RESUMO
As we exploit biological machineries and circuits to redesign nature, it is just important to use efficient cloning strategies and methods to heterologously express the resulting DNA constructs. Golden Gate cloning allows the assembly of multiple fragments in a single reaction, making the process efficient and seamless. Although Golden Gate strategies have already been employed for different organisms, it is still not well-established for Actinobacteria. Here, we describe methods for Golden Gate cloning and how it can be utilized for Actinobacteria.
Assuntos
Actinobacteria , Clonagem Molecular , Clonagem Molecular/métodos , Actinobacteria/genética , Vetores Genéticos/genéticaRESUMO
The CMNR group comprises bacteria of the genera Corynebacterium, Mycobacterium, Nocardia, and Rhodococcus and share cell wall and DNA content characteristics. Many pathogenic CMNR bacteria cause diseases such as mastitis, lymphadenitis, and pneumonia in farmed animals, which cause economic losses for breeders and represent a threat to public health. Traditional diagnosis in CMNR involves isolating target bacteria on general or selective media and conducting metabolic analyses with the assistance of laboratory biochemical identification systems. Advanced mass spectrometry may also support diagnosing these bacteria in the clinic's daily routine despite some challenges, such as the need for isolated bacteria. In difficult identification among some CMNR members, molecular methods using polymerase chain reaction (PCR) emerge as reliable options for correct specification that is sometimes achieved directly from clinical samples such as tracheobronchial aspirates and feces. On the other hand, immunological diagnostics such as the skin test or Enzyme-Linked Immunosorbent Assay (ELISA) for Mycobacterium tuberculosis yield promising results in subclinical infections with no bacterial growth involved. In this review, we present the methods most commonly used to diagnose pathogenic CMNR bacteria and discuss their advantages and limitations, as well as challenges and perspectives on adopting new technologies in diagnostics.
RESUMO
Numerous reservoirs encounter challenges related to taste and odor issues, often attributed to odorous compounds such as geosmin (GSM) and 2-methylisoborneol (2-MIB). In this study, two large reservoirs located in northern and southern China were investigated. The Jinpen (JP) reservoir had 45.99 % Actinomycetes and 14.82 % Cyanobacteria, while the Xikeng (XK) reservoir contained 37.55 % Actinomycetes and 48.27 % Cyanobacteria. Most of the 2-MIB produced in surface layers of the two reservoirs in summer originated from Cyanobacteria, most of the 2-MIB produced in winter and in the bottom water originated from Actinomycetes. Mic gene abundance in the XK reservoir reached 5.42 × 104 copies/L in winter. The abundance of GSM synthase was notably high in the bottom layer and sediment of both reservoirs, while 2-MIB synthase was abundant in the surface layer of the XK reservoir, echoing the patterns observed in mic gene abundance. The abundance of odor-producing enzymes in the two reservoirs was inhibited by total nitrogen, temperature significantly influenced Actinomycetes abundance in the JP reservoir, whereas dissolved oxygen had a greater impact in the XK reservoir. Overall, this study elucidates the molecular mechanisms underlying odor compounding, providing essential guidance for water quality management strategies and the improvement of urban water reservoir quality.
Assuntos
Canfanos , Água Potável , Naftóis , Odorantes , Paladar , Odorantes/análise , Água Potável/microbiologia , China , Actinobacteria/genética , Cianobactérias/genética , Abastecimento de Água , Microbiologia da Água , Poluentes Químicos da Água/análise , Estações do Ano , Monitoramento AmbientalRESUMO
A considerable number of antibacterial agents are derived from bacterial metabolites. Similarly, numerous known compounds that impede bacterial virulence stem from bacterial metabolites. Enteropathogenic Escherichia coli (EPEC) is a notable human pathogen causing intestinal infections, particularly affecting infant mortality in developing regions. These infections are characterized by microvilli effacement and intestinal epithelial lesions linked with aberrant actin polymerization. This study aimed to identify potential antivirulence compounds for EPEC infections among bacterial metabolites harvested from marine actinobacteria (Kocuria sp. and Rhodococcus spp.) from the Arctic Sea by the application of virulence-based screening assays. Moreover, we demonstrate the suitability of these antivirulence assays to screen actinobacteria extract fractions for the bioassay-guided identification of metabolites. We discovered a compound in the fifth fraction of a Kocuria strain that interferes with EPEC-induced actin polymerization without affecting growth. Furthermore, a growth-inhibiting compound was identified in the fifth fraction of a Rhodococcus strain. Our findings include the bioassay-guided identification, HPLC-MS-based dereplication, and isolation of a large phospholipid and a likely antimicrobial peptide, demonstrating the usefulness of this approach in screening for compounds capable of inhibiting EPEC virulence.
RESUMO
In recent years, there has been an increasing focus on microbial ecology and its possible impact on agricultural production, owing to its eco-friendly nature and sustainable use. The current study employs metabolomics technologies and bioinformatics approaches to identify changes in the exometabolome of Streptomyces albidoflavus B24. This research aims to shed light on the mechanisms and metabolites responsible for the antifungal and growth promotion strategies, with potential applications in sustainable agriculture. Metabolomic analysis was conducted using Q Exactive UPLC-MS/MS. Our findings indicate that a total of 3,840 metabolites were identified, with 137 metabolites exhibiting significant differences divided into 61 up and 75 downregulated metabolites based on VIP >1, |FC| >1, and p < 0.01. The interaction of S. albidoflavus B24 monoculture with the co-culture demonstrated a stronger correlation coefficient. The Principal Component Analysis (PCA) demonstrates that PCA1 accounted for 23.36%, while PCA2 accounted for 20.28% distinction. OPLS-DA score plots indicate significant separation among different groups representing (t1) 24% as the predicted component (to1) depicts 14% as the orthogonal component. According to the findings of this comprehensive study, crude extracts from S. albidoflavus demonstrated varying abilities to impede phytopathogen growth and enhance root and shoot length in tested plants. Through untargeted metabolomics, we discovered numerous potential molecules with antagonistic activity against fungal phytopathogens among the top 10 significant metabolites with the highest absolute log2FC values. These include Tetrangulol, 4-Hydroxybenzaldehyde, and Cyclohexane. Additionally, we identified plant growth-regulating metabolites such as N-Succinyl-L-glutamate, Nicotinic acid, L-Aspartate, and Indole-3-acetamide. The KEGG pathway analysis has highlighted these compounds as potential sources of antimicrobial properties. The inhibitory effect of S. albidoflavus crude extracts on pathogen growth is primarily attributed to the presence of specific gene clusters responsible for producing cyclic peptides such as ansamycins, porphyrin, alkaloid derivatives, and neomycin. Overall, it is apparent that crude extracts from S. albidoflavus exhibited varying abilities to inhibit the growth of three phytopathogens and enhancement in both root and shoot length of tested plants. This research enhances our understanding of how secondary metabolites contribute to growth promotion and biocontrol, supporting ecosystem sustainability and resilience while boosting productivity in sustainable agriculture.
RESUMO
Cytochrome P450 monooxygenases are recognized as versatile biocatalysts due to their broad reaction capabilities. One important reaction is the hydroxylation of non-activated C-H bonds. The subfamily CYP153A is known for terminal hydroxylation reactions, giving access to functionalized aliphatics. Whilst fatty derivatives may be converted by numerous enzyme classes, midchain aliphatics are seldomly accepted, a prime property of CYP153As. We report here on a new CYP153A member from the genome of the mesophilic actinobacterium Gordonia rubripertincta CWB2 as an efficient biocatalyst. The gene was overexpressed in Escherichia coli and fused with a surrogate electron transport system from Acinetobacter sp. OC4. This chimeric self-sufficient whole-cell system could perform hydroxylation and epoxidation reactions: conversions of C6-C14 alkanes, alkenes, alcohols and of cyclic compounds were observed, yielding production rates of, e.g., 2.69â¯mMâ¯h-1 for 1-hexanol and 4.97â¯mMâ¯h-1 for 1,2-epoxyhexane. Optimizing the linker compositions between the protein units led to significantly altered activity. Balancing linker length and flexibility with glycine-rich and helix-forming linker units increased 1-hexanol production activity to 350â¯% compared to the initial linker setup with entirely helical linkers. The study shows that strategic coupling of efficient electron supply and a selective enzyme enables previously challenging monooxygenation reactions of midchain aliphatics.
RESUMO
Microbial communities in marine sediments represent some of the densest and most diverse biological communities known, with up to a billion cells and thousands of species per milliliter. Among this taxonomic diversity, the class Acidimicrobiia, within the phylum Actinomycetota, stands out for its consistent presence, yet its limited taxonomic understanding obscures its ecological role. We used metagenome-assembled genomes from a 5-year Arctic fjord sampling campaign and compared them to publicly available Acidimicrobiia genomes using 16S rRNA gene and whole-genome phylogenies, alongside gene prediction and annotation to study their taxonomy and genomic potential. Overall, we provide a taxonomic overview of the class Acidimicrobiia and show its significant prevalence in Isfjorden and Helgoland coastal sediments, representing over 90% of Actinomycetota 16S rRNA gene sequences, and 3-7% of Bacteria. We propose Benthobacter isfjordensis gen. nov., sp. nov., Hadalibacter litoralis gen. nov., sp. nov., and two new species from Ilumatobacter, following SeqCode guidelines. In addition, we report the first in situ quantification of the family Ilumatobacteraceae, revealing its substantial presence (1-6%) in coastal sediments. This work highlights the need of refining the taxonomy of Acidimicrobiia to better understand their ecological contributions.
RESUMO
Depression is a multifaceted mental health disorder with complex etiology and significant global burden. Recent research indicates that the gut microbiota plays a role in the pathophysiology of depression, highlighting the potential role of specific bacterial species in influencing mood and cognitive function. In this study, we aimed to investigate the presence, copy numbers, and Ct values of selected bacterial species in stool samples from depressed patients (n=50) compared to control subjects (n=50). Our findings revealed significant differences in the abundance of Fusobacterium spp., Bifidobacterium spp., Lactobacillus spp., Bacteroidetes phylum, Firmicutes phylum, and Actinobacteria spp. between the two groups. Dysregulation of the gut microbiota, characterized by decreased presence of beneficial bacteria (e.g., Bifidobacterium spp., Lactobacillus spp.) and altered abundance of potentially pathogenic bacteria (e.g., Fusobacterium spp.), may contribute to the development or exacerbation of depression. These findings support the emerging concept of the gut-brain axis and its role in mental health. However, further research is needed to better understand the underlying mechanisms and explore the therapeutic potential of microbiota-targeted interventions for depression. Understanding the intricate interplay between the gut microbiota and depression could pave the way for novel treatment strategies and personalized approaches in mental health care.
Assuntos
Actinobacteria , Bacteroides , Bifidobacterium , Fezes , Fusobacterium , Microbioma Gastrointestinal , Lactobacillus , Humanos , Microbioma Gastrointestinal/fisiologia , Fezes/microbiologia , Masculino , Feminino , Adulto , Fusobacterium/isolamento & purificação , Pessoa de Meia-Idade , Actinobacteria/isolamento & purificação , Bacteroides/isolamento & purificação , Bifidobacterium/isolamento & purificação , Firmicutes/isolamento & purificação , Fusobactérias/isolamento & purificação , Transtorno Depressivo Maior/microbiologia , Eixo Encéfalo-Intestino/fisiologia , Depressão/microbiologiaRESUMO
The oceanic actinobacteria have strong potential to secrete novel enzymes with unique properties useful for biotechnological applications. The Nocardiopsis dassonvillei strain VCS-4, associated with seaweed Caulerpa scalpeliformis, was a halo-alkaline protease producer. Further investigation focuses on medium optimization and the use of agro-industrial waste for economically feasible, high-yield protease production. A total of 12 experimental runs were designed using Minitab-20 software and Placket-Burman design. Among the 7 physicochemical parameters analyzed, incubation time and gelatin were detected as significant factors responsible for higher protease production. Incubation time and gelatin were further analyzed using OVATs. Optimal protease production was achieved with 2% gelatin, 0.1% yeast extract, 0.1% bacteriological peptone, 7% NaCl, pH 8, 5% inoculum, and a 7-day incubation period, resulting in a maximum protease activity (Pmax) of 363.97 U/mL, generation time of 11.9 h, specific growth rate of 0.161 g/mL/h, and protease productivity (Qp) of 61.65 U/mL/h. Moreover, utilizing groundnut cake as an agro-industrial waste led to enhanced production parameters: Pmax of 408.42 U/mL, generation time of 9.74 h, specific growth rate of 0.361 g/mL/h, and Qp of 68.07 U/mL/h. The immobilization of crude protease was achieved using Seralite SRC 120 as a support matrix resulting in 470.38 U/g immobilization, 88.20% immobilization yield, and 28.90% recovery activity. Characterization of both crude and immobilized proteases revealed optimal activity at pH 10 and 70 °C. Immobilization enhanced the shelf-life, reusability, and stability of VCS-4 protease under extreme conditions.
RESUMO
The presence of actinobacteria in reservoirs can lead to taste and odor issues, posing potential risks to the safety of drinking water supply. However, the response of actinobacterial communities to environmental factors in drinking water reservoirs remains largely unexplored. To address this gap, this study investigated the community structure and metabolic characteristics of odor-producing actinobacteria in water reservoirs across northern and southern China. The findings revealed differences in the actinobacterial composition across the reservoirs, with Mycobacterium sp. and Candidatus Nanopelagicus being the most prevalent genera. Notably, water temperature, nutrient levels, and metal concentrations were associated with differences in actinobacterial communities, with stochastic processes playing a major role in shaping the community assembly. In addition, three strains of odor-producing actinobacteria were cultured in raw reservoir water, namely Streptomyces antibioticus LJH21, Streptomyces sp. ZEU13, and Streptomyces sp. PQK19, with peak ATP concentrations of 51 nmol/L, 66 nmol/L, and 70 nmol/L, respectively, indicating that odor-producing actinobacteria could remain metabolically active under poor nutrient pressure. Additionally, Streptomyces antibioticus LJH21 produced the highest concentration of geosmin at 24.4 ng/L. These findings enhance our understanding of regional variances and reproductive metabolic mechanisms of actinobacteria in drinking water reservoirs, providing a solid foundation for improving drinking water quality control, especially for taste and odor.
Assuntos
Actinobacteria , Água Potável , Odorantes , Paladar , Água Potável/microbiologia , China , Abastecimento de Água , Microbiologia da Água , NaftóisRESUMO
UV filters in current sunscreen formulations can have negative effects on human health, such as endocrine disruption and allergic reactions, as well as on the environment, including bioaccumulation and coral health toxicity. As a result, there is a need to find alternative compounds that serve as safer and more ecofriendly active ingredients. This study successfully isolated actinomycetes from the octocoral Eunicea fusca and assessed their potential as producers of photoprotective compounds. The use of bio-based chemical agents, particularly natural products, has been a highly effective strategy for discovering bioactive compounds, especially in marine invertebrates and their associated microbiota. Eighteen bacterial isolates were obtained and subsequently employed to prepare raw methanolic extracts from seven-day submerged cultures in Zobell marine broth. The resulting extracts were screened for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity and characterized by total phenolic and flavonoid content measurements. After screening, the Gordonia hongkongensis EUFUS-Z928-derived raw extract exhibited the best antioxidant profile, i.e. DPPH and ABTS radical scavenging of 4.93 and 6.00 µmol Trolox per gram of extract, respectively, and selected for further photoprotection-related analysis. Thus, this extract demonstrated a UV-absorbing capacity of 46.33% of the in vitro sun protection factor calculated for 30 µg/mL oxybenzone but did not exhibit any cytotoxicity on human dermal fibroblasts (HDFa cell line) at concentrations up to 500 µg/mL. The liquid chromatography-mass spectrometry chemical characterization of this extract showed compounds with structural features associated with free radical scavenging and UV absorption (i.e. photoprotection-related activities). These findings highlighted the potential of the microbiota associated with E. fusca and confirmed the feasibility of exploiting its metabolites for photoprotection-related purposes.
Assuntos
Antozoários , Protetores Solares , Protetores Solares/farmacologia , Protetores Solares/química , Antozoários/microbiologia , Animais , Actinobacteria/metabolismo , Actinobacteria/química , Humanos , Raios Ultravioleta , Antioxidantes/farmacologia , Antioxidantes/química , Fenóis/química , Fenóis/farmacologia , Flavonoides/química , Flavonoides/farmacologiaRESUMO
Bacteriophage GiJojo is a myovirus isolated from soil that infects Streptomyces mirabilis NRRL B-2400, with a genome length of 115,161 bp containing 180 genes and 29 tRNAs. Of those genes, 59 have been assigned functions. GiJojo is a member of the BS cluster of actinobacteriophages.
RESUMO
Anise (Pimpinella anisum L.) seeds have various nutritional and therapeutic benefits and are thus considered a valuable addition to animal and human health. Hence, in this study, we aimed to induce the nutritive and biological value of anise seeds. To this end, the potential biofortification effect of the endophytic Actinomycetota sp. JW0824 strain, isolated during the fall of 2023 from the medicinal plant Achyranthes aspera, exhibiting natural distribution in the Jazan region of Saudi Arabia, was investigated in four varieties of anise seeds from Egypt, Tunisia, Syria, and Morocco. Results revealed significant increments (p < 0.05) in the seed dry weight percentage (DW%) and oil yields. In line with increased biomass accumulation, the metabolism of the primary and secondary metabolites was increased. There were differential increases in proteins, sugars, flavonoids, alkaloids, phenols, vitamins (e.g., ß-carotene, ascorbic acid), and essential oil components (e.g., phenylpropanoids and monoterpenes), along with their precursor phenylalanine. Consistently, the activity of L-phenylalanine aminolyase (PAL) was increased in the Egyptian and Tunisian varieties at 83.88% and 77.19%, respectively, while 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) activity increased in all varieties, with a significant 179.31% rise in the Egyptian variety. These findings highlight the beneficial effects of Actinomycetota sp. JW0824 as a bioinoculant for anise seeds, suggesting its potential application in agricultural practices to improve seed yield and quality. Further field trials are recommended to assess the commercial viability of this endophyte for enhancing anise seed production and potentially benefiting other plant species.
RESUMO
Actinobacterial species are mostly thought to be nonmotile. Recent studies have revealed the degenerate evolution of flagella in this phylum and different flagellar rod compositions from the classical model. Moreover, flagella-independent motility by various means has been reported in Streptomyces spp. and Mycobacterium spp., but the underlying mechanisms remain elusive.
RESUMO
The last thirty years have seen a meteoric rise in the number of sequenced bacteriophage genomes, spurred on by both the rise and success of groups working to isolate and characterize phages, and the rapid and significant technological improvements and reduced costs associated with sequencing their genomes. Over the course of these decades, the tools used to glean evolutionary insights from these sequences have grown more complex and sophisticated, and we describe here the suite of computational and bioinformatic tools used extensively by the integrated research-education communities such as SEA-PHAGES and PHIRE, which are jointly responsible for 25% of all complete phage genomes in the RefSeq database. These tools are used to integrate and analyze phage genome data from different sources, for identification and precise extraction of prophages from bacterial genomes, computing "phamilies" of related genes, and displaying the complex nucleotide and amino acid level mosaicism of these genomes. While over 50,000 SEA-PHAGES students have primarily benefitted from these tools, they are freely available for the phage community at large.
Assuntos
Bacteriófagos , Biologia Computacional , Genoma Viral , Genômica , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Biologia Computacional/métodos , Genômica/métodos , Software , Prófagos/genética , Bases de Dados GenéticasRESUMO
Background and Objectives: TB infection is one of the most challengeable epidemiological issues. Complex interactions between microbiota and TB infection have been demonstrated. Alteration in microbial population during TB infection may act as a useful biomarker. The present study examined the microbiota patterns of blood and sputum samples collected from Afghan immigrants and Iranian patients with active TB. Materials and Methods: Sixty active pulmonary TB patients were enrolled in the study. Blood and sputum samples were collected. To detect phylum bacterial composition in the blood and sputum samples, bacterial 16S rRNA quantification by Real-Time qPCR was performed. Results: A significant decrease in Bacteroidetes in Iranian sputum and blood samples of Afghan immigrants and Iranian TB active subjects were seen. While, sputum samples of Afghan immigrants showed no significant differences in Bacteroidetes abundance among TB active and control. Firmicutes were also presented no significant difference between sputum samples of the two races. Actinobacteria showed a significant increase in Iranian and Afghan sputum samples while this phylum showed no significant abundance in Iranian and Afghan TB positive blood samples. Proteobacteria also showed an increase in sputum and blood samples of the two races. Conclusion: An imbalance in Bacteroidetes and Firmicutes abundance may cause an alteration in the microbiota composition, resulting in dysregulated immune responses and resulting in the augmentation of opportunistic pathogens during TB infection, notably Proteobacteria and Actinobacteria. Evaluation of human microbiota under different conditions of TB infection can be critical to a deeper understanding of the disease control.
RESUMO
This study was designed to recover representative culturable actinomycetes from the Atacama Desert, and to detect their ability to promote plant growth under drought conditions. Environmental samples were taken from three Atacama Desert habitats, namely, from the Aguas Calientes, Lomas Bayas and Yungay core regions. With one exception higher actinomycete counts were obtained when isolation media were inoculated with mineral particles than with corresponding aliquots of serial dilution. Comparative 16S rRNA gene sequencing showed that representative isolates belonged to thirteen genera including putative novel Blastococcus, Kocuria, Micromonospora, Pseudonocardia, Rhodococcus and Streptomyces species. Representative isolates produced indole-3-acetic acid, siderophore and solubilized phosphate as well as displaying an ability to grow under drought conditions. In conclusion, the current findings open up exciting prospects for the promising potential of actinomycetes from the Atacama Desert to be used as bioinoculants to promote plant growth in arid and semi-arid biomes.
Assuntos
Actinobacteria , Clima Desértico , Secas , Ácidos Indolacéticos , Filogenia , Desenvolvimento Vegetal , RNA Ribossômico 16S , Sideróforos , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , RNA Ribossômico 16S/genética , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo , DNA Bacteriano/genética , Fosfatos/metabolismo , Análise de Sequência de DNA , Reguladores de Crescimento de Plantas/metabolismo , Resistência à SecaRESUMO
This study investigated the impact of dietary supplementation with hydrolyzed yeast (Kluyveromyces marxianus) on growth performance, humoral immunity, jejunal morphology, cecal microbiota and metabolic pathways in broilers raised at 45 kg/m2. A total of 1,176 mixed sex 1-day-old Ross 308 broilers were distributed into 42 pens and randomly assigned to either the control group, the control + 250 g hydrolyzed yeast (HY)/ton, 250HY group, or the control + 500 g HY/ton, 500HY group for 42 d. HY did not affect growth performance. However, HY reduced (P < 0.05) mortality at 25 to 35 d. Dietary HY lowered the heterophil/lymphocyte ratio and enhanced the villus height/crypt depth ratio and Newcastle disease titer (P < 0.05). Compared with HY250 and the control, HY500 upregulated (P < 0.05) IL-10. HY enhanced the α diversity, inferring the richness and evenness of the ceca microbiota. HY500 had greater ß diversity than the control (P < 0.05). Six bacterial phyla, namely, Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Verrucomicrobia, and Cyanobacteria, were found. The relative abundance of Firmicutes was greater in the HY500 treatment group than in the HY250 and control groups. HY decreased the abundance of Actinobacteria. HY supplementation altered (P < 0.05) the abundance of 8 higher-level taxa consisting of 2 classes (Bacilli and Clostridia), 1 order (Lactobacillales), 1 family (Streptococcaceae), and five genera (Streptococcus, Lachnospiraceae_uc, Akkermansiaceae, PACO01270_g, and LLKB_g). HY500 improved (P < 0.05) the abundance of Bacilli, Clostridia, Lactobacillales, Streptococcaceae, Streptococcus, PACO01270_g, and Lachnospiraceae_uc, while HY250 enhanced (P < 0.05) the abundance of Akkermansiaceae and LLKB_g. HY improved the abundance of Lactobacillus and Akkermansia spp. Minimal set of pathway analyses revealed that compared with the control, both HY250 and HY500 regulated 20 metabolic pathways. These findings suggest that dietary K. marxianus hydrolysate, especially HY500, improved humoral immunity and jejunal morphology and beneficially altered the composition and metabolic pathways of the cecal microbiota in broilers raised at 45 kg/m2.
Assuntos
Ração Animal , Ceco , Galinhas , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Imunidade Humoral , Jejuno , Kluyveromyces , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Masculino , Ceco/microbiologia , Imunidade Humoral/efeitos dos fármacos , Suplementos Nutricionais/análise , Distribuição Aleatória , Feminino , Redes e Vias Metabólicas , Criação de Animais Domésticos/métodosRESUMO
Cyclic purine nucleotides are important signal transduction molecules across all domains of life. 3',5'-cyclic di-adenosine monophosphate (c-di-AMP) has roles in both prokaryotes and eukaryotes, while the signals that adjust intracellular c-di-AMP and the molecular machinery enabling a network-wide homeostatic response remain largely unknown. Here, we present evidence for an acetyl phosphate (AcP)-governed network responsible for c-di-AMP homeostasis through two distinct substrates, the diadenylate cyclase DNA integrity scanning protein (DisA) and its newly identified transcriptional repressor, DasR. Correspondingly, we found that AcP-induced acetylation exerts these regulatory actions by disrupting protein multimerization, thus impairing c-di-AMP synthesis via K66 acetylation of DisA. Conversely, the transcriptional inhibition of disA was relieved during DasR acetylation at K78. These findings establish a pivotal physiological role for AcP as a mediator to balance c-di-AMP homeostasis. Further studies revealed that acetylated DisA and DasR undergo conformational changes that play crucial roles in differentiation. Considering the broad distribution of AcP-induced acetylation in response to environmental stress, as well as the high conservation of the identified key sites, we propose that this unique regulation of c-di-AMP homeostasis may constitute a fundamental property of central circuits in Actinobacteria and thus the global control of cellular physiology.IMPORTANCESince the identification of c-di-AMP is required for bacterial growth and cellular physiology, a major challenge is the cell signals and stimuli that feed into the decision-making process of c-di-AMP concentration and how that information is integrated into the regulatory pathways. Using the bacterium Saccharopolyspora erythraea as a model, we established that AcP-dependent acetylation of the diadenylate cyclase DisA and its newly identified transcriptional repressor DasR is involved in coordinating environmental and intracellular signals, which are crucial for c-di-AMP homeostasis. Specifically, DisA acetylated at K66 directly inactivates its diadenylate cyclase activity, hence the production of c-di-AMP, whereas DasR acetylation at K78 leads to increased disA expression and c-di-AMP levels. Thus, AcP represents an essential molecular switch in c-di-AMP maintenance, responding to environmental changes and possibly hampering efficient development. Therefore, AcP-mediated posttranslational processes constitute a network beyond the usual and well-characterized synthetase/hydrolase governing c-di-AMP homeostasis.