Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 980
Filtrar
1.
Comput Biol Med ; 182: 109077, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265477

RESUMO

Accurate prenatal diagnosis of coarctation of the aorta (CoA) is challenging due to high false positive rate burden and poorly understood aetiology. Despite associations with abnormal blood flow dynamics, fetal arch anatomy changes and alterations in tissue properties, its underlying mechanisms remain a longstanding subject of debate hindering diagnosis in utero. This study leverages computational fluid dynamics (CFD) simulations and statistical shape modelling to investigate the interplay between fetal arch anatomy and blood flow alterations in CoA. Using cardiac magnetic resonance imaging data from 188 fetuses, including normal controls and suspected CoA cases, a statistical shape model of the fetal arch anatomy was built. From this analysis, digital twin models of false and true positive CoA cases were generated. These models were then used to perform CFD simulations of the three-dimensional fetal arch haemodynamics, considering physiological variations in arch shape and blood flow conditions across the disease spectrum. This analysis revealed that independent changes in the shape of. the arch and the balance of left-to-right ventricular output led to qualitatively similar haemodynamic alterations. Transitioning from a false to a true positive phenotype increased retrograde flow through the aortic isthmus. This resulted in the appearance of an area of low wall shear stress surrounded by high wall shear stress values at the flow split apex on the aortic posterior wall opposite the ductal insertion point. Our results suggest a distinctive haemodynamic signature in CoA characterised by the appearance of retrograde flow through the aortic isthmus and altered wall shear stress at its posterior side. The consistent link between alterations in shape and blood flow in CoA suggests the need for comprehensive anatomical and functional diagnostic approaches in CoA. This study presents an application of the digital twin approach to support the understanding of CoA mechanisms in utero and its potential for improved diagnosis before birth.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39320418

RESUMO

After an arterial switch operation for complete transposition of the great arteries, neo-aortic root dilatation occurs, with unclear hemodynamic effects. This study analyzes three groups (severe dilation, mild dilation, and normal) using computational fluid dynamics (CFD) on cardiac CT scans. Aortic arch angles in severe (median 72.3, range: 68.5-77.2) and mild dilation (76.6, 71.1-85.2) groups are significantly smaller than the normal group (97.3, 87.4-99.0). In the normal and mild dilatation groups, Wall Shear Stress (WSS) exhibits a consistent pattern: it is lowest at the aortic root, gradually increases until just before the bend in the aortic arch, peaks, and then subsequently decreases. However, severe dilation shows disrupted WSS patterns, notably lower in the distal ascending aorta, attributed to local recirculation. This unique WSS pattern observed in severely dilated patients, especially in the transverse aorta. CFD plays an essential role in comprehensively studying the pathophysiology underlying aortic dilation in this population.

3.
Cardiovasc Diagn Ther ; 14(4): 668-678, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39263489

RESUMO

Background: Wall shear stress (WSS) is related to the pathogenesis of atherosclerosis. WSS is affected by a variety of hemodynamic factors, and there is still a lack of accurate and objective methods for measuring it. This study sought to evaluate hemodynamic changes in WSSmaximum (max), WSSmean, WSSminimum (min) in the common carotid artery of healthy adults of different ages using vascular vector flow mapping (VFM). Methods: A retrospective analysis was conducted on 70 healthy volunteers aged 20-89 years who were recruited from our Ultrasound Department between February 2021 and June 2021. An ultrasound system with a 3-15 MHz probe was used to determine regions of interest (ROIs) of the common carotid artery. VFM-based WSS measurements were obtained by selecting ROIs with optimal image quality from three full cardiac cycles. The participants were divided into the following seven age groups: the 20s group, the 30s group, the 40s group, the 50s group, the 60s group, the 70s group, and the 80s group. The WSS parameters were compared among the age groups. An analysis of variance or a Kruskal-Wallis test was used to evaluate the difference among the groups, and a Pearson analysis and linear regression were used for the correlation and trend analysis. Results: The WSS parameters were quantified using vascular VFM software. The WSSmax, WSSmean, WSSmin differed among the age groups and gradually decreased with age, the elderly were significantly lower than the young. The Pearson correlation coefficient of the WSSmax and age was -0.556 (P<0.001), that of the WSSmean and age was -0.461 (P<0.001), and that of the WSSmin and age was -0.308 (P<0.001). The WSS parameters with age are negatively correlated the carotid intima-media thickness differed between the groups. Conclusions: The carotid WSSmax, WSSmean, WSSmin can be quantitatively and visually analyzed using the vascular VFM technique. In healthy adults of different ages, the carotid WSSmax, WSSmean, WSSmin decreased with age. Our findings about the normal values of carotid WSS maybe have clinical reference value for future studies.

4.
J Cardiovasc Magn Reson ; 26(2): 101070, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096969

RESUMO

BACKGROUND: Aortic wall shear stress (WSS) is a known predictor of ascending aortic growth in patients with a bicuspid aortic valve (BAV). The aim of this study was to study regional WSS and changes over time in BAV patients. METHODS: BAV patients and age-matched healthy controls underwent four-dimensional (4D) flow cardiovascular magnetic resonance (CMR). Regional, peak systolic ascending aortic WSS, aortic valve function, aortic stiffness measures, and aortic dimensions were assessed. In BAV patients, 4D flow CMR was repeated after 3 years of follow-up and both at baseline and follow-up computed tomography angiography (CTA) were acquired. Aortic growth (volume increase of ≥5%) was measured on CTA. Regional WSS differences within patients' aorta and WSS changes over time were analyzed using linear mixed-effect models and were associated with clinical parameters. RESULTS: Thirty BAV patients (aged 34 years [interquartile range (IQR) 25-41]) were included in the follow-up analysis. Additionally, another 16 BAV patients and 32 healthy controls (aged 33 years [IQR 28-48]) were included for other regional analyses. Magnitude, axial, and circumferential WSS increased over time (all p < 0.001) irrespective of aortic growth. The percentage of regions exposed to a magnitude WSS >95th percentile of healthy controls increased from 21% (baseline 506/2400 regions) to 31% (follow-up 734/2400 regions) (p < 0.001). WSS angle, a measure of helicity near the aortic wall, decreased during follow-up. Magnitude WSS changes over time were associated with systolic blood pressure, peak aortic valve velocity, aortic valve regurgitation fraction, aortic stiffness indexes, and normalized flow displacement (all p < 0.05). CONCLUSION: An increase in regional WSS over time was observed in BAV patients, irrespective of aortic growth. The increasing WSSs, comprising a larger area of the aorta, warrant further research to investigate the possible predictive value for aortic dissection.

5.
Front Cardiovasc Med ; 11: 1392702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119184

RESUMO

Although the entire vascular bed is constantly exposed to the same risk factors, atherosclerosis manifests a distinct intra-individual pattern in localization and progression within the arterial vascular bed. Despite shared risk factors, the development of atherosclerotic plaques is influenced by physical principles, anatomic variations, metabolic functions, and genetic pathways. Biomechanical factors, particularly wall shear stress (WSS), play a crucial role in atherosclerosis and both low and high WSS are associated with plaque progression and heightened vulnerability. Low and oscillatory WSS contribute to plaque growth and arterial remodeling, while high WSS promotes vulnerable changes in obstructive coronary plaques. Axial plaque stress and plaque structural stress are proposed as biomechanical indicators of plaque vulnerability, representing hemodynamic stress on stenotic lesions and localized stress within growing plaques, respectively. Advancements in imaging and computational fluid dynamics techniques enable a comprehensive analysis of morphological and hemodynamic properties of atherosclerotic lesions and their role in plaque localization, evolution, and vulnerability. Understanding the impact of mechanical forces on blood vessels holds the potential for developing shear-regulated drugs, improving diagnostics, and informing clinical decision-making in coronary atherosclerosis management. Additionally, Computation Fluid Dynamic (CFD) finds clinical applications in comprehending stent-vessel dynamics, complexities of coronary bifurcations, and guiding assessments of coronary lesion severity. This review underscores the clinical significance of an integrated approach, concentrating on systemic, hemodynamic, and biomechanical factors in atherosclerosis and plaque vulnerability among patients with coronary artery disease.

6.
Int J Numer Method Biomed Eng ; : e3865, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209425

RESUMO

The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject-specific fluid-structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject-specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject-specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject-specific boundary conditions were derived from 4D-flow MR imaging (4D-MRI). Strongly coupled FSI simulations were performed using a finite volume-based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D-MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.

7.
Biomed Mater Eng ; 35(5): 425-437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39121112

RESUMO

BACKGROUND: Systemic-to-pulmonary shunt is a palliative procedure used to decrease pulmonary blood flow in congenital heart diseases. Shunt stenosis or occlusion has been reported to be associated with mortality; therefore, the management of thrombotic complications remains a challenge for most congenital cardiovascular surgeons. Despite its importance, the optimal method for shunt anastomosis remains unclear. OBJECTIVE: The study investigates the clinical benefits of the punch-out technique over conventional methods in the anastomosis process of Systemic-to-pulmonary shunt, focusing on its potential to reduce shunt-related complications. METHODS: Anastomotic models were created by two different surgeons employing both traditional slit and innovative punch-out techniques. Computational tomography was performed to construct three-dimensional models for computational fluid dynamics (CFD) analysis. We assessed the flow pattern, helicity, magnitude of wall shear stress, and its gradient. RESULTS: The anastomotic flow area was larger in the model using the punch-out technique than in the slit model. In CFD simulation, we found that using the punch-out technique decreases the likelihood of establishing a high wall shear stress distribution around the anastomosis line in the model. CONCLUSION: The punch-out technique emerges as a promising method in SPS anastomosis, offering a reproducible and less skill-dependent alternative that potentially diminishes the risk of shunt occlusion, thereby enhancing patient outcomes.


Assuntos
Anastomose Cirúrgica , Simulação por Computador , Hidrodinâmica , Modelos Cardiovasculares , Humanos , Anastomose Cirúrgica/métodos , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/fisiopatologia , Circulação Pulmonar , Estresse Mecânico , Velocidade do Fluxo Sanguíneo , Imageamento Tridimensional/métodos
8.
J Biomech Eng ; 146(11)2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39152719

RESUMO

The utilization of lattice-based scaffolds emerging as an advance technique over conventional bio-implants in Bone Tissue Engineering. In this study, totally six lattice structures are considered for permeability and wall shear stress (WSS) investigation. Namely triply periodic minimal surfaces (TPMS)-based Gyroid, Schwarz-P, Schwarz-D, and two beam-based structure-Cubic and Fluorite are compared with the proposed new lattice structure at porosity level of 80%, 75%, and 70%. The proposed new lattice has combine characteristic of Gyroid and Schwarz-D TPMS lattice. The permeability is determined through Darcy's law, where the pressure drop across the lattice structure is calculated using a computational fluid dynamics (CFD) tool at flowrate between 0.2 and 10 ml/min. The Cubic and Schwarz-P lattice structures exhibited the highest permeability but at the cost of a lower active surface area for WSS, measuring below 155 mm2, means least cell proliferation occurs while the permeability value in New Lattice structure is in the ideal range with the enhanced active surface area for WSS (514 mm2). The complex internal curvatures of New Lattice promote the cell proliferation while the through-pore holes allow the efficient cell seeding.


Assuntos
Proliferação de Células , Permeabilidade , Porosidade , Alicerces Teciduais/química , Hidrodinâmica , Estresse Mecânico , Engenharia Tecidual , Propriedades de Superfície
9.
Artigo em Inglês | MEDLINE | ID: mdl-39103664

RESUMO

PURPOSE: The Wall Shear Stress (WSS) is the component tangential to the boundary of the normal stress tensor in an incompressible fluid, and it has been recognized as a quantity of primary importance in predicting possible adverse events in cardiovascular diseases, in general, and in coronary diseases, in particular. The quantification of the WSS in patient-specific settings can be achieved by performing a Computational Fluid Dynamics (CFD) analysis based on patient geometry, or it can be retrieved by a numerical approximation based on blood flow velocity data, e.g., ultrasound (US) Doppler measurements. This paper presents a novel method for WSS quantification from 2D vector Doppler measurements. METHODS: Images were obtained through unfocused plane waves and transverse oscillation to acquire both in-plane velocity components. These velocity components were processed using pseudo-spectral differentiation techniques based on Fourier approximations of the derivatives to compute the WSS. RESULTS: Our Pseudo-Spectral Method (PSM) is tested in two vessel phantoms, straight and stenotic, where a steady flow of 15 mL/min is applied. The method is successfully validated against CFD simulations and compared against current techniques based on the assumption of a parabolic velocity profile. The PSM accurately detected Wall Shear Stress (WSS) variations in geometries differing from straight cylinders, and is less sensitive to measurement noise. In particular, when using synthetic data (noise free, e.g., generated by CFD) on cylindrical geometries, the Poiseuille-based methods and PSM have comparable accuracy; on the contrary, when using the data retrieved from US measures, the average error of the WSS obtained with the PSM turned out to be 3 to 9 times smaller than that obtained by state-of-the-art methods. CONCLUSION: The pseudo-spectral approach allows controlling the approximation errors in the presence of noisy data. This gives a more accurate alternative to the present standard and a less computationally expensive choice compared to CFD, which also requires high-quality data to reconstruct the vessel geometry.

10.
Front Physiol ; 15: 1425618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135710

RESUMO

Recent advances in organ chip (or, "organ-on-a-chip") technologies and microphysiological systems (MPS) have enabled in vitro investigation of endothelial cell function in biomimetic three-dimensional environments under controlled fluid flow conditions. Many current organ chip models include a vascular compartment; however, the design and implementation of these vessel-on-a-chip components varies, with consequently varied impact on their ability to capture and reproduce hemodynamic flow and associated mechanosensitive signaling that regulates key characteristics of healthy, intact vasculature. In this review, we introduce organ chip and vessel-on-a-chip technology in the context of existing in vitro and in vivo vascular models. We then briefly discuss the importance of mechanosensitive signaling for vascular development and function, with focus on the major mechanosensitive signaling pathways involved. Next, we summarize recent advances in MPS and organ chips with an integrated vascular component, with an emphasis on comparing both the biomimicry and adaptability of the diverse approaches used for supporting and integrating intravascular flow. We review current data showing how intravascular flow and fluid shear stress impacts vessel development and function in MPS platforms and relate this to existing work in cell culture and animal models. Lastly, we highlight new insights obtained from MPS and organ chip models of mechanosensitive signaling in endothelial cells, and how this contributes to a deeper understanding of vessel growth and function in vivo. We expect this review will be of broad interest to vascular biologists, physiologists, and cardiovascular physicians as an introduction to organ chip platforms that can serve as viable model systems for investigating mechanosensitive signaling and other aspects of vascular physiology.

11.
Clin Neuroradiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017672

RESUMO

BACKGROUND: Maximum wall shear stress (maxWSS) points of unruptured cerebral aneurysms (UCAs) may cause wall remodeling leading to rupture. We characterized maxWSS points and their inherent intra-aneurysmal flow structures in a sizable cohort of saccular UCAs using four-dimensional (4D) flow magnetic resonance imaging (MRI). METHODS: After contrast administration, 50 saccular UCAs were subjected to 4D flow MRI using a 1.5 T MRI scanner. Post-processing of obtained data was performed using commercially available software. The maxWSS points and maxWSS values were evaluated. The maxWSS values were statistically compared between aneurysm groups. RESULTS: The maxWSS point was located on the aneurysm apex in 9 (18.0%), body in 2 (4.0%), and neck in 39 (78.0%) UCAs. The inherent intra-aneurysmal flow structure of the maxWSS point was an inflow zone in 34 (68.0%) UCAs, an inflow jet in 8 (16.0%), and an impingement zone in 8 (16.0%). The maxWSS point on the neck had significantly higher maxWSS values than those points on the other wall areas (P = 0.008). The maxWSS values of the maxWSS points on the apex and on the impingement zone were not significantly different compared with those of the other maxWSS points. CONCLUSION: The maxWSS points existed preferentially on the aneurysmal neck adjacent to the inflow zone with higher maxWSS values. The maxWSS points existed occasionally on the aneurysmal apex adjacent to the impingement zone. 4D flow MRI may be helpful to discriminate saccular UCAs with higher-risk maxWSS points that can cause wall remodeling leading to rupture.

12.
Int J Numer Method Biomed Eng ; : e3855, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051141

RESUMO

Computational fluid dynamics (CFD) simulations have shown great potentials in cardiovascular disease diagnosis and postoperative assessment. Patient-specific and well-tuned boundary conditions are key to obtaining accurate and reliable hemodynamic results. However, CFD simulations are usually performed under non-patient-specific flow conditions due to the absence of in vivo flow and pressure measurements. This study proposes a new method to overcome this challenge by tuning inlet boundary conditions using data extracted from electrocardiogram (ECG). Five patient-specific geometric models of type B aortic dissection were reconstructed from computed tomography (CT) images. Other available data included stoke volume (SV), ECG, and 4D-flow magnetic resonance imaging (MRI). ECG waveforms were processed to extract patient-specific systole to diastole ratio (SDR). Inlet boundary conditions were defined based on a generic aortic flow waveform tuned using (1) SV only, and (2) with ECG and SV (ECG + SV). 4D-flow MRI derived inlet boundary conditions were also used in patient-specific simulations to provide the gold standard for comparison and validation. Simulations using inlet flow waveform tuned with ECG + SV not only successfully reproduced flow distributions in the descending aorta but also provided accurate prediction of time-averaged wall shear stress (TAWSS) in the primary entry tear (PET) and abdominal regions, as well as maximum pressure difference, ∆Pmax, from the aortic root to the distal false lumen. Compared with simulations with inlet waveform tuned with SV alone, using ECG + SV in the tuning method significantly reduced the error in false lumen ejection fraction at the PET (from 149.1% to 6.2%), reduced errors in TAWSS at the PET (from 54.1% to 5.7%) and in the abdominal region (from 61.3% to 11.1%), and improved ∆Pmax prediction (from 283.1% to 18.8%) However, neither of these inlet waveforms could be used for accurate prediction of TAWSS in the ascending aorta. This study demonstrates the importance of SDR in tailoring inlet flow waveforms for patient-specific hemodynamic simulations. A well-tuned flow waveform is essential for ensuring that the simulation results are patient-specific, thereby enhancing the confidence and fidelity of computational tools in future clinical applications.

13.
Sci Rep ; 14(1): 15640, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977740

RESUMO

Coronary artery disease is the leading global cause of mortality and Fractional Flow Reserve (FFR) is widely regarded as the gold standard for assessing coronary artery stenosis severity. However, due to the limitations of invasive FFR measurements, there is a pressing need for a highly accurate virtual FFR calculation framework. Additionally, it's essential to consider local haemodynamic factors such as time-averaged wall shear stress (TAWSS), which play a critical role in advancement of atherosclerosis. This study introduces an innovative FFR computation method that involves creating five patient-specific geometries from two-dimensional coronary angiography images and conducting numerical simulations using computational fluid dynamics with a three-element Windkessel model boundary condition at the outlet to predict haemodynamic distribution. Furthermore, four distinct boundary condition methodologies are applied to each geometry for comprehensive analysis. Several haemodynamic features, including velocity, pressure, TAWSS, and oscillatory shear index are investigated and compared for each case. Results show that models with average boundary conditions can predict FFR values accurately and observed errors between invasive FFR and virtual FFR are found to be less than 5%.


Assuntos
Angiografia Coronária , Vasos Coronários , Reserva Fracionada de Fluxo Miocárdico , Humanos , Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , Modelos Cardiovasculares , Hemodinâmica , Estenose Coronária/fisiopatologia , Estenose Coronária/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/diagnóstico por imagem , Masculino , Simulação por Computador , Feminino , Pessoa de Meia-Idade
14.
Comput Methods Programs Biomed ; 255: 108327, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39018788

RESUMO

BACKGROUND AND OBJECTIVE: Atherosclerotic lesions of coronary arteries (stenosis) are caused by the buildup of lipids and blood-borne substances within the artery wall. Their qualitative and rapid assessment is still a challenging task. The primary therapy for this pathology involves implanting coronary stents, which help to restore the blood flow in atherosclerosis-prone arteries. In-stent restenosis is a stenting-procedure complication detected in about 10-40% of patients. A numerical study using 2-way fluid-structure interaction (FSI) assesses the stenting procedure quality and can decrease the number of negative post-operative results. Nevertheless, boundary conditions (BCs) used in simulation play a crucial role in implementation of an adequate computational analysis. METHODS: Three CoCr stents designs were modelled with the suggested approach. A multi-layer structure describing the artery and plaque with anisotropic hyperelastic mechanical properties was adopted in this study. Two kinds of boundary conditions for a solid domain were examined - fixed support (FS) and remote displacement (RD) - to assess their impact on the hemodynamic parameters to predict restenosis. Additionally, the influence of artery elongation (short-artery model vs. long-artery model) on numerical results with the FS boundary condition was analyzed. RESULTS: The comparison of FS and RD boundary conditions demonstrated that the variation of hemodynamic parameters values did not exceed 2%. The analysis of short-artery and long-artery models revealed that the difference in hemodynamic parameters was less than 5.1%, and in most cases, it did not exceed 2.5%. The RD boundary conditions were found to reduce the computation time by up to 1.7-2.0 times compared to FS. Simple stent model was shown to be susceptible to restenosis development, with maximum WSS values equal to 183 Pa, compared to much lower values for other two stents. CONCLUSIONS: The study revealed that the stent design significantly affected the hemodynamic parameters as restenosis predictors. Moreover, the stress-strain state of the system artery-plaque-stent also depends on a proper choice of boundary conditions.


Assuntos
Simulação por Computador , Hemodinâmica , Stents , Humanos , Vasos Coronários/cirurgia , Vasos Coronários/fisiopatologia , Modelos Cardiovasculares , Estresse Mecânico , Reestenose Coronária , Artérias
15.
Comput Biol Med ; 179: 108900, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029430

RESUMO

In this study, a physics-based model is developed to describe the entire flow mediated dilation (FMD) response. A parameter quantifying the arterial wall's tendency to recover arises from the model, thereby providing a more elaborate description of the artery's physical state, in concert with other parameters characterizing mechanotransduction and structural aspects of the arterial wall. The arterial diameter's behavior throughout the full response is successfully reproduced by the model. Experimental FMD response data were obtained from healthy volunteers. The model's parameters are then adjusted to yield the closest match to the observed experimental response, hence delivering the parameter values pertaining to each subject. This study establishes a foundation based on which future potential clinical applications can be introduced, where endothelial function and general cardiovascular health are inexpensively and noninvasively quantified.


Assuntos
Artéria Braquial , Modelos Cardiovasculares , Vasodilatação , Humanos , Artéria Braquial/fisiologia , Artéria Braquial/diagnóstico por imagem , Vasodilatação/fisiologia , Masculino , Adulto , Feminino , Velocidade do Fluxo Sanguíneo/fisiologia
16.
Biofabrication ; 16(4)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39038483

RESUMO

The function of a well-differentiated nasal epithelium is largely affected by airflow-induced wall shear stress, yet fewin vitromodels recapitulate this dynamic condition. Models which do expose cells to airflow exclusively initiate flow after the differentiation process has occurred.In vivo, basal cells are constantly replenishing the epithelium under airflow conditions, indicating that airflow may affect the development and function of the differentiated epithelium. To address this gap in the field, we developed a physiologically relevant microphysiological model of the human nasal epithelium and investigated the effects of exposing cells to airflow during epithelial maturation at the air-liquid interface. The nasal airway-on-chip platform was engineered to mimic bi-directional physiological airflow during normal breathing. Primary human nasal epithelial cells were seeded on chips and subjected to either: (1) no flow, (2) single flow (0.5 dyne cm-2flow on Day 21 of ALI only), or (3) pre-conditioning flow (0.05 dyne cm-2on Days 14-20 and 0.5 dyne cm-2flow on Day 21) treatments. Cells exposed to pre-conditioning showed decreased morphological changes and mucus secretions, as well as decreased inflammation, compared to unconditioned cells. Our results indicate that flow exposure only post-differentiation may impose acute stress on cells, while pre-conditioning may potentiate a properly functioning epitheliumin vitro.


Assuntos
Células Epiteliais , Dispositivos Lab-On-A-Chip , Mucosa Nasal , Humanos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Mucosa Nasal/citologia , Mucosa Nasal/metabolismo , Diferenciação Celular , Células Cultivadas , Ar , Modelos Biológicos , Engenharia Tecidual
17.
Rev Cardiovasc Med ; 25(2): 49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39077359

RESUMO

Most acute coronary syndromes are due to a sudden luminal embolism caused by the rupturing or erosion of atherosclerotic plaques. Prevention and treatment of plaque development have become an effective strategy to reduce mortality and morbidity from coronary heart disease. It is now generally accepted that plaques with thin-cap fibroatheroma (TCFA) are precursors to rupturing and that larger plaques and high-risk plaque features (including low-attenuation plaque, positive remodeling, napkin-ring sign, and spotty calcification) constitute unstable plaque morphologies. However, plaque vulnerability or rupturing is a complex evolutionary process caused by a combination of multiple factors. Using a combination of medicine, engineering mechanics, and computer software, researchers have turned their attention to computational fluid mechanics. The importance of fluid mechanics in pathological states for promoting plaque progression, inducing plaque tendency to vulnerability, or even rupture, as well as the high value of functional evaluation of myocardial ischemia has become a new area of research. This article reviews recent research advances in coronary plaque fluid mechanics, aiming to describe the concept, research implications, current status of clinical studies, and limitations of fluid mechanic's characteristic parameters: wall shear stress (WSS), axial plaque shear (APS), and fractional flow reserve (FFR). Previously, most computational fluid dynamics were obtained using invasive methods, such as intravascular ultrasound (IVUS) or optical coherence tomography (OCT). In recent years, the image quality and spatial resolution of coronary computed tomography angiography (CCTA) have greatly improved, making it possible to compute fluid dynamics by noninvasive methods. In the future, the combination of CCTA-based anatomical stenosis, plaque high-risk features, and fluid mechanics can further improve the prediction of plaque development, vulnerability, and risk of rupturing, as well as enabling noninvasive means to assess the degree of myocardial ischemia, thereby providing an important aid to guide clinical decision-making and optimize treatment.

18.
J Neurosurg Case Lessons ; 8(5)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074394

RESUMO

BACKGROUND: Silent magnetic resonance angiography reduces metal artifacts, enabling clear visualization of the clipped neck following surgical clipping of cerebral aneurysms. This study aimed to delineate the morphology of the clipped neck complex in cerebral aneurysms using three-dimensional (3D) multifusion imaging of silent magnetic resonance angiography and fast spin echo magnetic resonance cisternography. Additionally, computational fluid dynamics analysis was utilized to evaluate the hemodynamics of the parent vessel at the clipped neck, allowing for a detailed assessment of hemodynamics at the clipped neck. OBSERVATIONS: The 3D multifusion image enabled visualization of the orientation and shape of the clip within the clipped neck complex, alongside the morphology of the parent vessel. In the hemodynamic analysis of the parent vessel at the clipped neck, areas of high-intensity magnitude of wall shear stress (WSSm) variation corresponding to the clip's contour, along with significant vector of wall shear stress (WSSv) variation related to vector directionality, were visualized in 3D. The intentional residual neck, coated with muscle grafts, was depicted as an area with low WSSm variation values and high WSSv variation values. LESSONS: Three-dimensional multifusion imaging, along with computational fluid dynamics analysis of the parent vessels, facilitated both the morphological and hemodynamic visualization and assessment of the clipped neck complex following neck clipping surgery for cerebral aneurysms. https://thejns.org/doi/10.3171/CASE24194.

19.
Nanotechnology ; 35(44)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39074484

RESUMO

Interactions between carbon nanotubes (CNTs) and fluid flows are central to the operation of several emerging nanotechnologies. In this paper, we explore the fluid-structure interaction of CNT micropillars in wall-bounded shear flows, relevant to recently developed microscale wall shear stress sensors. We monitor the deformation of CNT micropillars in channel flow as the flow rate and wall shear stress are gradually varied. We quantify how the micropillars bend at low wall shear stress, and then will commonly tilt abruptly from their base above a threshold wall shear stress, which is attributed to the lower density of the micropillars in this region. Some micropillars are observed to flutter rapidly between a vertical and horizontal position around this threshold wall shear stress, before settling to a tilted position as wall shear stress increases further. Tilted micropillars are found to kink sharply near their base, similar to the observed buckling near the base of CNT micropillars in compression. Upon reducing the flow rate, micropillars are found to fully recover from a near horizontal position to a near vertical position, even with repeated on-off cycling. At sufficiently high wall shear stress, the micropillars were found to detach at the catalyst particle-substrate interface. The mechanical response of CNT micropillars in airflow revealed by this study provides a basis for future development efforts and the accurate simulation of CNT micropillar wall shear stress sensors.

20.
Heliyon ; 10(11): e31383, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828314

RESUMO

Objective: To characterize the value of carotid wall shear stress (WSS) following carotid artery stenting (CAS) in patients with carotid stenosis. Methods: Twenty-eight patients with carotid stenosis treated with CAS between March 2021 to May 2022 in the eighth medical center of the PLA General Hospital were selected for our study. Carotid ultrasound was performed before the operation, one week post-operation, and six months post-operation. Carotid artery WSS was detected by blood flow vector imaging, and the changes in WSS before and after the operation were collected. Genetic testing of drugs was detected for patients with restenosis. Results: Pre-operative WSS of the proximal, narrowest region, and distal carotid arteries in patients with ischemic carotid artery stenosis was 7.88 ± 3.18Pa, 14.36 ± 6.66Pa, and 1.55 ± 1.15Pa, respectively. Comparatively, pre-operative WSS of the proximal, narrowest region and distal carotid arteries in patients without ischemic symptoms was 5.02 ± 1.99Pa, 9.68 ± 4.23Pa, and 1.10 ± 0.68Pa, respectively, with a significant difference between the two groups (p < 0.001). Overall WSS of the proximal, narrowest region, and distal carotid arteries in patients before CAS was 6.68 ± 3.0Pa, 12.47 ± 5.98Pa, and 1.39 ± 0. 96Pa. WSS of the proximal, narrowest region, and distal carotid was 4.15 ± 1.42Pa, 6.71 ± 2.64Pa, and1.86 ± 1.13Pa one week after CAS, compared to 4.44 ± 1.91Pa, 7.90 ± 4.38Pa, and 2. 36 ± 1.09Pa six months after CAS. WSS of the proximal and narrowest region of the carotid artery was reduced after carotid stenting, and the difference was statistically significant (p < 0.001). There was no statistically significant difference in WSS between one week and six months after stenting (P > 0.05). Conclusion: We employed early carotid WSS as a means of evaluating the efficacy of carotid artery stenting. Changes in carotid WSS are closely associated with carotid artery stenosis, providing valuable hemodynamic information for CAS treatment. This technique holds great application value in pre-operative evaluation and long-term follow-up.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA