisplatin ototoxicity.


Assuntos
Sistema da Linha Lateral , Ototoxicidade , Animais , Cisplatino/toxicidade , Peixe-Zebra/fisiologia , Larva
11.
Front Cell Dev Biol ; 10: 961623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211471

RESUMO

Collective swimming is evident in the sperm of several mammalian species. In bull (Bos taurus) sperm, high viscoelasticity of the surrounding fluid induces the sperm to form dynamic clusters. Sperm within the clusters swim closely together and align in the same direction, yet the clusters are dynamic because individual sperm swim into and out of them over time. As the fluid in part of the mammalian female reproductive tract contains mucus and, consequently, is highly viscoelastic, this mechanistic clustering likely happens in vivo. Nevertheless, it has been unclear whether clustering could provide any biological benefit. Here, using a microfluidic in vitro model with viscoelastic fluid, we found that the collective swimming of bull sperm in dynamic clusters provides specific biological benefits. In static viscoelastic fluid, clustering allowed sperm to swim in a more progressive manner. When the fluid was made to flow in the range of 2.43-4.05 1/sec shear rate, clustering enhanced the ability of sperm to swim upstream. We also found that the swimming characteristics of sperm in our viscoelastic fluid could not be fully explained by the hydrodynamic model that has been developed for sperm swimming in a low-viscosity, Newtonian fluid. Overall, we found that clustered sperm swam more oriented with each other in the absence of flow, were able to swim upstream under intermediate flows, and better withstood a strong flow than individual sperm. Our results indicate that the clustering of sperm can be beneficial to sperm migrating against an opposing flow of viscoelastic fluid within the female reproductive tract.

12.
Biophys Physicobiol ; 19: e190026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160323

RESUMO

Ciliates are swimming microorganisms in aquatic environments. Habitats where ciliates accumulate include nutrient-rich solid-liquid interfaces such as pond bottom walls and waterweed surfaces. The ciliates stay near the walls to survive. We investigated the dynamics of the near-wall behavior of ciliates. In experiments, the ciliates were made to slide on a flat wall of glass substrate. When encountering the wall, the wall-side cilia of the cells stop their motion and lose their propelling activity, which indicates that the ciliates have a mechano-sensing system for cilia beating. Based on the experimental results, we hypothesized that the ciliary thrust force that propels the cell body becomes asymmetric, and the asymmetry of the thrust force generates a head-down torque to keep the cell sliding on the wall. To prove this hypothesis, we performed numerical simulations by using a developed hydrodynamic model for swimming ciliates. The model revealed that the loss of cilia activity on the wall side physically induces a sliding motion, and the aspect ratio of the cell body and effective cilium area are critical functions for the sliding behavior on a wall. In addition, we investigated the stability of the sliding motion against an external flow. We found that ciliates slide upstream on a wall. Interestingly, the dynamics of this upstream sliding, called rheotaxis, were also explained by the identical physical conditions for no-flow sliding. Only two simple physical conditions are required to explain the dynamics of ciliate survival behavior. This review article is an extended version of the Japanese article, Fluid Dynamic Model Reveals a Mechano-sensing System Underlying the Behavior of Ciliates, published in SEIBUTSU BUTSURI Vol. 61, p. 16-19 (2021).

13.
Biomed Eng Lett ; 12(3): 331-342, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35892036

RESUMO

Microfluidic methods act as an effective motile sperm separation technique used in infertility treatments. This work presents a standalone microfluidic device to separate motile sperm cells from non-motile sperm cells and debris. The separation mechanism is based on the centrifugal force acting on sperms and the ability of progressive motile sperms to swim upstream. The separation of motile sperm is carried out using a simple T-shaped microchannel which constitutes three reservoirs: one inlet and two outlets. Herein, one of the outlets is kept sealed. The sealed channel leads to a high-velocity gradient and a rheotaxis zone at the T junction resulting in the separation of motile sperms. Separated sperms are isolated in a sealed channel with a low Reynolds number flow so that sperms cannot have a net displacement, which ensures that the sperms do not re-enter the fluid flow. CFD simulation is conducted to study the flow fields inside the channel and experimental investigation is carried to observe the separation behaviour of sperms. The reported device provides 100% sperm separation efficiency and ensures the entrapment of sperm cells for a longer period. A modified colorimetric nitroblue tetrazolium test conducted on separated sperm cells shows that there is only a marginal increase in superoxide (O2 -) production, proving normal sperm integrity. This device offers an effective and safe alternative to conventional sperm sorting methods. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-022-00229-9.

14.
J Zool (1987) ; 316(4): 271-281, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35814943

RESUMO

Social context may influence the perception of sensory cues and the ability to display refined behavioral responses. Previous work suggests that effective responses to environmental cues can be contingent on having a sufficient number of individuals in a group. Thus, the changes in group size may have profound impacts, particularly on the behavior of small social groups. Using zebrafish (Danio rerio), here we examined how changes in group size influence the ability to respond to changes in water flow. We found that fish in relatively larger groups displayed stronger rheotaxis even when comparing pairs of fish with groups of four fish, indicating that a small increase in group size can enhance the responsiveness to environmental change. Individual fish in relatively larger groups also spent less time in the energetically costly leading position compared to individuals in pairs, indicating that even a small increase in group size may provide energetic benefits. We also found that the shoal cohesion was dependent on the size of the group but within a given group size, shoal cohesion did not vary with flow rate. Our study highlights that even a small change in group size could significantly affect the way social fish respond to the changes in water flow, which could be an important attribute that shapes the resilience of social animals in changing environments.

15.
Colloids Surf B Biointerfaces ; 217: 112654, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816878

RESUMO

In this work we investigated the role of fluid in the initial phase of bacterial adhesion on textured surfaces, focusing onto the approach of the bacterial cells towards the surface. In particular, stainless steel surfaces textured via femtosecond laser interaction have been considered. The method combined a simulation routine, based on the numerical solution of Navier-Stokes equations, and the use of a theoretical model, based on the Smoluchowski's equation. Results highlighted a slowdown of the fluid velocity field in correspondence of the surface dales. In addition, a shear induced accumulation on the top of the surface protrusions was predicted for motile bacterial species, E. coli. In particular, we observed a role of the surface protrusions in increasing the range over which motile bacterial species are attracted towards the surface through a rheotactic mechanism. In other words, we found that, in certain conditions of fluid flow and textured surface morphology, surface protrusions act as a sort of "rheotactic antennas".


Assuntos
Aderência Bacteriana , Escherichia coli , Simulação por Computador , Lasers , Aço Inoxidável
16.
Elife ; 112022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666104

RESUMO

For over a century, scientists have sought to understand how fish orient against an incoming flow, even without visual and flow cues. Here, we elucidate a potential hydrodynamic mechanism of rheotaxis through the study of the bidirectional coupling between fish and the surrounding fluid. By modeling a fish as a vortex dipole in an infinite channel with an imposed background flow, we establish a planar dynamical system for the cross-stream coordinate and orientation. The system dynamics captures the existence of a critical flow speed for fish to successfully orient while performing cross-stream, periodic sweeping movements. Model predictions are examined in the context of experimental observations in the literature on the rheotactic behavior of fish deprived of visual and lateral line cues. The crucial role of bidirectional hydrodynamic interactions unveiled by this model points at an overlooked limitation of existing experimental paradigms to study rheotaxis in the laboratory.


One fascinating and perplexing fact about fish is that they tend to orient themselves and swim against the flow, rather than with it. This phenomenon is called rheotaxis, and it has countless examples, from salmon migrating upstream to lay their eggs to trout drift-foraging in a current. Yet, despite over a century of experimental studies, the mechanisms underlying rheotaxis remain poorly understood. There is general consensus that fish rely on water- and body-motion cues to vision, vestibular, tactile, and other senses. However, several questions remain unanswered, including how blind fish can perform rheotaxis or whether a passive hydrodynamic mechanism can support the phenomenon. One aspect that has been overlooked in studies of rheotaxis is the bidirectional hydrodynamic interaction between the fish and the surrounding flow, that is, how the presence of the fish alters the flow, which, in turn, affects the fish. To address these open questions about rheotaxis, Porfiri, Zhang and Peterson wanted to develop a mathematical model of fish swimming, one that could help understand the passive hydrodynamic pathway that leads to swimming against a flow. Unlike experiments on live animals, a mathematical model offers the ability to remove cues to certain senses without interfering with animal behavior. Porfiri, Zhang and Peterson modeled a fish as a pair of vortices located infinitely close to each other, rotating in opposite directions with the same strength. The vortex pair could freely move through an infinitely long channel with an imposed background flow, devoid of all sensory information expect of that accessed through the lateral line. Analyzing the resulting system revealed that there is a critical speed for the background flow above which the fish successfully orients itself against the flow, resulting in rheotaxis. This critical speed depends on the width of the channel the fish is swimming in. Depriving the fish of sensory information received through the lateral line does not preclude rheotaxis, indicating that rheotaxis could emerge in a completely passive manner. The finding that the critical speed for rheotaxis depends on channel width could improve the design of experiments studying the phenomenon, since this effect could confound experiments where fish are confined in narrow channels. In this vein, Porfiri, Zhang and Peterson's model could assist biologists in designing experiments detailing the multisensory nature of rheotaxis. Evidence of the importance of bidirectional hydrodynamic interactions on fish orientation may also inform modeling research on fish behavior.


Assuntos
Hidrodinâmica , Sistema da Linha Lateral , Animais , Sinais (Psicologia) , Peixes , Natação
17.
Zebrafish ; 19(3): 114-118, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666213

RESUMO

Zebrafish (Danio rerio) is used as a model for studying sensorineural hearing loss. The damage to the hair cells can be assessed by scoring rheotaxis behavior in zebrafish. In this study, we newly designed a rheotaxis behavioral assay protocol capable of quantifying rheotaxis behavior in zebrafish larvae. We chemically induced ototoxicity in the larvae using copper sulfate, a well-known ototoxin, and determined rheotaxis at different flow velocities. The simple, cost-effective, and high-throughput rheotaxis assay system can provide great insights into drug development and other behavioral studies.


Assuntos
Células Ciliadas Auditivas , Peixe-Zebra , Animais , Comportamento Animal , Ensaios de Triagem em Larga Escala/métodos , Larva
18.
Reprod Domest Anim ; 57(9): 1093-1098, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35723933

RESUMO

Herein, the microfluidic device technique was used to investigate the effects of GDF-9 concentrations and exposure time on the ram sperm positive rheotaxis (PR). Semen was collected from six rams and utilized for PR, motility and sperm kinetic parameter analysis using a computer-assisted sperm analysis program with controlled flow velocity following 0, 10, 20 or 30 min of incubation at 37°C with GDF-9 (200 , 400 or 600 ng/ml; semen sample without GDF-9 was used as a control). Results revealed that there was not an interaction between effects of GDF-9 concentrations and incubation duration on PR% (p = .457) and TM% (p = .099). A simple main effects analysis showed that GDF-9 concentrations had an effect on PR% (p = .003). However, the incubation duration did not have an effect on PR% (p = .101). GDF-9 concentrations had not an effect on TM% (p = .817). By contrast, the incubation duration affected on TM% (p = .026). A higher PR% was found (p < .05) at 200 ng GDF-9 after 10 min (46.7 ± 10.3) and 20 min (45.5 ± 11.5) of incubation. After 30 min of incubation, the PR% was found lowest (p < .05) at 400 ng of GDF-9 (30.6 ± 14.1) and 600 ng of GDF-9 (32.2 ± 9.6). There was no difference (p > .05) in the sperm kinetic parameters between the four treatment groups. In conclusion, the ram sperms had the best rheotaxis properties after 10 and 20 min of incubation with 200 ng of GDF-9 and were sensitive to high concretions.


Assuntos
Preservação do Sêmen , Sêmen , Animais , Criopreservação/métodos , Criopreservação/veterinária , Fator 9 de Diferenciação de Crescimento/farmacologia , Masculino , Análise do Sêmen/veterinária , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Ovinos , Carneiro Doméstico , Motilidade dos Espermatozoides , Espermatozoides
19.
Artigo em Inglês | MEDLINE | ID: mdl-35565139

RESUMO

The damming of the river changes the structure of the original river ecosystem, and although fish passage plays an important role in maintaining the connectivity of the river ecosystem, the fish have difficulty finding the fish passage entrance during the upstream process. This paper studied the rheotaxis of fish under three different water flow conditions experimentally through recirculating water tanks. To better understand the response of Crucian carp (Carassius auratus) to water flow stimulation, the representative swimming trajectory, sensing success rate, attraction success rate, reaction time, and attraction time of the fish were analyzed by using a video monitoring system. The experimental results showed that fish responded differently to single-peak and lateral bimodal outflow conditions: (1) the single-peak outflow condition had a much better attraction effect than the lateral bimodal outflow condition, both in terms of sensing success rate and attraction success rate; (2) the fish swam mainly in the middle area of the lateral bimodal outflow condition, while the fish swam more evenly in the single-peak outflow condition. Therefore, setting the attraction current at the right time and near the entrance of the fish passage may help to improve the effect of fish attraction.


Assuntos
Carpas , Ecossistema , Animais , Rios , Natação , Água
20.
ACS Nano ; 16(3): 4599-4608, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35230094

RESUMO

Fluid flow is ubiquitous in many environments that form habitats for microorganisms. Therefore, it is not surprising that both biological and artificial microswimmers show responses to flows that are determined by the interplay of chemical and physical factors. In particular, to deepen the understanding of how different systems respond to flows, it is crucial to comprehend the influence played by swimming pattern. The tendency of organisms to navigate up or down the flow is termed rheotaxis. Early theoretical studies predicted a positive rheotactic response for puller-type spherical Janus micromotors. However, recent experimental studies have focused on pusher-type Janus particles, finding that they exhibit cross-stream migration in externally applied flows. To study the response to the flow of swimmers with a qualitatively different flow pattern, we introduce Cu@SiO2 micromotors that swim toward their catalytic cap. On the basis of experimental observations, and supported by flow field calculations using a model for self-electrophoresis, we hypothesize that they behave effectively as a puller-type system. We investigate the effect of externally imposed flow on these spherically symmetrical Cu@SiO2 active Janus colloids, and we indeed observe a steady upstream directional response. Through a simple squirmer model for a puller, we recover the major experimental observations. Additionally, the model predicts a "jumping" behavior for puller-type micromotors at high flow speeds. Performing additional experiments at high flow speeds, we capture this phenomenon, in which the particles "roll" with their swimming axes aligned to the shear plane, in addition to being dragged downstream by the fluid flow.


Assuntos
Hidrodinâmica , Dióxido de Silício , Coloides , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA