Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894177

RESUMO

Visual simultaneous localization and mapping (VSLAM) enhances the navigation of autonomous agents in unfamiliar environments by progressively constructing maps and estimating poses. However, conventional VSLAM pipelines often exhibited degraded performance in dynamic environments featuring mobile objects. Recent research in deep learning led to notable progress in semantic segmentation, which involves assigning semantic labels to image pixels. The integration of semantic segmentation into VSLAM can effectively differentiate between static and dynamic elements in intricate scenes. This paper provided a comprehensive comparative review on leveraging semantic segmentation to improve major components of VSLAM, including visual odometry, loop closure detection, and environmental mapping. Key principles and methods for both traditional VSLAM and deep semantic segmentation were introduced. This paper presented an overview and comparative analysis of the technical implementations of semantic integration across various modules of the VSLAM pipeline. Furthermore, it examined the features and potential use cases associated with the fusion of VSLAM and semantics. It was found that the existing VSLAM model continued to face challenges related to computational complexity. Promising future research directions were identified, including efficient model design, multimodal fusion, online adaptation, dynamic scene reconstruction, and end-to-end joint optimization. This review shed light on the emerging paradigm of semantic VSLAM and how deep learning-enabled semantic reasoning could unlock new capabilities for autonomous intelligent systems to operate reliably in the real world.

2.
Sensors (Basel) ; 23(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896726

RESUMO

Variations with respect to perspective, lighting, weather, and interference from dynamic objects may all have an impact on the accuracy of the entire system during autonomous positioning and during the navigation of mobile visual simultaneous localization and mapping (SLAM) robots. As it is an essential element of visual SLAM systems, loop closure detection plays a vital role in eradicating front-end-induced accumulated errors and guaranteeing the map's general consistency. Presently, deep-learning-based loop closure detection techniques place more emphasis on enhancing the robustness of image descriptors while neglecting similarity calculations or the connections within the internal regions of the image. In response to this issue, this article proposes a loop closure detection method based on similarity differences between image blocks. Firstly, image descriptors are extracted using a lightweight convolutional neural network (CNN) model with effective loop closure detection. Subsequently, the image pairs with the greatest degree of similarity are evenly divided into blocks, and the level of similarity among the blocks is used to recalculate the degree of the overall similarity of the image pairs. The block similarity calculation module can effectively reduce the similarity of incorrect loop closure image pairs, which makes it easier to identify the correct loopback. Finally, the approach proposed in this article is compared with loop closure detection methods based on four distinct CNN models with a recall rate of 100% accuracy; said approach performs significantly superiorly. The application of the block similarity calculation module proposed in this article to the aforementioned four CNN models can increase the recall rate's accuracy to 100%; this proves that the proposed method can successfully improve the loop closure detection effect, and the similarity calculation module in the algorithm has a certain degree of universality.

3.
Sensors (Basel) ; 23(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37766003

RESUMO

Accurately estimating the pose of a vehicle is important for autonomous parking. The study of around view monitor (AVM)-based visual Simultaneous Localization and Mapping (SLAM) has gained attention due to its affordability, commercial availability, and suitability for parking scenarios characterized by rapid rotations and back-and-forth movements of the vehicle. In real-world environments, however, the performance of AVM-based visual SLAM is degraded by AVM distortion errors resulting from an inaccurate camera calibration. Therefore, this paper presents an AVM-based visual SLAM for autonomous parking which is robust against AVM distortion errors. A deep learning network is employed to assign weights to parking line features based on the extent of the AVM distortion error. To obtain training data while minimizing human effort, three-dimensional (3D) Light Detection and Ranging (LiDAR) data and official parking lot guidelines are utilized. The output of the trained network model is incorporated into weighted Generalized Iterative Closest Point (GICP) for vehicle localization under distortion error conditions. The experimental results demonstrate that the proposed method reduces localization errors by an average of 39% compared with previous AVM-based visual SLAM approaches.

4.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501945

RESUMO

With the continual advancement of positioning technology, people's use of mobile devices has increased substantially. The global navigation satellite system (GNSS) has improved outdoor positioning performance. However, it cannot effectively locate indoor users owing to signal masking effects. Common indoor positioning technologies include radio frequencies, image visions, and pedestrian dead reckoning. However, the advantages and disadvantages of each technology prevent a single indoor positioning technology from solving problems related to various environmental factors. In this study, a hybrid method was proposed to improve the accuracy of indoor positioning by combining visual simultaneous localization and mapping (VSLAM) with a magnetic fingerprint map. A smartphone was used as an experimental device, and a built-in camera and magnetic sensor were used to collect data on the characteristics of the indoor environment and to determine the effect of the magnetic field on the building structure. First, through the use of a preestablished indoor magnetic fingerprint map, the initial position was obtained using the weighted k-nearest neighbor matching method. Subsequently, combined with the VSLAM, the Oriented FAST and Rotated BRIEF (ORB) feature was used to calculate the indoor coordinates of a user. Finally, the optimal user's position was determined by employing loose coupling and coordinate constraints from a magnetic fingerprint map. The findings indicated that the indoor positioning accuracy could reach 0.5 to 0.7 m and that different brands and models of mobile devices could achieve the same accuracy.


Assuntos
Campos Magnéticos , Pedestres , Humanos , Fenômenos Físicos , Análise por Conglomerados , Computadores de Mão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA