Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.326
Filtrar
1.
Methods Mol Biol ; 2847: 193-204, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39312145

RESUMO

Riboswitches are naturally occurring regulatory segments of RNA molecules that modulate gene expression in response to specific ligand binding. They serve as a molecular 'switch' that controls the RNA's structure and function, typically influencing the synthesis of proteins. Riboswitches are unique because they directly interact with metabolites without the need for proteins, making them attractive tools in synthetic biology and RNA-based therapeutics. In synthetic biology, riboswitches are harnessed to create biosensors and genetic circuits. Their ability to respond to specific molecular signals allows for the design of precise control mechanisms in genetic engineering. This specificity is particularly useful in therapeutic applications, where riboswitches can be synthetically designed to respond to disease-specific metabolites, thereby enabling targeted drug delivery or gene therapy. Advancements in designing synthetic riboswitches for RNA-based therapeutics hinge on sophisticated computational techniques, which are described in this chapter. The chapter concludes by underscoring the potential of computational strategies in revolutionizing the design and application of synthetic riboswitches, paving the way for advanced RNA-based therapeutic solutions.


Assuntos
Biologia Computacional , Riboswitch , Biologia Sintética , Riboswitch/genética , Biologia Sintética/métodos , Biologia Computacional/métodos , Humanos , RNA/genética , Engenharia Genética/métodos , Aptâmeros de Nucleotídeos/genética , Ligantes , Conformação de Ácido Nucleico
2.
Synth Syst Biotechnol ; 10(1): 49-57, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39224149

RESUMO

As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering.

4.
Front Microbiol ; 15: 1457628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247693

RESUMO

Phenyllactic acid (PhLA), an important natural organic acid, can be used as a biopreservative, monomer of the novel polymeric material poly (phenyllactic acid), and raw material for various medicines. Herein, we achieved a high-level production of PhLA in Escherichia coli through the application of metabolic engineering and fermentation optimization strategies. First, the PhLA biosynthetic pathway was established in E. coli CGSC4510, and the phenylalanine biosynthetic pathway was disrupted to improve the carbon flux toward PhLA biosynthesis. Then, we increased the copy number of the key genes involved in the synthesis of the PhLA precursor phenylpyruvic acid. Concurrently, we disrupted the tryptophan biosynthetic pathway and enhanced the availability of phosphoenolpyruvate and erythrose 4-phosphate, thereby constructing the genetically engineered strain MG-P10. This strain was capable of producing 1.42 ± 0.02 g/L PhLA through shake flask fermentation. Furthermore, after optimizing the dissolved oxygen feedback feeding process and other conditions, the PhLA yield reached 52.89 ± 0.25 g/L in a 6 L fermenter. This study successfully utilized metabolic engineering and fermentation optimization strategies to lay a foundation for efficient PhLA production in E. coli as an industrial application.

5.
ACS Biomater Sci Eng ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226538

RESUMO

The presence of antibiotics in natural water bodies is a growing problem regarding the occurrence of antibiotic resistance among various species. This is mainly caused by the excessive use of medical and veterinary antibiotics as well as the lack of effective treatment processes for eliminating residual antibiotics from wastewaters. In this study, we introduce a genetically engineered biomaterial as a solution for the effective degradation of one of the dominantly found antibiotics in natural water bodies. Our biomaterial harnesses laccase-type enzymes, which are known to attack specific types of antibiotics, i.e., fluoroquinolone-type synthetic antibiotics, and as a result degradation occurs. The engineered biomaterial is built using Escherichia coli biofilm protein CsgA as a scaffold, which is fused separately to two different laccase enzymes with the SpyTag-SpyCatcher peptide-protein duo. The designed biofilm materials were successful in degrading ciprofloxacin, as demonstrated with the data obtained from mass spectrometry analysis and cell viability assays.

6.
Braz J Microbiol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259478

RESUMO

Finding novel promoter sequences is a cornerstone of synthetic biology. To contribute to the expanding catalog of biological parts, we employed a promoter-trap approach to identify novel sequences within an Antarctic microbial community that act as broad host-range promoters functional in diverse Pseudomonadota. Using Pseudomonas putida KT2440 as host, we generated a library comprising approximately 2,000 clones resulting in the identification of thirteen functional promoter sequences, thereby expanding the genetic toolkit available for this chassis. Some of the discovered promoter sequences prove to be broad host-range as they drove gene expression not only in P. putida KT2440 but also in Escherichia coli DH5α, Cupriavidus taiwanensis R1T, Paraburkholderia phymatum STM 815T, Ensifer meliloti 1021, and an indigenous Antarctic bacterium, Pseudomonas sp. UYIF39. Our findings enrich the existing catalog of biological parts, offering a repertoire of broad host-range promoter sequences that exhibit functionality across diverse members of the phylum Pseudomonadota, proving Antarctic microbial community as a valuable resource for prospecting new biological parts for synthetic biology.

7.
Bioorg Chem ; 153: 107774, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39260160

RESUMO

In most organisms, the tri-carboxylic acid cycle (TCA cycle) is an essential metabolic system that is involved in both energy generation and carbon metabolism. Its uni-directionality, however, restricts its use in synthetic biology and carbon fixation. Here, it is describing the use of the modified TCA cycle, called the Tri-carboxylic acid Hooked to Ethylene by Enzyme Reactions and Amino acid Synthesis, the reductive tricarboxylic acid branch/4-hydroxybutyryl-CoA/ethylmalonyl-CoA/acetyl-CoA (THETA) cycle, in Escherichia coli for the purposes of carbon fixation and amino acid synthesis. Three modules make up the THETA cycle: (1) pyruvate to succinate transformation, (2) succinate to crotonyl-CoA change, and (3) crotonyl-CoA to acetyl-CoA and pyruvate change. It is presenting each module's viability in vivo and showing how it integrates into the E. coli metabolic network to support growth on minimal medium without the need for outside supplementation. Enzyme optimization, route redesign, and heterologous expression were used to get over metabolic roadblocks and produce functional modules. Furthermore, the THETA cycle may be improved by including components of the Carbon-Efficient Tri-Carboxylic Acid Cycle (CETCH cycle) to improve carbon fixation. THETA cycle's promise as a platform for applications in synthetic biology and carbon fixation.

8.
Metab Eng ; 86: 12-28, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39242074

RESUMO

For mammalian synthetic biology research, multiple orthogonal and tunable gene expression systems have been developed, among which the tetracycline (Tet)-inducible system is a key tool for gain-of-function mutations. Precise and long-lasting regulation of genetic circuits is necessary for the effective use of these systems in genetically engineered stable cell lines. However, current cell line development strategies, which depend on either random or site-specific integration along with antibiotic selection, are unpredictable and unsustainable, limiting their widespread use. To overcome these issues, we aimed to establish a Robust Overexpression via Site-specific integration of Effector (ROSE) system, a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated streamlined Tet-On3G-inducible master cell line (MCL) development platform. ROSE MCLs equipped with a landing pad facilitated the transcriptional regulation of various effector genes via recombinase-mediated cassette exchange. Long-term investigation revealed that the modular design of genetic payloads and integration sites significantly affected the induction capacity and stability, with ROSE MCLs exhibiting exceptional induction performance. To demonstrate the versatility of our platform, we explored its efficiency for the precise regulation of selection stringency, manufacturing of therapeutic antibodies with tunable expression levels and timing, and transcription factor engineering. Overall, this study demonstrated the effectiveness and reliability of the ROSE platform, highlighting its potential for various biological and biotechnological applications.

9.
Res Sq ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39257970

RESUMO

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.

10.
Foods ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39272427

RESUMO

Creating propositions for the near and distant future requires a design to catch the tide of the times and move with or against trends. In addition, appropriate, adaptable, flexible, and transformational projects are needed in light of changes in science, technology, social, economic, political, and demographic fields over time. Humanity is facing a period in which science and developing technologies will be even more important in solving food safety, health, and environmental problems. Adapting to and mitigating climate change; reducing pollution, waste, and biodiversity loss; and feeding a growing global population with safe food are key challenges facing the agri-food industry and the food supply chain, requiring systemic transformation in agricultural systems and sustainable future agri-food. The aim of this review is to compile scientific evidence and data, define, and create strategies for the future in terms of food security, safety, and sufficiency; future sustainable foods and alternative protein sources; factors affecting food and nutrition security and agriculture; and promising food systems such as functional foods, novel foods, synthetic biology, and 3D food printing. In this review, the safety, conservation, nutritional, sensory, welfare, and potential challenges and limitations of food systems and the opportunities to overcome them on the basis of new approaches, innovative interpretations, future possibilities, and technologies are discussed. Additionally, this review also offers suggestions for future research and food trends in light of future perspectives. This article focuses on future sustainable foods, alternative protein sources, and novel efficient food systems, highlights scientific and technological advances and new research directions, and provides a significant perspective on sustainability.

11.
Mol Ther Methods Clin Dev ; 32(3): 101317, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39257529

RESUMO

We sought to engineer mammalian cells to secrete nuclease activity as a step toward removing the need to purchase commercial nucleases as process additions in bioprocessing of AAV5 and AAV9 as gene therapy vectors. Engineering HeLa cells with a serratial nuclease transgene did not bring about nuclease activity in surrounding media whereas engineering serum-free, suspension-adapted HEK293F cells with a staphylococcal nuclease transgene did result in detectable nuclease activity in surrounding media of the resultant stable transfectant cell line, "NuPro-1S." When cultivated in serum-free media, NuPro-1S cells yielded 3.06 × 1010 AAV5 viral genomes (vg)/mL via transient transfection, compared with 3.85 × 109 vg/mL from the parental HEK293F cell line. AAV9 production, followed by purification by ultracentrifugation, yielded 1.8 × 1013 vg/mL from NuPro-1S cells compared with 7.35 × 1012 vg/mL from HEK293F cells. AAV9 from both HEK293F and NuPro-1S showed almost identical ability to transduce cells embedded in a scaffold tissue mimic or cells of mouse neonate brain tissue in vivo. Comparison of agarose gel data indicated that the DNA content of AAV5 and AAV9 process streams from NuPro-1S cells was reduced by approximately 60% compared with HEK293F cells. A similar reduction in HEK293F cells was only achievable with a 50 U/mL Benzonase treatment.

12.
Front Plant Sci ; 15: 1419157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220018

RESUMO

Space exploration and interstellar migration are important strategies for long-term human survival. However, extreme environmental conditions, such as space radiation and microgravity, can cause adverse effects, including DNA damage, cerebrovascular disease, osteoporosis, and muscle atrophy, which would require prophylactic and remedial treatment en route. Production of oral drugs in situ is therefore critical for interstellar travel and can be achieved through industrial production utilizing microalgae, which offers high production efficiency, edibility, resource minimization, adaptability, stress tolerance, and genetic manipulation ease. Synthetic biological techniques using microalgae as a chassis offer several advantages in producing natural products, including availability of biosynthetic precursors, potential for synthesizing natural metabolites, superior quality and efficiency, environmental protection, and sustainable development. This article explores the advantages of bioproduction from microalgal chassis using synthetic biological techniques, suitability of microalgal bioreactor-based cell factories for producing value-added natural metabolites, and prospects and applications of microalgae in interstellar travel.

13.
J Microbiol Biotechnol ; 34(10): 1-12, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39233526

RESUMO

The human microbiome, consisting of microorganisms that coexist symbiotically with the body, impacts health from birth. Alterations in gut microbiota driven by factors such as diet and medication can contribute to diseases beyond the gut. Synthetic biology has paved the way for engineered microbial therapeutics, presenting promising treatments for a variety of conditions. Using genetically encoded biosensors and dynamic regulatory tools, engineered microbes can produce and deliver therapeutic agents, detect biomarkers, and manage diseases. This review organizes engineered microbial therapeutics by disease type, emphasizing innovative strategies and recent advancements. The scope of diseases includes gastrointestinal disorders, cancers, metabolic diseases, infections, and other ailments. Synthetic biology facilitates precise targeting and regulation, improving the efficacy and safety of these therapies. With promising results in animal models, engineered microbial therapeutics provide a novel alternative to traditional treatments, heralding a transformative era in diagnostics and treatment for numerous diseases.

14.
Microbiol Res ; 288: 127884, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39226667

RESUMO

Synechococcus sp. PCC7002 has been considered as a photosynthetic chassis for the conversion of CO2 into biochemicals through genetic modification. However, conventional genetic manipulation techniques prove inadequate for comprehensive genetic modifications in this strain. Here, we present the development of a genome editing tool tailored for S. PCC7002, leveraging its endogenous type I-D CRISPR-Cas system. Utilizing this novel tool, we successfully deleted the glgA1 gene and iteratively edited the genome to obtain a double mutant of glgA1 and glgA2 genes. Additionally, large DNA fragments encompassing the entire type I-A (∼14 kb) or III-B CRISPR-Cas (∼21 kb) systems were completely knocked-out in S. PCC7002 using our tool. Furthermore, the endogenous pAQ5 plasmid, approximately 38 kb in length, was successfully cured from S. PCC7002. Our work demonstrates the feasibility of harnessing the endogenous CRISPR-Cas system for genome editing in S. PCC7002, thereby enriching the genetic toolkit for this species and providing a foundation for future enhancements in its biosynthetic efficiency.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma Bacteriano , Plasmídeos , Synechococcus , Edição de Genes/métodos , Synechococcus/genética , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deleção de Genes
15.
Microbiol Res ; 288: 127888, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39236473

RESUMO

2,4-dihydroxybutyric acid (DHB) and 2-keto-4-hydroxybutyrate (OHB) are non-natural molecules obtained through synthetic pathways from renewable carbon source. As they are structurally similar to lactate and pyruvate respectively, they could possibly interfere with the metabolic network of Escherichia coli. In fact, we showed that DHB can be easily oxidized by the membrane associated L and D-lactate dehydrogenases encoded by lldD, dld and ykgF into OHB, and the latter being cleaved into pyruvate and formaldehyde by several pyruvate-dependent aldolases, with YagE being the most effective. While formaldehyde was readily detoxified into formate, Escherichia coli K12 MG1655 strain failed to grow on DHB despite of the production of pyruvate. To find out the reason for this failure, we constructed a mutant strain whose growth was rendered dependent on DHB and subjected this strain to adaptive evolution. Genome sequencing of the adapted strain revealed an essential role for ygbI encoding a transcriptional repressor of the threonate operon in this DHB-dependent growth. This critical function was attributed to the derepression of ygbN encoding a putative threonate transporter, which was found to exclusively transport the D form of DHB. A subsequent laboratory evolution was carried out with E. coli K12 MG1655 deleted for ΔygbI to adapt for growth on DHB as sole carbon source. Remarkably, only two additional mutations were disclosed in the adapted strain, which were demonstrated by reverse engineering to be necessary and sufficient for robust growth on DHB. One mutation was in nanR encoding the transcription repressor of sialic acid metabolic genes, causing 140-fold increase in expression of nanA encoding N-acetyl neuraminic acid lyase, a pyruvate-dependent aldolase, and the other was in the promoter of dld leading to 14-fold increase in D-lactate dehydrogenase activity on DHB. Taken together, this work illustrates the importance of promiscuous enzymes in underground metabolism and moreover, in the frame of synthetic pathways aiming at producing non-natural products, these underground reactions could potentially penalize yield and title of these bio-based products.


Assuntos
Carbono , Proteínas de Escherichia coli , Escherichia coli , Carbono/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Redes e Vias Metabólicas , Óperon , Hidroxibutiratos/metabolismo , Regulação Bacteriana da Expressão Gênica , Ácido Pirúvico/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/enzimologia , Mutação , Formaldeído/metabolismo , Ácido Láctico/metabolismo
16.
Biochem J ; 481(18): 1241-1253, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230569

RESUMO

The only known pathway for biosynthesis of the polyamine norspermidine starts from aspartate ß-semialdehyde to form the diamine 1,3-diaminopropane, which is then converted to norspermidine via a carboxynorspermidine intermediate. This pathway is found primarily in the Vibrionales order of the γ-Proteobacteria. However, norspermidine is also found in other species of bacteria and archaea, and in diverse single-celled eukaryotes, chlorophyte algae and plants that do not encode the known norspermidine biosynthetic pathway. We reasoned that products of polyamine catabolism could be an alternative route to norspermidine production. 1,3-diaminopropane is formed from terminal catabolism of spermine and spermidine, and norspermidine can be formed from catabolism of thermospermine. We found that the single-celled chlorophyte alga Chlamydomonas reinhardtii thermospermine synthase (CrACL5) did not aminopropylate exogenously-derived 1,3-diaminopropane efficiently when expressed in Escherichia coli. In contrast, it completely converted all E. coli native spermidine to thermospermine. Co-expression in E. coli of the polyamine oxidase 5 from lycophyte plant Selaginella lepidophylla (SelPAO5), together with the CrACL5 thermospermine synthase, converted almost all thermospermine to norspermidine. Although CrACL5 was efficient at aminopropylating norspermidine to form tetraamine norspermine, SelPAO5 oxidizes norspermine back to norspermidine, with the balance of flux being inclined fully to norspermine oxidation. The steady-state polyamine content of E. coli co-expressing thermospermine synthase CrACL5 and polyamine oxidase SelPAO5 was an almost total replacement of spermidine by norspermidine. We have recapitulated a potential hybrid biosynthetic-catabolic pathway for norspermidine production in E. coli, which could explain norspermidine accumulation in species that do not encode the known aspartate ß-semialdehyde-dependent pathway.


Assuntos
Espermidina , Espermidina/metabolismo , Espermidina/análogos & derivados , Espermidina/biossíntese , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Vias Biossintéticas , Escherichia coli/metabolismo , Escherichia coli/genética , Espermina/metabolismo , Espermina/análogos & derivados
17.
ACS Appl Mater Interfaces ; 16(37): 48870-48879, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39254000

RESUMO

DNA amplification technologies have significantly advanced biotechnology, particularly in DNA storage. However, adaptation of these technologies to DNA storage poses substantial challenges. Key bottlenecks include achieving high throughput to manage large data sets, ensuring rapid and efficient DNA amplification, and minimizing bias to maintain data fidelity. This perspective begins with an overview of natural and artificial amplification strategies, such as polymerase chain reaction and isothermal amplification, highlighting their respective advantages and limitations. It then explores the prospective applications of these techniques in DNA storage, emphasizing the need to optimize protocols for scalability and robustness in handling diverse digital data. Concurrently, we identify promising avenues, including advancements in enzymatic processes and novel amplification methodologies, poised to mitigate existing constraints and propel the field forward. Ultimately, we provide insights into how to utilize advanced DNA amplification strategies poised to revolutionize the efficiency and feasibility of data storage, ushering in enhanced approaches to data retrieval in the digital age.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/química , DNA/genética , Armazenamento e Recuperação da Informação/métodos , Reação em Cadeia da Polimerase/métodos , Humanos
18.
J Fungi (Basel) ; 10(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39330409

RESUMO

Punicic acid (PuA) is a conjugated fatty acid with a wide range of nutraceutical properties naturally present in pomegranate seed oil. To meet the rising demand for pomegranate seed oil, a single-cell oil enriched in PuA provides a sustainable biomass-derived alternative. This study describes the production of a PuA-enriched single-cell oil through the engineering of the red yeast Rhodotorula toruloides grown in glucose and a low-cost substrate, crude glycerol. The gene for Punica granatum fatty acid conjugase, PgFADX, was randomly integrated into the genome of R. toruloides without disrupting the carotenoid synthesis. In shake flask studies, the effects of three promoters (PPGI1, PNAR1, and PPMA1) on PuA production were evaluated. PuA titers of 105.77 mg/L and 72.81 mg/L were obtained from engineered cells expressing PgFADX from the PPMA1 promoter cultivated for 72 h in glucose and for 168 h in crude glycerol, respectively. Furthermore, the detailed lipid analysis revealed a high enrichment PuA in the triacylglycerol lipid structures, even without substantial modifications to the metabolic pathways. This report demonstrates the high potential of R. toruloides in the upcycling of a low-cost substrate, crude glycerol, into a value-added product such as PuA. The findings support the feasibility of using engineered R. toruloides for sustainable production of PuA-enriched single-cell oil.

19.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 2983-2997, 2024 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-39319719

RESUMO

Bovine chymosin is an essential food enzyme widely used in cheese production in the dairy industry. This study used a codon-optimized prochymosin gene to construct an expression cassette for extracellular expression of bovine chymosin in Kluyveromyces lactis. After integration of the prochymosin gene into the host cell genome, the single-copy integration strain KLUcym showed the clotting activity of 40 U/mL in a shake flask. The CRISPR/Cas9 system was employed to delete amdS and construct the double-copy integration strain and triple-copy integration strain, which achieved the clotting activities of 70 U/mL and 78 U/mL in shake flasks, separately. Subsequently, multiple rounds of UV mutagenesis were performed on the double-copy strain KLUcymD, and a recombinant K. lactis strain with a high yield of bovine chymosin was obtained. This strain achieved the clotting activity of 270 U/mL in a shake flask and 600 U/mL in a 5 L bioreactor after 76 h. In summary, we construct a strain KLUcymD-M2 for high production of bovine chymosin, which lays a foundation of industrial fermentation.


Assuntos
Sistemas CRISPR-Cas , Quimosina , Kluyveromyces , Mutagênese , Raios Ultravioleta , Quimosina/genética , Quimosina/metabolismo , Quimosina/biossíntese , Kluyveromyces/genética , Kluyveromyces/metabolismo , Animais , Bovinos , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo
20.
Appl Environ Microbiol ; : e0034824, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324814

RESUMO

Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts that have the potential to contribute to the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis show promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify isopropyl ß-D-1-thiogalactopyranoside-inducible promoters with regulated activity in both organisms (up to ~15-fold induction in N. aromaticivorans and ~5-fold induction in R. sphaeroides). Combining Tn7 integration with promoters from our library, we establish CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference systems for N. aromaticivorans and R. sphaeroides (up to ~10-fold knockdown in N. aromaticivorans and R. sphaeroides) that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these species and other Alphaproteobacteria.IMPORTANCEIt is important to increase our understanding of the microbial world to improve health, agriculture, the environment, and biotechnology. For example, building a sustainable bioeconomy depends on the efficient conversion of plant material to valuable biofuels and bioproducts by microbes. One limitation in this conversion process is that microbes with otherwise promising properties for conversion are challenging to genetically engineer. Here we report genetic tools for Novosphingobium aromaticivorans and Rhodobacter sphaeroides that add to the burgeoning set of tools available for genome engineering and gene expression in Alphaproteobacteria. Our approaches allow straightforward insertion of engineered pathways into the N. aromaticivorans or R. sphaeroides genome and control of gene expression by inducing genes with synthetic promoters or repressing genes using CRISPR interference. These tools can be used in future work to gain additional insight into these and other Alphaproteobacteria and to aid in optimizing yield of biofuels and bioproducts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA