Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
1.
Food Chem X ; 24: 101785, 2024 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-39290756

RESUMO

This study examines the effect of UV irradiation on the oxidation stability of Linum usitatissimum oil, presenting possible changes in the phytochemical profile due to photo-oxidation. GC-MS analysis of the oils identified 11 fatty acid compounds with a high percentage of unsaturated fatty acids, the most important of which is α-linolenic acid (ALA), known as omega-3 (48.88 %), also significant profiles of phytosterol and tcocopherol isomers rich in ß-Sitosterol and γ-tocopherols respectively. As well as physicochemical properties such as free fatty acids (FFA %), peroxide value (PV) and iodine value (IV), and nutritional indexes that determine the significant changes observed during the oxidation process, the most important of which is the progressive increase in acidity, peroxide, conjugated dienes and trienes and degrees of unsaturation over 8 h of UV exposure. High levels of carotenoids and phenolic compounds (TPC) protect and enhance oil quality in the face of irradiation, so a significantly small difference is observed between irradiated and non-irradiated oil during photo-oxidation.

2.
J Am Nutr Assoc ; : 1-9, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302853

RESUMO

OBJECTIVE: Experimental studies suggest that carotenoids and tocopherols modulate pancreatic carcinogenesis because they have antioxidant and other functions. We investigated the associations between intakes of these compounds and the risk of pancreatic cancer in a case-control study conducted in 1994-1998. METHODS: The present analysis included 150 cases of pancreatic cancer recruited from all hospitals in the metropolitan area of the Twin Cities and Mayo Clinic and 459 controls randomly selected from the general population and frequency matched to cases by age, sex, and race. The intakes of carotenoids and tocopherols were assessed with a validated food frequency questionnaire. Unconditional logistic regression analysis was performed to evaluate the associations of interest. RESULTS: The energy-adjusted intake of lutein/zeaxanthin was significantly lower in cases (2410 µg/day) than in controls (3020 µg/day). After adjustment for confounders, persons in the fourth quartile of lutein/zeaxanthin intake had a reduced risk of pancreatic cancer compared with those in the first quartile [odds ratio (OR) (95% CI): 0.40 (0.17-0.91)]. There were no significant associations with intakes of other carotenoids and tocopherols considered and with a composite score created from all individual carotenoids examined. We did not detect any significant interactions of intakes of carotenoids and tocopherols with age, sex, cigarette smoking, or alcohol intake in relation to pancreatic cancer risk. CONCLUSION: The present study suggests an inverse association between lutein/zeaxanthin intake and pancreatic cancer risk, but a potential beneficial effect was not observed for other carotenoids and tocopherols.

3.
Foods ; 13(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39272520

RESUMO

Balanites aegyptiaca is a multipurpose fruit tree that grows wild in many arid and semi-arid African areas; however, recent domestication efforts have been undertaken to protect the species from the threat of urbanization and climate change. Within this context, the impact of the domestication of Algerian B. aegyptiaca was evaluated on its seed oil, which is already valued as food. Hence, oils from wild and domesticated trees were comparatively investigated for their physicochemical and compositional quality. Both oil types had a good oxidative stability and met the requirements for human consumption in terms of the saponification index, the free acidity, and the peroxide value. Moreover, they showed a comparable FA composition, with high levels of oleic and linoleic acids, which are beneficial for the consumer's health. Domestication led to a statistically significant decrease in the tocopherols and polyphenols in the oil. The phytosterols and squalene were slightly lower in the domesticated oil than in the wild relative, although no statistically significant differences were observed. A comparable mineral profile was revealed and the minimal variations in the trace elements between the oils could be related to the natural variability in the seeds. Hopefully, this study will encourage the domestication of B. aegyptiaca as a sustainable strategy for enhancing its socioeconomic value in Algerian rural areas.

4.
Foods ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123528

RESUMO

Cold-pressed oils are rich sources of bioactive substances, which may protect triacylglycerols from degradation during frying. Nevertheless, these substances may decompose under high temperature. This work considers the content of bioactive substances in blends and their changes during high-temperature heating. Blends of refined rapeseed oil with 5% or 25% in one of three cold-pressed oils (rapeseed, coriander and apricot) were heated at 170 or 200 °C in a thin layer on a pan. All non-heated blends and cold-pressed oils were tested for fatty acid profile, content and composition of phytosterols, tocochromanols, chlorophyll and radical scavenging activity (RSA) analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Moreover, the stability of phytosterols, tocochromanols, DPPH and ABTS values was determined in heated blends. All tocochromanols were lost during the heating process, in particular, at 200 °C. However, there were some differences between homologues. α-Tocopherol and δ-tocopherol were the most thermolabile and the most stable, respectively. Phytosterols were characterized by very high stability at both temperatures. We observed relationships between ABTS and DPPH values and contents of total tocochromanols and α-tocopherol. The obtained results may be useful in designing a new type of fried food with improved health properties and it may be the basis for further research on this topic.

5.
Foods ; 13(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123609

RESUMO

The quality of fried products greatly depends on the changes occurring during frying. The purpose of this work was to study the lipid quality changes taking place in selected frozen foods after domestic deep-frying. Conventional, high-linoleic sunflower oil (HLSO) and high-oleic sunflower oil (HOSO) were used, and the frozen foods selected were French fries, croquettes, and nuggets. The foods were fried in domestic fryers under discontinuous conditions. Analyses included fatty acid composition, sterols, tocopherols, squalene, and lipid alteration levels. In all fried foods, the content of lipids increased after frying, which is consistent with previous findings. However, the lipid exchange between the food and the oil greatly depended on the food characteristics. Specifically, the levels of frying oil in the food lipids were about 90, 40, and 58% for French fries, croquettes, and nuggets, respectively. The main results obtained showed that lipid alteration levels considerably decreased and amounts of sterols and tocopherols significantly increased in French fries' lipids after frying. In both chicken products, croquettes and nuggets, the best quality improvement observed was a significant decrease in cholesterol in food lipids due to the lipid exchange. Overall, frying with HLSO and HOSO improved the quality and nutritional properties of all products tested.

6.
Sci Total Environ ; 950: 175062, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39098422

RESUMO

Pollination is crucial for biodiversity and food security. Heterogeneous agricultural landscapes have a positive effect on pollinator abundance and enhance crop production and quality. In this study, we explored the effects of three landscape features (past crop diversity measured as the Equivalent Richness of crop functional Groups in the previous year [ERGp], semi-natural habitat percentage [SNH], and mean field size [MFS]) and pollinator densities (wild bees [WB] and honey bees [HB]) on pollination and seed quantity and quality in rapeseed crops. Surveying the pollinator density in 20 rapeseed fields revealed a positive relationship with ERGp in the landscape. A pollinator exclusion experiment compared bagged and open-pollinated self-compatible rapeseed plants and revealed insect pollination effectiveness (fruits per flower and number of seeds per pod) and seed quality (oil content). Seed parameters were evaluated in relation to pollinator density (WB-HB) and landscape characteristics. The ERGp emerged as a crucial landscape feature that positively impacted WB density. When insect pollinators were excluded, plants exhibited reduced pollination effectiveness and seed quality. Analysis of open-pollinated plants highlighted ERGp as the most influential variable, positively affecting both sets of parameters. The MFS and SNH showed different but important relationships. Total tocopherol and α-tocopherol were positively correlated with pollinator density in HB, whereas WB showed a positive correlation with γ-tocopherol levels. Increased ERGp positively affected pollinator density and pollination effectiveness, thereby improving oilseed rape production quantity and quality. This study provides new insights into agroecosystem management and pollinator-friendly practices.


Assuntos
Agricultura , Produtos Agrícolas , Polinização , Animais , Agricultura/métodos , Abelhas/fisiologia , Biodiversidade , Brassica rapa/fisiologia , Brassica napus/fisiologia , Sementes/fisiologia
7.
Antioxidants (Basel) ; 13(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39199174

RESUMO

Recently, there has been a significant transition in the dietary preferences of consumers toward foods containing health-promoting compounds. In addition, as people's environmental awareness increases, they are increasingly looking for sustainable solutions. Palm oil, an oil used extensively by the food industry, does not fit these criteria. This study investigated the development of a complex oil blend consisting of commonly used vegetable oils such as corn, rapeseed, sunflower, and palm oil. The aim was to find the optimal blended oil and compare this combination with palm oil in terms of its oxidative stability, antioxidant capacity, and the composition of bioactive compounds (i.e., fatty acids, tocopherols, and carotenoids). Palm oil was found to have greater oxidative stability as a result of its increased concentration of saturated fatty acids. The optimal blended oil, which consisted of corn and rapeseed oil at a ratio of 4:3 w/w, inhibited the superior antioxidant activity, showing a ~33% increase in DPPH• inhibition activity. ATR-FTIR spectra further verified the existence of a significant quantity of saturated fatty acids in palm oil and unsaturated fatty acids in the blended oil. Finally, several correlation analyses revealed interesting connections between oil samples and investigated parameters. This work has the potential to establish a basis for the mass production of oil blends that possess high concentrations of antioxidant compounds and reduce the use of palm oil.

8.
Plant Sci ; 348: 112233, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173886

RESUMO

Tocochromanols, collectively known as Vitamin E, serve as natural lipid-soluble antioxidants that are exclusively obtained through dietary intake in humans. Synthesized by all plants, tocochromanols play an important role in protecting polyunsaturated fatty acids in plant seeds from lipid peroxidation. While the genes involved in tocochromanol biosynthesis have been fully elucidated in Arabidopsis thaliana, Oryza sativa and Zea mays, the genetic basis of tocochromanol accumulation in sweet corn remains poorly understood. This gap is a consequence of limited natural genetic diversity and harvest at immature growth stages. In this study, we conducted comprehensive genome-wide association studies (GWAS) on a sweet corn panel of 295 individuals with a high-density molecular marker set. In total, thirteen quantitative trait loci (QTLs) for individual and derived tocochromanol traits were identified. Our analysis identified novel roles for three genes, ZmCS2, Zmshki1 and ZmB4FMV1, in the regulation of α-tocopherol accumulation in sweet corn kernels. We genetically validated the role of Zmshki1 through the generation of a knock-out line using CRISPR-Cas9 technology. Further gene-based GWAS revealed the function of the canonical tyrosine metabolic enzymes ZmCS2 and Zmhppd1 in the regulation of total tocochromanol content. This comprehensive assessment of the genetic basis for variation in vitamin E content establishes a solid foundation for enhancing vitamin E content not only in sweet corn, but also in other cereal crops.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Vitamina E , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Vitamina E/metabolismo , Locos de Características Quantitativas/genética , Melhoramento Vegetal , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento
9.
J Chromatogr A ; 1733: 465249, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39178658

RESUMO

Geometric isomers tend to have similar polarities and differ only in molecular shape. Vigorously developing new stationary phases to meet the requirements for the separation of isomers that have similar physicochemical properties is still an urgent topic in separation science. Poly (arylene ether)-based dendrimers are known for their multifunctional branched peripheral structures and high self-assembly properties. In this paper, two amphiphilic dendritic organic small molecule gelling agents based on poly (aryl ether), PAE-ANT and PAE-PA, were prepared and conjugated to the silica surface. SiO2@PAE-ANT and SiO2@PAE-PA were used as HPLC stationary phases for the separation of non-polar shape-restricted isomers. Both stationary phases have very high molecular shape selectivity for isomers such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), tocopherols and carotenoids. Separation of cis-trans geometric isomers such as diethylstilbestrol and polar compounds such as monosubstituted benzenes and anilines can also be achieved. These two columns offer more flexible selectivity and higher separation performance than commercial C18 and phenyl columns. There is a difference in molecular shape selectivity between the two stationary phases for the same analyte test probes. SiO2@PAE-ANT showed slightly better linear selectivity for non-polar shape-restricted isomers compared to SiO2@PAE-PA with Janus-type PAE-PA bonding phase. This separation behavior may be attributed to the ordered spatial structure formed by the gel factor on the surface of the stationary phase and the combined effect of multiple weak interaction centers (hydrophobic, hydrophilic, hydrogen bonding and π-π interactions). It was also possible to separate nucleoside and nucleobase strongly polar compounds well in the HILIC mode, suggesting that hydrophilic groups in PAE-ANT and PAE-PA are involved in the interactions, reflecting their amphiphilic nature. The results show that the ordered gelation of dendritic organic small molecule gelators on the SiO2 surface, along with multiple carbonyl-π, π-π and other interactions, play a crucial role in the separating shape-restricted isomers. The integrated and ordered functional groups serve as the primary driving force behind the exceptionally high molecular shape selectivity of SiO2@PAE-ANT and SiO2@PAE-PA phases. Alterations in the structure of dendritic organic small molecule gelators can impact both molecular orientation and recognition ability, while changes in the type of functional groups influences the separation mechanism of shape-restricted isomers.


Assuntos
Dendrímeros , Dióxido de Silício , Dióxido de Silício/química , Cromatografia Líquida de Alta Pressão/métodos , Isomerismo , Dendrímeros/química , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Bifenilos Policlorados/química , Bifenilos Policlorados/análise , Bifenilos Policlorados/isolamento & purificação , Carotenoides/química , Carotenoides/análise , Carotenoides/isolamento & purificação , Tensoativos/química
10.
Foods ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39200540

RESUMO

Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet. Many studies have highlighted its crucial preventive role against cardiovascular disease, neurodegenerative disorders, metabolic syndrome and cancer, with these effects being due to the synergistic anti-inflammatory and antioxidant activities of minor components, such as polyphenols and tocols. The aim of the present study is to implement new technologies for olive oil mills and develop an efficient large-sized industrial process for the continuous extraction of healthier EVOOs that are enriched with these bioactive compounds. Non-thermal technologies, namely ultrasound (US) and pulsed electric field (PEF), have been tested, separately and in combination, to eliminate the need for traditional malaxation. There is extensive literature to support the efficacy of ultrasound-assisted extraction (UAE) and PEF treatments in EVOO production. A newly designed US device and a PEF industrial chamber have been combined into a single, integrated continuous-flow setup, the performance of which in the extraction of EVOO from green Coratina olives has been evaluated herein. Extraction yields, physico-chemical and organoleptic characteristics, and polyphenol and tocol contents were monitored throughout the trials, and the last three were measured at accelerated aging times (AAT) of 15 and 30 days. The US and combined US-PEF processes not only increased daily oil production (ton/day, by nearly 45%), but also eliminated the need for kneading during malaxation, resulting in significant energy savings (approximately 35%). In addition, these innovations enriched the resulting EVOO with nutritionally relevant minor components (8-12% polyphenols, 3-5% tocols), thereby elevating its quality and market value, as well as overall stability. The introduction of continuous-flow US and PEF technologies is a remarkable innovation for the EVOO industry, as they offer benefits to both producers and consumers. The EVOO resulting from non-thermal continuous-flow production meets the growing demand for healthier, nutrient-enriched products.

11.
Acta Vet Scand ; 66(1): 30, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992641

RESUMO

BACKGROUND: Surgery such as ovariectomy causes an inflammatory and oxidative stress. This study was designed to evaluate endogenous tocopherol levels in response to surgical oxidative stress induced by abdominal surgery (ovariectomy) in thirty-two juvenile female dogs. The dogs received meloxicam before surgery (0.2 mg/kg SC) and after surgery (0.1 mg/kg OS every 24 h), 0.03 mg/kg of atropine sulfate (IM), and propofol 4 mg/kg intravenously (IV). General anesthesia was maintained with sevoflurane. Physiological, hematological and biochemical parameters, malondialdehyde (MDA) and α-, δ-, γ-tocopherols were evaluated at baseline, 36 and 48 h after surgery. RESULTS: The physiological parameters remained within normal ranges. Blood glucose concentration increased, while the albumin levels decreased after surgery. Rescue analgesia was not required. MDA levels increased above the baseline at 36 and 48 h after surgery (P < 0.001). The α-, δ-, and γ-tocopherol concentrations decreased from baseline at 36 and 48 h after surgery (P < 0.001). CONCLUSIONS: Surgery in juvenile female dogs revealed oxidative, increased MDA concentrations, reduced tocopherol levels, and had a clinically insignificant influence on homeostasis.


Assuntos
Estresse Oxidativo , Tocoferóis , Animais , Feminino , Cães/cirurgia , Cães/fisiologia , Tocoferóis/metabolismo , Ovariectomia/veterinária , Malondialdeído/sangue , Malondialdeído/metabolismo
12.
Foods ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998488

RESUMO

Vegetable oils are rich in health-beneficial compounds, including fatty acids, phenolic compounds, natural antioxidants, and fat-soluble vitamins. However, oil extraction methods can influence their composition. This study aims to understand the chemical basis for developing a green process to extract oils from two Andean seeds, cañihua (Chenopodium pallidicaule) and tarwi (Lupinus mutabilis). Ethanol, considered a green solvent, is compared to petroleum ether used at the laboratory level and hexane used at the industrial scale for extracting oils. The extraction efficiency is assessed in terms of yield, fatty acids profile, polar and neutral lipids, tocopherols, phenolic compounds, and antioxidant capacity. The chemical composition of edible commercial oils, such as sunflower, rapeseed, and olive oils, was used as a reference. Hexane had the highest extraction yield, followed by petroleum ether and ethanol. However, the oils extracted with ethanol having yields of tarwi 15.5% and cañihua 5.8%, w/w showed the significatively superior content of tocopherols (α, γ, and δ); phenolic compounds; and antioxidant capacity. In addition, ethanol-extracted (EE) oils have higher levels of polar lipids, such as phosphatidylcholine and phosphatidylinositol, than those extracted with the other solvents. Remarkably, EE oils presented comparable or slightly higher levels of monounsaturated fatty acids than those extracted with hexane. Finally, compared to the commercial oils, tarwi and cañihua EE oils showed lower but acceptable levels of oleic, linoleic and palmitic acids and a wider variety of fatty acids (10 and 13, respectively). The composition of tarwi and cañahua oils extracted with ethanol includes compounds associated with nutritional and health benefits, providing a sustainable alternative for oil production.

13.
Foods ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998508

RESUMO

The aim of this study was to analyze the content of fatty acids and tocopherols in various components (pulp, seeds, peel) of avocado (Persea americana), which are often neglected as by-products. In addition, the effects of different drying processes on these components were investigated and the health benefits of the main fatty acids contained in avocados were highlighted. The samples were subjected to three drying processes: hot air (HAD), vacuum (VD), and hot-air microwave (HAMD). In all parts of fresh avocado, oleic acid was the most abundant (41.28-57.93%), followed by palmitic acid (19.90-29.45%) and linoleic acid (8.44-14.95%). Drying led to a significant reduction in the oleic acid content, with palmitic acid showing the greatest stability. HAD resulted in higher levels of oleic acid and linoleic acid in dried pulp and peel samples compared with VD and HAMD, while HAMD had the highest content of α-linolenic acid in all parts. In addition, HAMD had the shortest drying time. HAMD duration was 35 min, which was 76.7% shorter than HAD (150 min) and 82.5% shorter than VD (200 min). Considering fatty acid retention and drying efficiency, HAMD appears to have been the most effective method, especially for the avocado peel. Remarkably, the avocado peel consistently contained higher total tocopherol, with δ-tocopherol generally being the most abundant form. The high content of tocopherols, oleic acid, and linoleic acid in the avocado peel suggests promising health benefits.

14.
Foods ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998599

RESUMO

Over the past years, a prolonged drought has affected Spain, raising significant concerns across various sectors, especially agriculture. This extended period of dry weather is profoundly affecting the growth and development of olive trees, potentially impacting the quality and quantity of olive oil produced. This study aims to assess the impact of agronomic factors, i.e., olive maturation and irrigation management, as well as the technological factors involved in the production process, on the antioxidant content of Picual virgin olive oil. Mathematical models were developed to maximize the concentration of polyphenols, orthodiphenols, chlorophylls, carotenes, and tocopherols in olive oils. Findings indicate that increasing the malaxation temperature from 20 to 60 °C and reducing the mixing time from 60 to 20 min positively influenced the polyphenol and orthodiphenol content. Although irrigation did not significantly affect the polyphenols, pigments, and α-tocopherol contents, it may enhance the ß- and γ-tocopherol content. Optimal conditions for producing antioxidant-enriched virgin olive oils involved olives from rainfed crops, with a moisture index of 3-4, and a 60-min malaxation process at 60 °C. Under these conditions, the total phenol content doubled, pigment content increased fourfold, and α-tocopherol content rose by 15%. These findings provide relevant knowledge to interpret the year-to-year variation in both organoleptic and analytical profiles of virgin olive oils.

15.
Food Chem X ; 23: 101580, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39027685

RESUMO

The aims of this study are the phytochemical exploration and food valorization of Schinus molle L. (S. molle) and Schinus terebinthifolia Raddi (S. terebinthifolia) from the Rabat, Morocco. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were used to analyze the chemical composition of the oils extracted from both species by soxhlet and maceration. Moreover, physicochemical characteristics such as lipid quality indexes such as thrombogenic index (TI), atherogenic index (AI), oxidation susceptibility (OS), and calculated oxidability (Cox) were determined. These characteristics included percentage acidity, peroxide, saponification, iodine, specific extinction values, chlorophyll, and carotenoid pigments. As results, the oil yields varied from 7% (S. molle) to 13% (S. terebinthifolia). In addition, unsaturated fatty acids represented the major fraction for S. terebinthifolia (79%) and S. molle (81%). However, S. terebinthifolia contains more saturated fatty acids (20%) than S. molle (16%) with a predominance of linoleic acid (59.53% and 55%, C18,2), oleic acid (19.29% and 21.69%, C18,1), and palmitic acid (12.56% and 15.48%, C16,0) in S. molle and S. terebinthifolia, respectively. Moreover, the main sterols are ß-sitosterol followed by campesterol and then Δ-5-avenasterol, while ß-sitosterol varies according to the species and the extraction method. Results revealed also that campesterol is influenced by the extraction results in a content of 179.66 mg/kg (soxhlet) and 63.48 mg/kg (maceration) for S. molle, while S. terebinthifolia yeilds concentrations of 170 mg/kg and 138 mg/kg, then Δ-5-avenasterol, which present with (117 mg/kg and 136 mg/kg), (34 mg/kg and 80 mg/kg) of the total amount of sterols for the oils extracted by soxhlet and maceration, respectively. In addition, there are favorable physicochemical properties for all oils, such as chlorophylls (0.4 to 0.8 mg/kg) and carotenoids (0.7 to 2 mg/kg). However, further investigations are needed to determine other chemical compounds of both extracts as well as to evaluate their biological and health benefits.

16.
Antioxidants (Basel) ; 13(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39061913

RESUMO

This study focused on the oil extraction from freeze-dried maqui (Aristotelia chilensis) by supercritical fluid extraction with carbon dioxide (SFE-CO2). The basic objective was to optimize the oil yield and the tocopherol concentration. A Box/Behnken experimental design was developed with three processing variables: supercritical pressure (74, 187, and 300 bar), temperature (35, 48, and 60 °C), and extracting time (30, 135, and 240 min). Multiple optimizations, based on the combination of factor levels at 274 bar, 240 min, and 60 °C, led to the highest oil yield and tocopherol values. The validation of the optimized conditions of maqui oil extraction led to an oil yield of 8% and values of 735, 53, and 97 (mg·kg-1 oil) for α-tocopherol, α-tocotrienol, and γ-tocopherol, respectively. A higher concentration of tocopherol compounds was observed when compared to the employment of the conventional extracting method. The optimized SFE-CO2 method led to an oil extract exhibiting higher Hydrophilic-Oxygen Radical Absorbance Capacity (H-ORAC) assay and total phenol content (22 µmol Trolox equivalents·g-1 oil and 28 mg gallic acid equivalents·g-1 oil) than the oil obtained by the conventional procedure. A practical and accurate oil extraction is proposed for obtaining tocopherol-enriched oil including high concentrations of valuable lipophilic antioxidants.

17.
Plant Physiol Biochem ; 214: 108961, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067102

RESUMO

Winter crops acquire frost tolerance during the process of cold acclimation when plants are exposed to low but non-freezing temperatures that is connected to specific metabolic adjustments. Warm breaks during/after cold acclimation disturb the natural process of acclimation, thereby decreasing frost tolerance and can even result in a resumption of growth. This phenomenon is called deacclimation. In the last few years, studies that are devoted to deacclimation have become more important (due to climate changes) and necessary to be able to understand the mechanisms that occur during this phenomenon. In the acclimation of plants to low temperatures, the importance of plant membranes is indisputable; that is why the main aim of our studies was to answer the question of whether (and to what extent) deacclimation alters the physicochemical properties of the plant membranes. The studies were focused on chloroplast membranes from non-acclimated, cold-acclimated and deacclimated cultivars of winter oilseed rape. The analysis of the membranes (formed from chloroplast lipid fractions) using the Langmuir technique revealed that cold acclimation increased membrane fluidity (expressed as the Alim values), while deacclimation generally decreased the values that were induced by cold. Moreover, because the chloroplast membranes were penetrated by lipophilic molecules such as carotenoids or tocopherols, the relationships between the structure of the lipids and the content of these antioxidants in the chloroplast membranes during the process of the cold acclimation and deacclimation of oilseed rape are discussed.


Assuntos
Aclimatação , Cloroplastos , Temperatura Baixa , Aclimatação/fisiologia , Cloroplastos/metabolismo , Brassica napus/metabolismo , Brassica napus/fisiologia , Carotenoides/metabolismo , Fluidez de Membrana/fisiologia , Membranas Intracelulares/metabolismo
18.
Lifestyle Genom ; 17(1): 82-92, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952113

RESUMO

INTRODUCTION: This study aims to investigate if a mixture of functional lipids (FLs), containing conjugated linoleic acid (CLA), tocopherols (TPs), and phytosterols (PSs), prevents some lipid alterations induced by high-fat (HF) diets, without adverse effects. METHODS: Male CF1 mice (n = 6/group) were fed (4 weeks) with control (C), HF, or HF + FL diets. RESULTS: FL prevented the overweight induced by the HF diet and reduced the adipose tissue (AT) weight, associated with lower energy efficiency. After the intervention period, the serum triacylglycerol (TAG) levels in both HF diets underwent a decrease associated with an enhanced LPL activity (mainly in muscle). The beneficial effect of the FL mixture on body weight gain and AT weight might be attributed to the decreased lipogenesis, denoted by the lower mRNA levels of SREBP1-c and ACC in AT, as well as by an exacerbated lipid catabolism, reflected by increased mRNA levels of PPARα, ATGL, HSL, and UCP2 in AT. Liver TAG levels were reduced in the HF + FL group due to an elevated lipid oxidation associated with a higher CPT-1 activity and mRNA levels of PPARα and CPT-1a. Moreover, genes linked to fatty acid biosynthesis (SREBP1-c and ACC) showed decreased mRNA levels in both HF diets, this finding being more pronounced in the HF + FL group. CONCLUSION: The administration of an FL mixture (CLA + TP + PS) prevented some lipid alterations induced by a HF diet, avoiding frequent deleterious effects of CLA in mice through the modulation of gene expression related to the regulation of lipid metabolism.


Assuntos
Dieta Hiperlipídica , Ácidos Linoleicos Conjugados , Metabolismo dos Lipídeos , Fígado , PPAR alfa , Proteína de Ligação a Elemento Regulador de Esterol 1 , Triglicerídeos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Triglicerídeos/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ácidos Linoleicos Conjugados/farmacologia , Lipogênese/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Proteína Desacopladora 2/metabolismo , Proteína Desacopladora 2/genética , Fitosteróis/farmacologia , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética
19.
Nutr Res Pract ; 18(3): 345-356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38854468

RESUMO

BACKGROUND/OBJECTIVES: Okra seed is a rich source of various nutritional and bioactive constituents, but its mechanism of action is still unclear. The aim of this study was to evaluated the effects on glucose uptake and serum lipid profiles of unsaponifiable matter (USM) from okra seed in adipocytes and diabetic animal models. MATERIALS/METHODS: USM was prepared from okra seed powder by saponification. The contents of phytosterols and vitamin E in USM were measured. 3T3-L1 preadipocytes were cultured for 6 days with different concentrations of USM (0-200 µg/mL). The diabetic rats were administered with or without USM for 5 wk. RESULTS: In the USM, the contents of phytosterols and vitamin E were 394.13 mg/g USM and 31.16 mg/g USM, respectively. USM showed no cytotoxicity and led to an approximately 1.4-fold increase in glucose uptake in 3T3-L1 adipocytes. The treatment of USM also increased the expressions of peroxisome proliferator-activated receptor-γ and glucose transporter-4 in a dose-dependent manner in adipocytes. The body weight change was not significantly different in all diabetic rats. However, blood glucose and the weights of liver and adipose tissues were significantly reduced compared to those in the control diabetic rats. Treatment with USM decreased the levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol compared to the control group. The USM group also showed significantly decreased atherogenic indices and cardiac risk factors. CONCLUSION: These results suggest that USM from okra seed improves the hypoglycemic and hypolipidemic effects in diabetic rats, and provides valuable information for improving the functional properties of okra seed.

20.
Food Chem X ; 22: 101453, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803670

RESUMO

This study aimed to explore the possibility of enriching cold-pressed Virginia (VIO) and Valencia (VAO) peanut oils with omega-3 fatty acids (FAs) from walnut oil (WO) to produce blended oils with improved nutritional value. The oxidative stability of pure and blended oils was examined under accelerated conditions (60 °C) for 28 days. The FA and tocopherol profiles, as well as nutritional quality indices, were determined. As the proportion of WO increased in the blends, the levels of linoleic and α-linolenic essential FAs increased, while oleic acid content decreased. Furthermore, γ- and δ-tocopherol levels rose, whereas α-tocopherol declined. Among the studied blends, VIO:WO blends, especially at a (70:30) ratio, were nutritionally favorable with a balanced FA profile. During storage, notable changes were observed in tocopherol levels, along with subtle alterations in the FA profile of the blended oils. Hence, the oxidative stability of pure VIO and VAO decreased with WO incorporation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA