RESUMO
Asthma is a lung condition characterized by impaired respiratory function and an apparent infiltration of inflammatory cells. Chalcones are substances that have attracted considerable interest in the disciplines of pharmaceutical chemistry and drug discovery due to their diverse biochemical processes, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and others, but whether they can be used in asthma treatment has yet to be investigated. This study aimed to investigate the immunomodulatory effect of 4 hydroxychalcone (4-HC) against allergic asthma in mice. In this research, we investigated how 4-HC affected asthmatic behavior, leukocyte infiltration, histopathological alterations, oxidative stress, immunoglobulin E (IgE) production, and airway inflammation. Moreover, ELISA and immunohistochemistry (IHC) were used to measure the expression of Nrf2 and GPx4. 4-HC treatment significantly decreased lung oxidative stress, inflammatory cell infiltration, and IgE levels. According to our findings, we imply that 4-HC may be utilized as an anti-asthmatic agent through the upregulation of Nrf2/GPx4 signaling pathway.
RESUMO
Objectives: This study aimed to investigate the effect of Environmental Pollutants Particulate Matter PM2.5, PM10, Carbon Monoxide (CO), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), and Ozone (O3) on lung airway inflammation by assessing the Fractional Exhaled Nitric Oxide (FeNO) in students studying in schools located in or away from air-polluted areas. Methods: This matched case-control cross-sectional study was conducted in the Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia from August 2022 to July 2023. In this study, two schools were selected, one was located near a traffic-polluted area (School #1), and the second was located away from the traffic-polluted area (School #2). A total of 300 students were recruited, 150 (75 male and 75 female) students from the school located in a traffic-polluted area, and 150 students (75 male and 75 female) from the school located away from a traffic-polluted area. Environmental pollutants PM2.5, PM10, CO, NO2, O3, and SO2, were recorded. The Fractional Exhaled Nitric Oxide (FeNO) was measured using a Niox Mino. Results: The mean concentration of PM2.5, PM10, CO, NO2, O3, and SO2 were 35.00±0.65 significantly higher in a school located in motor vehicle polluted area compared to a school located away from a motor vehicle-polluted area (29.95±0.32) (p=0.001). The mean values for FeNO were significantly higher (18.75±0.90) among students studying in a school located in the motor vehicle-polluted area compared to students studying in a school located away from the motor vehicle-polluted area (11.26±0.56) (p=0.001). Conclusions: Environmental pollution can cause lung inflammation among students in schools located in traffic-polluted areas.
RESUMO
Cardiopulmonary bypass (CPB) is a crucial technique used to repair congenital heart defects (CHD); however, it may induce inflammatory response, leading to airway inflammation and need for prolonged mechanical ventilation. In this study, we aimed to evaluate the effect of budesonide nebulization in children with high serum total immunoglobulin E (tIgE) levels undergoing surgical repair of CHD via CPB. We conducted a randomized, single-center, controlled trial at a tertiary teaching hospital. One-hundred and one children with high tIgE were enrolled and randomized into the budesonide nebulization group (BUD group, n = 50) or the normal saline nebulization group (NS group, n = 51) between January 2020 and December 2020. Budesonide or normal saline was administered through a vibrating mesh nebulizer during mechanical ventilation every 8 h. Blood and bronchoalveolar lavage fluid (BALF) samples were examined and data on airway mechanics and clinical outcomes were recorded. IL-6 and IL-8 levels in the blood and BALF samples significantly increased after CPB in both groups. Budesonide inhalation reduced IL-6 and IL-8 levels in the blood and BALF samples in children with high tIgE (P < 0.05). The mean airway pressure, PCO2, and oxygen index in the BUD group were significantly lower than those in the NS group after the first inhalation dose and persisted until almost 24 h after surgery. The peak inspiratory pressure and drive pressure were lower in the BUD group than in the NS group at nearly 24 h after surgery, with no significant difference at other time points. Additionally, the duration of mechanical ventilation, number of noninvasive ventilations after extubation, and number of patients using aerosol-inhaled bronchodilators after CICU in the BUD group were significantly lower than those in the NS group (P < 0.05). Children with high preoperative tIgE levels are at risk of airway inflammation after cardiopulmonary bypass. Inhaling budesonide during postoperative mechanical ventilation can reduce the intensity of inflammatory reactions, shorten the duration of mechanical ventilation, reduce airway pressure and the utilization of NIV after extubation.
RESUMO
BACKGROUND: Bronchial asthma is a chronic condition characterized by airway inflammation and remodeling, which pose complex pathophysiological challenges. Autophagy has been identified as a practical strategy to regulate inflammation and remodeling processes in chronic inflammatory diseases with pathological characteristics, such as asthma. PF (Paeoniflorin) is a potential new autophagy regulatory compound. Previous studies have reported that PF can inhibit airway inflammation to alleviate allergic asthma, but whether this is mediated through the regulation of autophagy and the molecular mechanism of action remains unclear. PURPOSE: The aim of this study was to evaluate the inhibitory effect of natural small molecule PF on asthma by regulating epithelial autophagy. METHODS: The rat asthma model was established through intraperitoneal injection of OVA and aluminum hydroxide suspension, followed by atomized inhalation of OVA for a period of two weeks. Following treatment with PF, histopathology was observed using Masson and H&E staining, while airway Max Rrs was evaluated using a pulmonary function apparatus. Levels of inflammatory cells in BALF were detected using a blood cell analyzer, and levels of inflammatory factors in BALF were detected through Elisa. Expressions of p-PRAS40 and p-Raptor were observed through immunohistochemistry, and levels of Beclin1 and LC3B were observed through immunofluorescence. The structure and quantity of autophagosomes and autophagolysosomal were observed through TEM. An autophagy model of 16HBE cells was established after treatment with 10ng/mL IL13 for 30 minutes. PRAS40 (AKT1S1) overexpression and mutation of PF and Raptor binding site (K207M& L302I& Q417H) were introduced in 16HBE cells. Autophagy in cells was measured by mFRP-GFP-LC3 ADV fluorescent tracer. The binding sites of PF and Raptor were analyzed using the Autodock Tool. The p-mTOR, p-Raptor, p-PRAS40, LC3II/LC3I were detected through Western blot, and interaction between PRAS40-Raptor and Raptor-mTOR was detected through Co-IP. RESULTS: The results showed that PF effectively reduced airway inflammation, improved airway pathological changes and remodeling, and maintained lung function. Additionally, PF was found to reverse excessive autophagy in airway epithelial cells. Interestingly, PF activated the mTORC1 subunit PRAS40 and Raptor in airway epithelial cells by regulating their phosphorylation. PRAS40 is an endogenous mTOR inhibitor that promotes autophagy. PF competitively binds Raptor to PRAS40, promoting Raptor-mTOR interactions to activate mTORC1, an outcome that can be reversed by PRAS40 overexpression and site-specific amino acid codon mutations in Raptor. CONCLUSION: These findings suggest that PF intervention and inhibition of PRAS40-Raptor interaction are effective treatments for bronchial asthma. By activating mTORC1, PF effectively reverses excessive autophagy in airway epithelial cells, leading to improved airway function and reduced inflammation.
RESUMO
We developed a model of inflammation and airway remodeling in C57 mice provoked by exosomes derived from bone marrow mesenchymal stem cells infected by respiratory syncytial virus (RSV). The mean size of control and infected exosomes in vitro were 167.9 and 118.5 nm, respectively. After induction of modeled pathology, the severity of airway inflammation and its remodeling were analyzed by histopathological methods. In addition, the blood levels of inflammatory factors IL-10, IL-17, transforming growth factor-ß (TGF-ß), and TNFα were assayed; in the lung tissues, the expression levels of MMP-2, MMP-9, α-smooth muscle actin (α-SMA), and TGF-ß were measured. In the developed model, the effects of RSV-induced and non-induced exosomes were compared with those of inactivated and non-inactivated RSV. Intranasal administration of RSV-induced exosomes decreased the levels of serum inflammatory factors IL-10 and IL-17 and increased the expression of serum proinflammatory cytokine TNFα. Increased levels of MMP-2, MMP-9, and α-SMA, enhanced expression of TGF-ß in the lung tissue, and pathological staining of the lung tissues indicated infiltration with inflammatory cells and luminal constriction. Thus, RSV-induced exosomes can provoke airway inflammation and remodeling in mice similar to RSV, while non-induced exosomes cannot produce such alterations.
RESUMO
Background: Less attention has been paid to the pathophysiological changes in atypical asthma such as cough variant asthma (CVA) and chest tightness variant asthma (CTVA). The obstruction of large and small airways is the important component in the development of asthma. We investigated whether small airway inflammation (SAI) induced small airway dysfunction (SAD) in these atypical asthmatics. Methods: Six hundred and eighty-six patients were enrolled and analyzed in the study. The partitioned airway inflammation was assessed by fractional exhaled nitric oxide (FeNO), such as FnNO, FeNO50, FeNO200, and calculated alveolar fraction of exhaled NO (CaNOdual). Correlations between exhaled NOs and SAD-related variables were assessed, whereas cell classification was evaluated by Spearman's rank tests. Classic asthma, CVA, and CTVA about potential risk were conducted using binary logistic regression models. Results: The whole airway inflammation increased in classic and atypical asthma than controls, whereas the central and peripheral airway inflammation in the CVA and CTVA groups increased compared with the classic asthma group. Smoking exposure was found to increase the central and peripheral airway inflammation in patients with asthma. The exhaled NO of FeNO50 and FeNO200 was associated with SAD in classic asthma, but not in CVA and CTVA. FeNO200 was the main risk (adjusted odds ratio [OR], 1.591; 95 % CI, 1.121-2.259; P = .009) in classic asthma and (adjusted OR, 1.456; 95 % CI, 1.247-1.700; P = .000) in CVA. The blood eosinophil levels were correlated with FeNO50 and FeNO200 in classic asthma and atypical asthma. Conclusion: More severe inflammatory process was present in central and peripheral airways in CVA and CTVA, which might reflect a pre-asthmatic state. SAI was the predominant risk factor in the development of asthma before SAD.
RESUMO
Background: The current clinical treatment of chronic obstructive pulmonary disease (COPD) mainly uses drugs to improve symptoms, but these drugs cannot reverse the progression of the disease and the pathological changes in lung tissue. This study aimed to investigate the effects and mechanisms of Liver X receptors (LXRs) in ozone (O3)-induced airway inflammation and remodeling in mice. Methods: Wild mice and LXR deficient mice were exposed to O3 twice a week for 6 weeks. Some wild mice were intraperitoneally injected with T0901317 (a LXR agonist) before O3 exposure. Wild mice were exposed to ambient air and intraperitoneally injected with normal saline (NS) as control group. The lung tissues and bronchoalveolar lavage fluid (BALF) were collected to evaluate airway inflammation, airway remodeling and lipid disorder. Results: After O3 exposure, LXR deficient mice showed severe airway inflammation and airway remodeling compared with the wild mice. There were a lot of foamy macrophages appeared in BALF of LXR deficient mice. The inflammatory proteins such as myeloid differentiation primary response protein 88 (MyD88) and interleukin-1 receptor-associated kinase (IRAK) in the lung tissues of LXR deficient mice were significantly increased compared with the wild mice. In wild mice exposed to O3, T0901317 treatment can alleviate airway inflammation, airway remodeling and foamy macrophages in BALF. And MyD88 and IRAK expression in lung tissue were also attenuated by T0901317 treatment. Conclusions: LXRs play protective roles in O3-induced lipid accumulation, airway inflammation and airway remodeling.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The prevalence of allergic airway inflammation (AAI) worldwide is high. Artemisia annua L. pollen is spread worldwide, and allergic diseases caused by its plant polysaccharides, which are closely related to the intestinal microbiota, have anti-inflammatory effects. Further isolation and purification of Lycium barbarum L. yielded its most effective component Lycium barbarum L. glycopeptide (LbGP), which can inhibit inflammation in animal models. However, its therapeutic effect on AAI and its mechanism of regulating the intestinal flora have not been fully investigated. AIM OF THE STUDY: To explore LbGP in APE-induced immunological mechanisms of AAI and the interaction mechanism of the intestinal flora and metabolites. METHODS: A mouse model of AAI generated from Artemisia annua pollen was constructed, and immunological indices related to the disease were examined. A combination of macrogenomic and metabolomic analyses was used to investigate the effects of LbGP on the gut microbial and metabolite profiles of mice with airway inflammation. RESULTS: LbGP effectively alleviated Artemisia. annua pollen extract (APE)-induced AAI, corrected Th1/Th2 immune dysregulation, decreased Th17 cells, increased Treg cells, and altered the composition and function of the intestinal microbiota. LbGP treatment increased the number of Odoribacter, Duncaniella, Ruminococcus, and Alistipes in the intestines of the mice, but the numble of Alistipes decreased. Macrogenomic functional analysis and metabolite pathway enrichment analysis were used to determine the effects of taurine and hypotaurine metabolism, bile acid secretion, and pyrimidine metabolism pathways on disease. CONCLUSION: Our results revealed significant changes in the macrogenome and metabolome following APE and LbGP intervention, revealed potential correlations between gut microbial species and metabolites, and highlighted the beneficial effects of LbGP on AAI through the modulation of the gut microbiome and host metabolism.
RESUMO
Numerous studies have highlighted the role of translationally controlled tumor protein (TCTP) as a key inflammatory mediator of asthma and allergies. Our previous study revealed that blocking the cytokine-like activity of TCTP using JEW-M449, an anti-TCTP monoclonal antibody (mAb), alleviated allergic inflammation in asthmatic mice. This study aimed to determine whether directly delivering JEW-M449 into the respiratory tract is a more effective way of mitigating airway inflammation in a mouse model of ovalbumin (OVA)-induced allergic airway inflammation than delivering this antibody via the intraperitoneal (IP) route. OVA-sensitized mice were intranasally administered JEW-M449 to enable its direct delivery to the respiratory tract before OVA challenge. We evaluated the changes in the levels of bronchoalveolar lavage fluid (BALF) cells, T helper type 2 (Th2) cytokines, OVA-specific immunoglobulin E (IgE), and histopathological alterations in the lung tissues. Intranasal (IN) administration of JEW-M449 significantly ameliorated the pathological changes associated with OVA-induced lung injury, including reduced inflammatory cell infiltration and mucus hypersecretion. Mice IN administered JEW-M449 also showed decreased OVA-mediated induction of Th2 cytokines in BALF and lung homogenates. Importantly, JEW-M449 delivered via the IN route reached the lung tissue more effectively and exerted superior anti-inflammatory effects in OVA-challenged mice than the IP-delivered JEW-M449. This study is the first to demonstrate the efficacy of directly delivering JEW-M449 anti-TCTP mAb into the respiratory tract to alleviate the asthma phenotype in a mouse model, thereby highlighting a potential delivery strategy for novel inhaled mAb therapeutics for human asthma.
RESUMO
Allergen-specific IgE is a major mediator of allergic responses and contributes greatly to allergic disease in the human population. Therapies that inhibit the production of IgE would be useful for lessening the burden of allergic disease. A great deal of research has focused on how IgE responses are regulated, and several factors that promote the production of allergic IgE have been characterized. T follicular helper (TFH) cells expressing IL-4 are required for the development of IgE expressing B cells in the germinal center (GC). Ig somatic hypermutation and B cell selection in the GC leads to the development of high affinity allergen-specific IgE that promotes anaphylaxis, a severe form of allergic response. T follicular regulatory (TFR) cells are also found in the GC response and act with TFH cells in the selection of high affinity IgE + B cells. This review examines the current literature on IgE responses and TFR cells. In mouse studies, TFR cells have a suppressive role on IgE responses in allergic airway disease, however TFR cells also play a helper role in the IgE response in food allergy. In human studies, TFR cells correlate with a decreased allergic response but evidence for a direct suppressive role of TFR cells on IgE in vivo is lacking. TFR cells may represent a new target for allergy therapies, but caution must be exercised to promote the suppressor activity of TFR cells and not the helper activity of TFR cells on IgE responses.
RESUMO
Previous studies showed that serum amyloid A (SAA) and macrophages were associated with allergic airway inflammation. However, the interaction between SAA1 and macrophages in allergic airway inflammation remains to be further elucidated. In this study, the levels of SAA1 were measured in nasal tissues from patients with eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP), house dust mite (HDM)-treated BEAS-2B cells and the tissues of mice of HDM-induced allergic airway inflammation. Human monocytes-derived macrophages and mouse bone marrow-derived macrophages (BMDMs) were exposed to SAA1, and CCL17 and the other M1/M2-related factors were evaluated using RT-PCR and/or ELISA. To test the effects of SAA1-treated BMDMs on chemotaxis and differentiation of CD4+ T cells, number of migrated cells and the levels of Th1 and Th2 were measured using flow cytometry. SAA1 receptors were examined in BMDMs and lung macrophages of model mice. CD36 neutralizing antibody was applied to explore the mechanisms of SAA1 in regulating BMDMs using RT-PCR and/or ELISA. We found that SAA1 was expressed in epithelial cells, and was increased in the nasal tissues of patients with eosinophilic CRSwNP and HDM-treated BEAS-2B- cells as well as the bronchoalveolar lavage fluid and lung tissues of mice exposed to HDM. We also found that the level of CCL17 was increased in M2 macrophages, more CD4+ T cells were recruited and proportion of Th2 was increased after the treatment of SAA1. The treatment of CD36 neutralizing antibody decreased CCL17 level in SAA1-treated M2 BMDMs. In summary, our results showed that SAA1 was increased in allergic airway inflammation, and the administration of SAA1 upregulated the expression of CCL17 in M2 macrophages via CD36 and promoted the chemotaxis of CD4+ T cells and differentiation of Th2. It may provide a new therapeutic strategy that could mediate allergic airway inflammation via suppressing SAA1 to reduce recruitment of CD4+ T cells and activation of Th2.
RESUMO
RATIONALE: Research studies typically quantify acute respiratory exacerbation episodes (AECOPD) among people with chronic obstructive pulmonary disease (COPD) based on self-report elicited by survey questionnaire. However, AECOPD quantification by self-report could be inaccurate, potentially rendering it an imprecise tool for identification of those with exacerbation tendency. OBJECTIVE: Determine the agreement between self-reported and health records-documented quantification of AECOPD and their association with airway inflammation. METHODS: We administered a questionnaire to elicit the incidence and severity of respiratory exacerbations in the three years preceding the survey among current or former heavy smokers with or without diagnosis of COPD. We then examined electronic health records (EHR) of those with COPD and those without (tobacco-exposed persons with preserved spirometry or TEPS) to determine whether the documentation of the three-year incidence of moderate to very severe respiratory exacerbations was consistent with self-report using Kappa Interrater statistic. A subgroup of participants also underwent bronchoalveolar lavage (BAL) to quantify their airway inflammatory cells. We further used multivariable regressions analysis to estimate the association between respiratory exacerbations and BAL inflammatory cell composition with adjustment for covariates including age, sex, height, weight, smoking status (current versus former) and burden (pack-years). RESULTS: Overall, a total of 511 participants completed the questionnaire, from whom 487 had EHR available for review. Among the 222 participants with COPD (70 ± 7 years-old; 96% male; 70 ± 38 pack-years smoking; 42% current smoking), 57 (26%) reported having any moderate to very severe AECOPD (m/s-AECOPD) while 66 (30%) had EHR documentation of m/s-AECOPD. However, 42% of those with EHR-identified m/s-AECOPD had none by self-report, and 33% of those who reported m/s-AECOPD had none by EHR, suggesting only moderate agreement (Cohen's Kappa = 0.47 ± 0.07; P < 0.001). Nevertheless, self-reported and EHR-identified m/s-AECOPD events were both associated with higher BAL neutrophils (ß ± SEM: 3.0 ± 1.1 and 1.3 ± 0.5 per 10% neutrophil increase; P ≤ 0.018) and lymphocytes (0.9 ± 0.4 and 0.7 ± 0.3 per 10% lymphocyte increase; P ≤ 0.041). Exacerbation by either measure combined was associated with a larger estimated effect (3.7 ± 1.2 and 1.0 ± 0.5 per 10% increase in neutrophils and lymphocytes, respectively) but was not statistically significantly different compared to the self-report only approach. Among the 184 TEPS participants, there were fewer moderate to very severe respiratory exacerbations by self-report (n = 15 or 8%) or EHR-documentation (n = 9 or 5%), but a similar level of agreement as those with COPD was observed (Cohen's Kappa = 0.38 ± 0.07; P < 0.001). DISCUSSION: While there is modest agreement between self-reported and EHR-identified m/s-AECOPD, events are missed by relying on either method alone. However, m/s-AECOPD quantified by self-report or health records is associated with BAL neutrophilia and lymphocytosis.
Assuntos
Progressão da Doença , Linfocitose , Neutrófilos , Doença Pulmonar Obstrutiva Crônica , Autorrelato , Humanos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Linfocitose/epidemiologia , Líquido da Lavagem Broncoalveolar/citologia , Inquéritos e Questionários , Fumar/epidemiologia , Registros Eletrônicos de Saúde , Índice de Gravidade de DoençaRESUMO
Asthma is a complex inflammatory airway disease that arises from the interplay between genetic predisposition and environmental influences. Leucine-rich repeat kinase 2 (LRRK2), a gene commonly associated with Parkinson's disease, has recently gained attention for its role in immune regulation and inflammation beyond the brain. However, its involvement in asthma has not yet been reported. In this study, we used LRRK2 G2019S transgenic mice and LRRK2 knockout mice to establish asthmatic models to explore LRRK2 impact on asthma. We found that LRRK2 G2019S transgenic mice showed exacerbated airway hyperresponsiveness (AHR) and airway inflammation in asthma mouse models induced by house dust mite. RNA sequencing data unveiled that the LRRK2 G2019S mutation enhanced immune response pathways, including NOD-like receptor, cellular response to interferon ß and activation of innate immune response signaling. Conversely, LRRK2 deficiency attenuated AHR and airway inflammation in the same asthma models. Our study offers new insights into the role of LRRK2 in allergic inflammation and highlights its potential as a therapeutic target for asthma.
RESUMO
Allergic asthma, a type of chronic airway inflammation, is a global health concern because of its increasing incidence and recurrence rates. Camellia sinensis L. yields a variety type of teas, which are also used as medicinal plants in East Asia and are known to have antioxidant, anti-inflammatory, and immune-potentiating properties. Here, we examined the constituents of C. sinensis L. extract (CSE) and evaluated the protective effects of CSE on allergic asthma by elucidating the underlying mechanism. To induce allergic asthma, we injected the sensitization solution (mixture of ovalbumin (OVA) and aluminum hydroxide) into mice intraperitoneally on days 0 and 14. Then, the mice were exposed to 1% OVA by a nebulizer on days 21 to 23, while intragastric administration of CSE (30 and 100 mg/kg) was performed each day on days 18 to 23. We detected five compounds in CSE, including (-)-epigallocatechin, caffeine, (-)-epicatechin, (-)-epigallocatechin gallate, and (-)-epicatechin gallate. Treatment with CSE remarkably decreased the airway hyperresponsiveness, OVA-specific immunoglobulin E level, and inflammatory cell and cytokine levels of mice, with a decrease in inflammatory cell infiltration and mucus production in lung tissue. Treatment with CSE also decreased the phosphorylation of nuclear factor-κB (NF-κB) and the expression of matrix-metalloproteinase (MMP)-9 in asthmatic mice. Our results demonstrated that CSE reduced allergic airway inflammation caused by OVA through inhibition of phosphorylated NF-κB and MMP-9 expression.
RESUMO
Introduction: Air pollution, allergens, and bacterial infections are major contributors to pathological respiratory disorders worldwide. CKD-497, derived from the rhizome of Atractylodes japonica and the fruits of Schisandra chinensis, is known for its ability to relieve cough and facilitate phlegm expectoration. However, its protective action against allergic asthma and fine dust-induced lung inflammation, along with its underlying mechanisms, have not been thoroughly investigated. Methods: In this study, we established mouse models of ovalbumin (OVA)-induced asthma and particulate matter (PM)-induced pulmonary inflammation to evaluate the effects of CKD-497. Mice were administered CKD-497 orally, and various parameters such as airway inflammation, mucus production, and proinflammatory cytokine levels (IL-1ß, IL-6, TNF-α) were measured. Additionally, the macrophage cell line RAW264.7 was pretreated with CKD-497 and stimulated with lipopolysaccharide (LPS) to assess inflammation via the NF-kB signaling pathway. Results: Oral administration of CKD-497 effectively attenuated airway inflammation and mucus production in both OVA-induced asthma and PM-induced lung inflammation models. It also significantly decreased the production of proinflammatory cytokines IL-1ß, IL-6, and TNF-α. CKD-497 alleviated leukocyte infiltration, including neutrophils, and reduced fibrillary collagen deposition in PM10-treated mice. In vitro, CKD-497 pretreatment inhibited LPS-induced inflammation in RAW264.7 cells through the suppression of the NF-kB signaling pathway. Discussion: CKD-497 shows potent anti-inflammatory effects in mouse models of asthma and PM-induced lung inflammation, potentially mediated by the inhibition of the NF-kB pathway. These findings suggest that CKD-497 could serve as a functional supplement to protect against respiratory diseases by mitigating pulmonary and airway inflammation induced by allergens and air pollution.
RESUMO
BACKGROUND: Epithelial barriers, such as the lungs and skin, face the challenge of providing the tissues' physiological function and maintaining tolerance to the commensal microbiome and innocuous environmental factors while defending the host against infectious microbes. Asthma and allergic diseases can result from maladaptive immune responses, resulting in exaggerated and persistent type 2 immunity and tissue inflammation. SUMMARY: Among the diverse populations of tissue immune cells, CD4+ regulatory T cells (Treg cells) are central to controlling immune responses and inflammation and restoring tissue homeostasis. Humans and mice that are deficient in Treg cells experience extensive inflammation in their mucosal organs and skin. During past decades, major progress has been made toward understanding the immunobiology of Treg cells and the molecular and cellular mechanisms that control their differentiation and function. It is now clear that Treg cells are not a single cell type and that they demonstrate diversity and plasticity depending on their differentiation stages and tissue environment. They could also take on a proinflammatory phenotype in certain conditions. KEY MESSAGES: Treg cells perform distinct functions, including the induction of immune tolerance, suppression of inflammation, and promotion of tissue repair. Subsets of Treg cells in mucosal tissues are regulated by their differentiation stage and tissue inflammatory milieu. Treg cell dysfunction likely plays roles in persistent immune responses and tissue inflammation in asthma and allergic diseases.
RESUMO
Exposure to particulate matter (PM) can cause airway inflammation and worsen various airway diseases. However, the underlying molecular mechanism by which PM triggers airway inflammation has not been completely elucidated, and effective interventions are lacking. Our study revealed that PM exposure increased the expression of histone deacetylase 9 (HDAC9) in human bronchial epithelial cells and mouse airway epithelium through the METTL3/m6A methylation/IGF2BP3 pathway. Functional assays showed that HDAC9 upregulation promoted PM-induced airway inflammation and activation of MAPK signaling pathway in vitro and in vivo. Mechanistically, HDAC9 modulated the deacetylation of histone 4 acetylation at K12 (H4K12) in the promoter region of dual specificity phosphatase 9 (DUSP9) to repress the expression of DUSP9 and resulting in the activation of MAPK signaling pathway, thereby promoting PM-induced airway inflammation. Additionally, HDAC9 bound to MEF2A to weaken its anti-inflammatory effect on PM-induced airway inflammation. Then, we developed a novel inhaled lipid nanoparticle system for delivering HDAC9 siRNA to the airway, offering an effective treatment for PM-induced airway inflammation. Collectively, we elucidated the crucial regulatory mechanism of HDAC9 in PM-induced airway inflammation and introduced an inhaled therapeutic approach targeting HDAC9. These findings contribute to alleviating the burden of various airway diseases caused by PM exposure.
Assuntos
Epigênese Genética , Histona Desacetilases , Material Particulado , Regulação para Cima , Animais , Material Particulado/toxicidade , Humanos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Epigênese Genética/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Camundongos , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Inflamação , Nanopartículas/química , Nanopartículas/toxicidade , Camundongos Endogâmicos C57BL , Linhagem Celular , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , MasculinoRESUMO
Recent advancements in asthma management include non-invasive methodologies such as sputum analysis, exhaled breath condensate (EBC), and fractional exhaled nitric oxide (FeNO). These techniques offer a means to assess airway inflammation, a critical feature of asthma, without invasive procedures. Sputum analysis provides detailed insights into airway inflammation patterns and cellular composition, guiding personalized treatment strategies. EBC collection, reflecting bronchoalveolar lining fluid composition, provides a non-invasive window into airway physiology. FeNO emerges as a pivotal biomarker, offering insights into eosinophilic airway inflammation and aiding in asthma diagnosis, treatment monitoring, and the prediction of exacerbation risks. Despite inherent limitations, each method offers valuable tools for a more comprehensive assessment of asthma. Combining these techniques with traditional methods like spirometry may lead to more personalized treatment plans and improved patient outcomes. Future research is crucial to refine protocols, validate biomarkers, and establish comprehensive guidelines in order to enhance asthma management with tailored therapeutic strategies and improved patient outcomes.
Assuntos
Asma , Biomarcadores , Testes Respiratórios , Escarro , Humanos , Asma/diagnóstico , Asma/fisiopatologia , Asma/metabolismo , Escarro/metabolismo , Testes Respiratórios/métodos , Biomarcadores/metabolismo , Expiração , Óxido Nítrico/metabolismo , Óxido Nítrico/análiseRESUMO
Phlomoides umbrosa Turczaninow (PU), a traditional Korean medicinal herb, exhibits osteogenic and anti-inflammatory effects. This research explored the effect of PU extracts on hyperimmune responses within the respiratory tract using lipopolysaccharide-stimulated RAW 264.7 cells and an ovalbumin-induced hyper-responsiveness model. The inflammatory cytokines, protein expression linked to airway inflammation, antioxidant enzyme activity, histopathological observation, and expectorant activity were measured. The results revealed that PU treatment led to a concentration-dependent reduction in Th2 cytokines and the expression of nuclear factor (NF)-κB, phosphatase-tensin homolog, mitogen-activated protein kinase (MAPK), and inducible nitric oxide synthase (iNOS). Simultaneously, antioxidant enzyme activity increased. Furthermore, PU exhibited substantial enhancements in lung tissue condition and expectorant activity relative to the allergic rhinitis-induced group. These findings indicate the potential of PU to mitigate airway inflammation and excessive mucus production by suppressing NF-κB, MAPK, and iNOS pathways. Consequently, PU emerges as a promising anti-inflammatory agent for respiratory tract applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01521-3.
RESUMO
INTRODUCTION: The availability of cystic fibrosis transmembrane conductance regulator (CFTR) modulators opens the possibility of discontinuing some chronic pulmonary therapies to decrease cystic fibrosis (CF) treatment burden. However, CFTR modulators may not adequately address neutrophilic inflammation, which contributes to a self-perpetual cycle of viscous CF sputum, airway obstruction, inflammation, and lung function decline. AREAS COVERED: This review discusses the emerging role of neutrophil extracellular traps in CF and its role in CF sputum viscosity, airway obstruction, and inflammation, based on a literature search of PubMed (1990-present). We summarize clinical trials and real-world studies that support the efficacy of dornase alfa (Pulmozyme) in improving lung function and reducing pulmonary exacerbation in people with CF (PwCF), and we discuss the potential role of dornase alfa in reducing airway inflammation. We also examine the findings of short-term trials evaluating the discontinuation of mucoactive therapy in PwCF receiving CFTR modulators. EXPERT OPINION: Long-term studies are needed to assess the impact of discontinuing mucoactive therapy in PwCF who are clinically stable while receiving CFTR modulatory therapy. Treatment decisions should take into account the severity of underlying lung disease. People with advanced CF will likely require ongoing mucoactive therapy.