Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Biomolecules ; 14(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39199276

RESUMO

Several inflammatory cytokines bind to the allosteric site (site 2) and allosterically activate integrins. Site 2 is also a binding site for 25-hydroxycholesterol, an inflammatory lipid mediator, and is involved in inflammatory signaling (e.g., TNF and IL-6 secretion) in addition to integrin activation. FGF2 is pro-inflammatory and pro-thrombotic, and FGF1, homologous to FGF2, has anti-inflammatory and anti-thrombotic actions, but the mechanism of these actions is unknown. We hypothesized that FGF2 and FGF1 bind to site 2 of integrins and regulate inflammatory signaling. Here, we describe that FGF2 is bound to site 2 and allosterically activated ß3 integrins, suggesting that the pro-inflammatory action of FGF2 is mediated by binding to site 2. In contrast, FGF1 bound to site 2 but did not activate these integrins and instead suppressed integrin activation induced by FGF2, indicating that FGF1 acts as an antagonist of site 2 and that the anti-inflammatory action of FGF1 is mediated by blocking site 2. A non-mitogenic FGF1 mutant (R50E), which is defective in binding to site 1 of αvß3, suppressed ß3 integrin activation by FGF2 as effectively as WT FGF1.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , Integrina beta3 , Humanos , Integrina beta3/metabolismo , Integrina beta3/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação Alostérica , Anti-Inflamatórios/farmacologia , Sítio Alostérico , Animais , Ligação Proteica , Sítios de Ligação
2.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39201676

RESUMO

Burn injuries represent a significant problem in clinical practice due to the high risk of infection and the prolonged healing process. Recently, more attention has been given to natural remedies such as water extracts of various medicinal plants, which possess anti-inflammatory and wound healing properties. The aim of this study is to evaluate the efficacy and safety of Satureja montana L. and other water extracts in a burn wound model. The study involved male Californian rabbits (n = 52) divided into eight groups. Burn wounds were modeled on the animals and subsequently treated with gels based on Satureja montana L. and other water extracts. The reparative potential of the epidermis (assessed by Ki-67 expression), the state of local immunity (measured by the number of CD-45 cells), and the anti-inflammatory role of mast cells (measured by tryptase levels) were evaluated. Bacteriological and morphological studies were conducted. The most pronounced bactericidal, reparative, and immunostimulatory effects were observed after the treatment using a gel mixture of water extracts from Satureja montana L., Salvia sclarea, Coriandrum sativum L., and Lavandula angustifolia in equal proportions (1:1:1:1). The other gels also demonstrated high efficacy in treating burn wounds, especially when using a strain of Pseudomonas aeruginosa resistant to several antibiotics. Immunohistochemical studies showed a significant increase in the number of Ki-67-positive cells in the basal layer of the epidermis and a decrease in the number of CD-45-positive cells, indicating improved proliferative activity and reduced inflammation. This study confirms the hypothesis that the use of water extract mixtures significantly enhances the reparative potential, improves the immune response in the treatment of burns, and promotes wound healing. These findings pave the way for further research and the application of complex phytotherapeutic agents, specifically water extracts of medicinal plants containing phenols and antioxidants in burn wound therapy.


Assuntos
Queimaduras , Géis , Extratos Vegetais , Plantas Medicinais , Infecções por Pseudomonas , Pseudomonas aeruginosa , Cicatrização , Animais , Coelhos , Cicatrização/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Plantas Medicinais/química , Masculino , Água/química , Modelos Animais de Doenças , Antibacterianos/farmacologia
3.
Biomedicines ; 12(8)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39200347

RESUMO

Extracorporeal circulation (ECC) is frequently implemented in a vast array of modalities such as hemodialysis, cardiopulmonary bypass, extracorporeal membrane oxygenation (ECMO), and others. Patients receiving any such therapy are frequently encumbered with chronic inflammation, which is inherently accompanied by oxidative stress. However, ECC treatments themselves are also responsible for sustaining or promoting inflammation. On these grounds, an in vitro study was designed to investigate the therapeutic potential of molecular hydrogen (H2) against pro-inflammatory agents in ECC settings. Five miniature ECMO circuits and a small vial (Control) were primed with heparinized blood from healthy adult donors (n = 7). Three of the ECMO systems were injected with lipopolysaccharide (LPS), out of which one was additionally treated with an H2 gas mixture. After 6 h, samples were drawn for the assessment of specific biomarkers (MCP-1, MPO, MDA-a, TRX1, and IL-6). Preliminary results indicate a progressive oxidative and inflammatory response between the six systems. Circulation has triggered inflammation and blood trauma, but the staggering influence of LPS in this outcome is indisputable. Accordingly, hydrogen's remedial potential becomes immediately apparent as biomarker concentrations tend to be lower in the H2-handled circuit. Future research should have distinct objectives (e.g., dosage/duration/cycle of hydrogen administration) in order to ascertain the optimal protocol for patient treatment.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39082165

RESUMO

It is possible for psoriasis to manifest at any point in a person's life, regardless of their age, gender, or geographic location. It is a chronic immune-linked inflammatory skin ill-ness that affects individuals of various racial and ethnic origins. It is recognized to be a long-lasting condition. Because of the significant contribution that natural products have made, there has been a significant advancement in the treatment of skin illnesses such as psoriasis. The biggest number of phytochemicals derived from a wide range of plants and herbs are now being used in a variety of applications throughout the whole world. Additionally, a number of phyto-chemicals, including aloe-emodin, psoralen, curcumin, and others, have been effectively ex-tracted in pure or clear form, and they have shown a great deal of efficacy in the treatment of psoriasis illness. There is evidence that a few herbal remedies are effective, and the occurrence of these phytochemicals provides more proof. When synthetic medications are used for chronic therapy, they may cause a variety of adverse consequences; hence, the exploration of natural pharmaceuticals can give a successful natural treatment with a minimal amount of adverse ef-fects. Within the scope of this concise review, a number of plant sources that possess anti-pso-riatic activity are investigated, and the antipsoriatic effects of these plant sources are shown on a number of animal models using particular pathways.

5.
J Inorg Biochem ; 260: 112670, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39068684

RESUMO

The binding ability of 8-hydroxyquinoline-2-carboxylic acid (8-HQA) towards Ga3+ has been investigated by ISEH+ (Ion Selective Electrode, glass electrode) potentiometric and UV/Vis spectrophotometric titrations in KCl(aq) at I = 0.2 mol dm-3 and at T = 298.15 K. Further experiments were also performed adopting both the metal (with Fe3+ as competing cation) and ligand-competition approaches (with EDTA as competing ligand). Results gave evidence of the formation of the [Ga(8-HQA)]+, [Ga(8-HQA)(OH)], [Ga(8-HQA)(OH)2]- and [Ga(8-HQA)2]- species, the latter being so far the most stable, as also confirmed by ESI-MS analysis. Experiments were also designed to determine the stability constants of the [Ga(EDTA)]- and [Ga(EDTA)(OH)]2- in the above conditions. Due to the relevance of Ga3+ hydrolysis in aqueous systems, literature data on this topic were collected and critically analyzed, providing equations for the calculation of mononuclear Ga3+ hydrolysis constants at T = 298.15 K, in different ionic media, in the ionic strength range 0 < I / mol dm-3 ≤ 1.0. The synthesis and characterization (by ElectroSpray Ionization - Mass Spectrometry (ESI-MS), Attenuated Total Reflectance - Fourier-Transform Infrared Spectroscopy (ATR-FTIR) and ThermoGravimetric Analysis (TGA)) of Ga3+/8-HQA complexes were also performed, identifying [Ga(8-HQA)2]- as the main isolated species, even in the solid state. Finally, the potential effects of 8-HQA and Ga3+/8-HQA complex towards human microbiota exposed to ionizing radiation were evaluated (namely Actinomyces viscosus, Streptococcus mutans, Streptococcus sobrinus, Pseudomonas putida, Pseudomonas fluorescens and Escherichia coli), as well as their anti-proliferative and anti-inflammatory properties. A radioprotective effect of Ga3+/8-HQA complex was observed on Actinomyces viscosus, while showing a potential radiosensitizing effect against Streptococcus mutans and Streptococcus sobrinus. No cytotoxicity on RAW264.7 murine macrophage cells was observed, neither for the free ligand or Ga3+/8-HQA complex. Nevertheless, Ga3+/8-HQA complex highlighted potential anti-inflammatory properties.


Assuntos
Complexos de Coordenação , Gálio , Oxiquinolina , Oxiquinolina/química , Oxiquinolina/farmacologia , Gálio/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Animais , Camundongos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química
6.
Curr Pharm Des ; 30(24): 1880-1893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818920

RESUMO

Inflammation is an individual's physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.


Assuntos
Anti-Inflamatórios , Produtos Biológicos , Inflamação , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Estresse Oxidativo/efeitos dos fármacos
7.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542084

RESUMO

Unbalanced blood glucose levels may cause inflammation within the central nervous system (CNS). This effect can be reversed by the action of a natural neuroprotective compound, resveratrol (RSV). The study aimed to investigate the anti-inflammatory effect of RSV on astrocyte cytokine profiles within an in vitro model of the blood-brain barrier (BBB) under varying glucose concentrations (2.2, 5.0, and 25.0 mmol/L), corresponding to hypo-, normo-, and hyperglycemia. The model included co-cultures of astrocytes (brain compartment, BC) and endothelial cells (microvascular compartment, MC), separated by 0.4 µm wide pores. Subsequent exposure to 0.2 µM LPS in the brain compartment (BC) and 50 µM RSV in the microvascular compartment (MC) of each well was carried out. Cytokine levels (IL-1 α, IL-1 ß, IL-2, IL-4, IL-6, IL-8) in the BC were assessed using a Multi-Analyte ELISArray Kit before and after the addition of LPS and RSV. Statistical analysis was performed to determine significance levels. The results demonstrated that RSV reduced the concentration of all studied cytokines in the BC, regardless of glucose levels, with the most substantial decrease observed under normoglycemic conditions. Additionally, the concentration of RSV in the BC was highest under normoglycemic conditions compared to hypo- and hyperglycemia. These findings confirm that administration of RSV in the MC exerts anti-inflammatory effects within the BC, particularly under normoglycemia-simulating conditions. Further in vivo studies, including animal and human research, are warranted to elucidate the bioavailability of RSV within the central nervous system (CNS).


Assuntos
Barreira Hematoencefálica , Hiperglicemia , Animais , Humanos , Resveratrol/farmacologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Lipopolissacarídeos/toxicidade , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Glucose/farmacologia , Hiperglicemia/tratamento farmacológico
8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1030501

RESUMO

Objective To preliminary explore the in vitro anti-inflammatory effects of Qinggan Tongyin based on serum pharmacology and network pharmacology.Methods The effects of the serum containing Qinggan Tongyin on the release of NO,cell necrosis factor-α(TNF-α),and interleukin-6(IL-6)in LPS-induced RAW264.7 cells were confirmed using serum pharmacology.UHPLC-MS/MS was used to determine the index components of Qinggan Tongyin.The possible targets and pathways of active components in Qinggan Tongyin for anti-inflammatory properties were predicted by using network pharmacology.Results The results of cellular assay showed that Qinggan Tongyin could dramatically lessen the levels of NO,TNF-α,and IL-6(P<0.05,P<0.01,P<0.001).The higher contents of Qinggan Tongyin were phillyrin A,arctiin,chlorogenic acid,scutellarin,gallic acid,rosmarinic acid,paeoniflorin and phillyrin.A totsl of 215 intersection targets between 17 active components in Qinggan Tongyin and inflammation were obtained,and the 31 core targets were ALB,VEGFA,IL-6,TNF-α,etc..The primary targets can exhibit anti-inflammatory actions by regulating several signaling pathways,such as AGE-RAGE,PI3K-Akt,and MAPK signaling pathway.Conclusion Qinggan Tongyin exerts its anti-inflammatory effects with the characteristic of multiple components and multiple targets.

9.
Foods ; 12(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048208

RESUMO

Pistacia lentiscus L. var. chia resin (Chios Mastiha), the first natural chewing gum, is widely used in Mediterranean cuisine and has been used in traditional medicine from ancient times. Regarding its chemical composition, Chios Mastiha is known to be rich in triterpenes. Triterpenes have a similar structure to glucocorticoids (GCs), the steroid hormones that exert strong anti-inflammatory activities and play crucial roles in the regulation of cellular metabolism. To simplify the characterization of the bioactive compounds of Mastiha resin, three different polarity fractions were isolated and were further analyzed regarding their main chemical composition and an assessment of their biological activities. The biological assessment focused on the evaluation of the potential anti-proliferative, anti-inflammatory, and apoptotic activities as well as the possible interference of the three different polarity Mastiha fractions with the glucocorticoid receptor signaling, with the aim of characterizing the biochemical mechanisms of the actions of the Mastiha fraction. Applying MTT cell viability assay, luciferase/ß-galactosidase assay, and Western blot analysis showed that Chios Mastiha apolar, medium-polar, and polar fractions reduced the HEK293 cell viability in a dose-dependent manner, possibly by mitochondrial-mediated induction of apoptosis. Medium-polar and polar Mastiha fractions also suppressed the GR and NF-κΒ transcriptional activation and the p65 protein levels. These activities were accompanied by the modulation of protein levels of regulatory molecules playing a crucial role in cellular energy homeostasis, such as GR, phosphoenolpyruvate carboxykinase (PEPCK), and/or peroxisome proliferator-activated receptor alpha (PPARα), and by the induction of phosphorylation and the activation of the AMP-activated protein kinase (AMPK). The medium-polar fraction was found to be enriched in triterpenes, such as lupeol, 24Z-masticadienonic acid methyl ester, and 24Z-isomasticadienonic acid methyl ester, and it was the most active one, so we propose that triterpenes in medium-polar fraction are possibly the bioactive compounds responsible for Mastiha's regulatory actions on energy metabolism and anti-inflammatory activities via interference with GR, NF-κΒ, and AMPK signaling. This highlights its potential applications in many fields of pharmaceutical, cosmetic, and nutraceutical interest.

10.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768971

RESUMO

Targeted therapies have come into prominence in the ongoing battle against non-small cell lung cancer (NSCLC) because of the shortcomings of traditional chemotherapy. In this context, indole-based small molecules, which were synthesized efficiently, were subjected to an in vitro colorimetric assay to evaluate their cyclooxygenase (COX) inhibitory profiles. Compounds 3b and 4a were found to be the most selective COX-1 inhibitors in this series with IC50 values of 8.90 µM and 10.00 µM, respectively. In vitro and in vivo assays were performed to evaluate their anti-NSCLC and anti-inflammatory action, respectively. 2-(1H-Indol-3-yl)-N'-(4-morpholinobenzylidene)acetohydrazide (3b) showed selective cytotoxic activity against A549 human lung adenocarcinoma cells through apoptosis induction and Akt inhibition. The in vivo experimental data revealed that compound 3b decreased the serum myeloperoxidase and nitric oxide levels, pointing out its anti-inflammatory action. Moreover, compound 3b diminished the serum aminotransferase (particularly aspartate aminotransferase) levels. Based on the in vitro and in vivo experimental data, compound 3b stands out as a lead anti-NSCLC agent endowed with in vivo anti-inflammatory action, acting as a dual COX-1 and Akt inhibitor.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Proto-Oncogênicas c-akt , Relação Estrutura-Atividade , Ciclo-Oxigenase 1/metabolismo
11.
Med Chem ; 19(2): 174-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35993458

RESUMO

INTRODUCTION: An analysis of the literature on the painkillers long used in traditional medicine, which are isolated from plant materials, has shown that many of them are alkylamides of various carboxylic acids. This fact served as the basis for the study of a large group of N-alkyl-4- methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides as potential new analgesics. The objects of the study were synthesized in the traditional way involving the initial conversion of 4-methyl- 2,2-dioxo-1H-2λ6,1- benzothiazine-3-carboxylic acid to imidazolide, in which imidazolide was used as an acylating agent. The method is simple to implement and, as a rule, gives high yields of final alkylamides. However, in reaction with sterically hindered tert-butylamine, along with the "normal" product, an unexpected formation of N-tert-butyl-4-methyl-1-(4-methyl-2,2-dioxo-1H-2λ6,1- benzothiazine-3-carbonyl)-2,2-dioxo-2λ6,1-benzothiazine-3-carboxamide was observed, which was characterized by X-ray diffraction analysis as a monosolvate with N,N-dimethylformamide. These synthetic problems can be avoided using a more powerful acylating agent, 4-methyl-2,2-dioxo-1H- 2λ6,1- benzothiazine-3-carbonyl chloride. BACKGROUND: A large group of new N-alkyl-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3- carboxamides was synthesized. OBJECTIVE: On the basis of molecular docking, some derivatives of N-alkyl-4-methyl-2,2-dioxo-1H- 2λ6,1-benzothiazine-3-carboxamides have been designed. Their preliminary structure-activity relationships (SAR) have been studied. The most rational approaches to the synthesis of lead compounds have been developed. The most active compounds have shown high anti-inflammatory and analgesic activities. METHODS: The structure of all compounds prepared has been confirmed by the data of elemental analysis, 1H- and 13C NMR spectroscopy, and electrospray ionization liquid chromato-mass spectrometry. For rational drug design, optimization of further pharmacological screening and prediction of a possible mechanism of pharmacological action, molecular docking has been performed. For the determination of activity, pharmacological studies have been carried out. RESULTS: Pharmacological tests have determined that the transition from N-aryl(heteroaryl) alkylamides to "pure" N-alkylamides we carried out is accompanied by a significant reduction and even complete loss of anti-inflammatory effect with remaining analgesic activity. CONCLUSION: According to the studies, compounds from N-alkyl-4-methyl-2,2-dioxo-1H-2λ6,1- benzothiazine-3-carboxamides are potential anti-inflammatory and analgesic agents.


Assuntos
Analgésicos , Anti-Inflamatórios , Simulação de Acoplamento Molecular , Analgésicos/farmacologia , Analgésicos/química , Anti-Inflamatórios/farmacologia , Relação Estrutura-Atividade , Indicadores e Reagentes/farmacologia
12.
Mayo Clin Proc Innov Qual Outcomes ; 6(6): 497-510, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36185465

RESUMO

Objective: To develop an inflammation-based risk stratification tool for operative mortality in patients with acute type A aortic dissection. Methods: Between January 1, 2016 and December 31, 2021, 3124 patients from Beijing Anzhen Hospital were included for derivation, 571 patients from the same hospital were included for internal validation, and 1319 patients from other 12 hospitals were included for external validation. The primary outcome was operative mortality according to the Society of Thoracic Surgeons criteria. Least absolute shrinkage and selection operator regression were used to identify clinical risk factors. A model was developed using different machine learning algorithms. The performance of the model was determined using the area under the receiver operating characteristic curve (AUC) for discrimination, calibration curves, and Brier score for calibration. The final model (5A score) was tested with respect to the existing clinical scores. Results: Extreme gradient boosting was selected for model training (5A score) using 12 variables for prediction-the ratio of platelet to leukocyte count, creatinine level, age, hemoglobin level, prior cardiac surgery, extent of dissection extension, cerebral perfusion, aortic regurgitation, sex, pericardial effusion, shock, and coronary perfusion-which yields the highest AUC (0.873 [95% confidence interval (CI) 0.845-0.901]). The AUC of 5A score was 0.875 (95% CI 0.814-0.936), 0.845 (95% CI 0.811-0.878), and 0.852 (95% CI 0.821-0.883) in the internal, external, and total cohort, respectively, which outperformed the best existing risk score (German Registry for Acute Type A Aortic Dissection score AUC 0.709 [95% CI 0.669-0.749]). Conclusion: The 5A score is a novel, internally and externally validated inflammation-based tool for risk stratification of patients before surgical repair, potentially advancing individualized treatment. Trial Registration: clinicaltrials.gov Identifier: NCT04918108.

13.
J Smooth Muscle Res ; 58: 78-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36216552

RESUMO

BACKGROUND/AIMS: Gastroprokinetic agents are used for patients with postoperative ileus (POI), and the Japanese traditional herbal medicine daikenchuto (DKT) is one such agent used in the clinical setting. POI is caused by inflammation. DKT and rikkunshito have anti-inflammatory abilities in addition to their gastroprokinetic effects. The efficacy of Kampo formulations, including hangekobokuto (HKT), in patients with POI has been reported recently. Several authors have described the efficacy of honokiol, the primary component of Magnoliae Cortex, in HKT in mouse models of POI. We therefore analyzed the effect of HKT on POI model mice to determine the similarities in the mechanism of action between HKT and DKT. METHODS: HKT was administered orally to each mouse before and after intestinal manipulation was performed on the distal ileum. The gastrointestinal transit in vivo, leukocyte infiltration, and levels of inflammatory mediators, such as cytokines and chemokines, were analyzed. RESULTS: HKT significantly inhibited the infiltration of neutrophils and macrophages and led to the recovery of delayed intestinal transit. In addition, it significantly decreased inducible nitric oxide synthase (iNOS) as well as honokiol levels, suggesting anti-inflammatory activity. However, it did not inhibit the increase in levels of interleukin (IL)-1beta and IL-6, which are related to iNOS induction. In contrast, HKT increased levels of nerve growth factor (NGF) and suppressed those of nuclear factor-κB (NFκB), which are related to iNOS induction, suggesting the possibility of a neuronal anti-inflammatory mechanism. CONCLUSIONS: HKT exerted a POI-relieving effect similar to DKT in a murine POI model, and findings suggest that it may exert its anti-inflammatory activity through NGF.


Assuntos
Anti-Inflamatórios , Íleus , Preparações de Plantas , Plantas Medicinais , Compostos Alílicos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Compostos de Bifenilo , Íleus/tratamento farmacológico , Mediadores da Inflamação , Interleucina-6/uso terapêutico , Japão , Camundongos , NF-kappa B/uso terapêutico , Fator de Crescimento Neural/uso terapêutico , Óxido Nítrico Sintase Tipo II/uso terapêutico , Fenóis , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Complicações Pós-Operatórias/tratamento farmacológico
14.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077505

RESUMO

Neuroinflammation, where inflammatory cytokines are produced in excess, contributes to the pathogenesis of delirium. Microglial cells play a central role in neuroinflammation by producing and releasing inflammatory cytokines in response to infection, tissue damage and neurodegeneration. Dexmedetomidine (DEX) is a sedative, which reduces the incidence of delirium. Thus, we hypothesized that DEX may alleviate delirium by exhibiting anti-inflammatory action on microglia. In the present study, we investigated the anti-inflammatory action of DEX on human microglial HMC3 cells. The results indicated that DEX partially suppressed the IL-6 and IL-8 production by lipopolysaccharide (LPS)-stimulated HMC3 cells as well as the phosphorylation of p38 MAPK and IκB and the translocation of NF-κB. Furthermore, DEX substantially suppressed IL-6 and IL-8 production by unstimulated HMC3 cells as wells as the phosphorylation of p38 MAPK and IκB and the translocation of NF-κB. These observations suggest that DEX exhibits anti-inflammatory action on not only LPS-stimulated but also unstimulated microglial cells via the suppression of inflammatory signaling and cytokine production.


Assuntos
Delírio , Dexmedetomidina , Anti-Inflamatórios/farmacologia , Citocinas , Dexmedetomidina/farmacologia , Humanos , Proteínas I-kappa B , Interleucina-6 , Interleucina-8 , Lipopolissacarídeos/farmacologia , Microglia , NF-kappa B , Proteínas Quinases p38 Ativadas por Mitógeno
15.
Mar Drugs ; 20(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36135751

RESUMO

The intestine and skin provide crucial protection against the external environment. Strengthening the epithelial barrier function of these organs is critical for maintaining homeostasis against inflammatory stimuli. Recent studies suggest that polar marine algae are a promising bioactive resource because of their adaptation to extreme environments. To investigate the bioactive properties of polar marine algae on epithelial cells of the intestine and skin, we created extracts of the Antarctic macroalgae Himantothallus grandifolius, Plocamium cartilagineum, Phaeurus antarcticus, and Kallymenia antarctica, analyzed the compound profiles of the extracts using gas chromatography-mass spectrometry, and tested the protective activities of the extracts on human intestinal and keratinocyte cell lines by measuring cell viability and reactive oxygen species scavenging. In addition, we assessed immune responses modulated by the extracts by real-time polymerase chain reaction, and we monitored the barrier-protective activities of the extracts on intestinal and keratinocyte cell lines by measuring transepithelial electrical resistance and fluorescence-labeled dextran flux, respectively. We identified bioactive compounds, including several fatty acids and lipid compounds, in the extracts, and found that the extracts perform antioxidant activities that remove intracellular reactive oxygen species and scavenge specific radicals. Furthermore, the Antarctic marine algae extracts increased cell viability, protected cells against inflammatory stimulation, and increased the barrier integrity of cells damaged by lipopolysaccharide or ultraviolet radiation. These results suggest that Antarctic marine algae have optimized their composition for polar environments, and furthermore, that the bioactive properties of compounds produced by Antarctic marine algae can potentially be used to develop therapeutics to promote the protective barrier function of the intestine and skin.


Assuntos
Antioxidantes , Phaeophyceae , Regiões Antárticas , Antioxidantes/farmacologia , Dextranos , Ácidos Graxos , Humanos , Lipopolissacarídeos , Recursos Naturais , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio , Raios Ultravioleta
16.
Gels ; 8(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36005111

RESUMO

This research manuscript's objective was to develop the Punica granatum extract ethosome gel. The use of nanotechnology can improve transdermal drug delivery permeation of its major bioactive compound ß-sitosterol. The optimised and developed formulations were further studied in vitro and in vivo. The assessment of the anti-inflammatory activity of the gel was performed in Albino rats. Methanolic extract was prepared and developed into an ethosome suspension and an ethosome gel. To optimise the formulation's response in terms of particle size (nm) and entrapment efficiency (%), the central composite design (CCD) was used in 22 levels. The effects of factors such as lecithin (%) and ethanol (mL) in nine formulations were observed. Characterisation of ethosome gel was performed and the results showed the particle size (516.4 nm) and mean zeta potential (-45.4 mV). Evaluations of the gel formulation were performed. The results were good in terms of pH (7.1), viscosity (32,158 cps), spreadability (31.55 g cm/s), and no grittiness. In an in vitro study, the percentages of ß-sitosterol release of ethosome gel (91.83%), suspension (82.74%), and extracts (68.15%) at 279 nm were recorded. The effects of the formulated gel on formalin-induced oedema in Albino rats showed good results in terms of anti-inflammatory activity. The comparative anti-inflammatory activity of Punica granatum extract and gel showed that the gel action was good for their topical application.

17.
Biochem Pharmacol ; 202: 115123, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688178

RESUMO

Phosphodiesterase-4 (PDE4) is an important drug target for inflammatory diseases. Previously, we identified a series of novel PDE4 inhibitors derived from the natural Toddacoumalone, among which the hit compound 2 with a naphthyridine scaffold showed moderate potency with the IC50 value of 400 nM. Based on the co-crystal structure of PDE4D-2, further structural optimizations and structure-activity relationship studies led to a highly potent PDE4 inhibitor 23a with the IC50 value of 0.25 nM and excellent selectivity profiles over other PDEs (>4000-fold). The co-crystal structure of PDE4D-23a elucidated that 23a has strong interactions with the M and Q pocket of PDE4D. Importantly, compound 23a significantly inhibits the release of inflammatory cytokines TNF-α and IL-6 in lipopolysaccharide-stimulated RAW264.7 cells. Thus, compound 23a with a naphthyridine scaffold is a promising PDE4 inhibitor for the treatment of inflammatory diseases.


Assuntos
Inibidores da Fosfodiesterase 4 , Anti-Inflamatórios/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Lipopolissacarídeos/farmacologia , Naftiridinas/farmacologia , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/farmacologia , Fator de Necrose Tumoral alfa
18.
Med Chem ; 18(10): 1060-1072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35410619

RESUMO

BACKGROUND: Pyrazole is a component of a diversity of bioactive heterocyclic congeners with a broad-spectrum range of biological and pharmacological uses. Designing novel pyrazole and its analogues, revealing new routes for synthesizing this nucleus, exploring various potencies of that heterocycles, and looking for possible applications of pyrazoles are all becoming more important due to their numerous potential applications. OBJECTIVES: Pyrazole scaffolds have been proven to be successful as anti-viral and anti-inflammatory therapeutics against multiple targets like HSV-1, NNRTI, H1N1, CoX-1, and CoX-2. Due to this miscellany in the biotic area, this moiety has engrossed the consideration of many scientists to study chemistry and pharmacological profile. RESULTS: The review encompasses pyrazole having various scaffolds with multiple biological activities and attempts have also been made to correlate their structure-activity relationship. Multiple pyrazole correspondents have been synthesized as lead molecules and performed valuation for their actions. CONCLUSION: The incorporation of pyrazole with other pharmacophores in the molecule might lead to novel potent therapeutic agents that will further help in designing potent lead molecules.


Assuntos
Antivirais , Vírus da Influenza A Subtipo H1N1 , Anti-Inflamatórios , Desenho de Fármacos , Pirazóis , Relação Estrutura-Atividade
19.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164406

RESUMO

Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family, are one of the major groups of secondary metabolites found in plants. Researchers from distinct research fields, including pharmacology, medicine, and agriculture, are interested in their biological potential. With new SL discovered in the last years, new biological activities have been tested, different action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure-activity relationships described. The review identifies the main sesquiterpene lactones with interconnections between immune responses and anti-inflammatory actions, within different cellular models as well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure-activity relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiterpene lactone extraction methodologies are presented, with the perspective of biological activity enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.


Assuntos
Anti-Inflamatórios/farmacologia , Agentes de Imunomodulação/farmacologia , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Asteraceae/química , Descoberta de Drogas , Humanos , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Lactonas/química , Lactonas/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação
20.
Front Physiol ; 12: 724506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899370

RESUMO

Sirtuins may counteract at least six hallmarks of organismal aging: neurodegeneration, chronic but ineffective inflammatory response, metabolic syndrome, DNA damage, genome instability, and cancer incidence. Moreover, caloric restriction is believed to slow down aging by boosting the activity of some sirtuins through activating adenosine monophosphate-activated protein kinase (AMPK), thus raising the level of intracellular nicotinamide adenine dinucleotide (NAD+) by stimulating NAD+ biosynthesis. Sirtuins and their downstream effectors induce intracellular signaling pathways related to a moderate caloric restriction within cells, mitigating reactive oxygen species (ROS) production, cell senescence phenotype (CSP) induction, and apoptosis as forms of the cellular stress response. Instead, it can promote DNA damage repair and survival of cells with normal, completely functional phenotypes. In this review, we discuss mechanisms of sirtuins action toward cell-conserving phenotype associated with intracellular signaling pathways related to moderate caloric restriction, as well as some tissue-specific functions of sirtuins, especially in the central nervous system, heart muscle, skeletal muscles, liver, kidneys, white adipose tissue, hematopoietic system, and immune system. In this context, we discuss the possibility of new therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA