RESUMO
Introduction: Calves are highly susceptible to gastrointestinal infection with Cryptosporidium parvum (C. parvum), which can result in watery diarrhea and eventually death or impaired development. With little to no effective therapeutics, understanding the host's microbiota and pathogen interaction at the mucosal immune system has been critical to identify and test novel control strategies. Methods: Herein, we used an experimental model of C. parvum challenge in neonatal calves to describe the clinical signs and histological and proteomic profiling of the mucosal innate immunity and microbiota shifts by metagenomics in the ileum and colon during cryptosporidiosis. Also, we investigated the impact of supplemental colostrum feeding on C. parvum infection. Results: We showed that C. parvum challenged calves experienced clinical signs including pyrexia and diarrhea 5 days post challenge. These calves showed ulcerative neutrophil ileitis with a proteomic signature driven by inflammatory effectors, including reactive oxygen species and myeloperoxidases. Colitis was also noticed with an aggravated mucin barrier depletion and incompletely filled goblet cells. The C. parvum challenged calves also displayed a pronounced dysbiosis with a high prevalence of Clostridium species (spp.) and number of exotoxins, adherence factors, and secretion systems related to Clostridium spp. and other enteropathogens, including Campylobacter spp., Escherichia sp., Shigella spp., and Listeria spp. Daily supplementation with a high-quality bovine colostrum product mitigated some of the clinical signs and modulated the gut immune response and concomitant microbiota to a pattern more similar to that of healthy unchallenged calves. Discussion: C. parvum infection in neonatal calves provoked severe diarrheic neutrophilic enterocolitis, perhaps augmented due to the lack of fully developed innate gut defenses. Colostrum supplementation showed limited effect mitigating diarrhea but demonstrated some clinical alleviation and specific modulatory influence on host gut immune responses and concomitant microbiota.
Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Feminino , Gravidez , Animais , Bovinos , Criptosporidiose/epidemiologia , Colostro , Proteômica , Fezes , Diarreia/veterinária , Diarreia/epidemiologia , Imunidade Inata , Suplementos NutricionaisRESUMO
Cryptosporidiosis is a waterborne protozoal infection that may cause life-threatening diarrhea in undernourished children living in unsanitary environments. The aim of this study is to identify new biomarkers that may be related to gut-brain axis dysfunction in children suffering from the malnutrition/infection vicious cycle is necessary for better intervention strategies. Myeloperoxidase (MPO) is a well-known neutrophil-related tissue factor released during enteropathy that could drive gut-derived brain inflammation. We utilized a model of environmental enteropathy in C57BL/6 weanling mice challenged by Cryptosporidium and undernutrition. Mice were fed a 2%-Protein Diet (dPD) for eight days and orally infected with 107-C. parvum oocysts. C. parvum oocyst shedding was assessed from fecal and ileal-extracted genomic DNA by qRT-PCR. Ileal histopathology scores were assessed for intestinal inflammation. Prefrontal cortex samples were snap-frozen for MPO ELISA assay and NF-kb immunostaining. Blood samples were drawn by cardiac puncture after anesthesia and sera were obtained for serum amyloid A (SAA) and MPO analysis. Brain samples were also obtained for Iba-1 prefrontal cortex immunostaining. C. parvum-infected mice showed sustained stool oocyst shedding for six days post-infection and increased fecal MPO and inflammation scores. dPD and cryptosporidiosis led to impaired growth and weight gain. C. parvum-infected dPD mice showed increased serum MPO and serum amyloid A (SAA) levels, markers of systemic inflammation. dPD-infected mice showed greater MPO, NF-kB expression, and Iba-1 immunolabeling in the prefrontal cortex, an important brain region involved in executive function. Our findings suggest MPO as a potential biomarker for intestinal-brain axis dysfunction due to environmental enteropathy.
RESUMO
Neonatal calf diarrhea (NCD) is frequently associated with single or mixed viral, bacterial and/or protozoal infections. Consequently, laboratory diagnostic of NCD usually requires specific tests for each potential agent; a time-consuming, laborious and expensive process. Herein, we describe an end-point multiplex PCR/reverse transcription-PCR (RT-PCR) for detection of five major NCD agents: bovine rotavirus (BRV), bovine coronavirus (BCoV), Escherichia coli K99 (E. coli K99), Salmonella enterica (S. enterica) and Cryptosporidium parvum (C. parvum). Initially, we selected and/or designed high-coverage primers. Subsequently, we optimized multiplex PCR/RT-PCR conditions. Next, we evaluated the analytical sensitivity of the assay and assessed the performance of the reaction by testing 95 samples of diarrheic calf feces. The analytical specificity was evaluated against bovine viral diarrhea virus (BVDV), E. coli heat-stable enterotoxin (STa) and Eimeria spp. The detection limit of our assay was about 10 infectious units of BRV, 10-2 dilution of a BCoV positive sample pool, about 5 × 10-4 CFU for S. enterica, 5 × 10-6 CFU for E. coli K99 and 50 oocysts for C. parvum. No non-specific amplification of other bovine diarrhea agents was detected. Out of 95 samples analyzed, 50 were positive for at least one target, being 35 single and 15 mixed infections. BRV was the most frequent agent detected in single infections (16/35), followed by Cryptosporidium spp. (11/35), which was the most frequent in mixed infections (11/15). Positive and negative multiplex results were confirmed in individual reactions. In conclusion, we described an end-point multiplex PCR/RT-PCR for faster and easier NCD diagnosis, which may be useful for routine diagnosis and surveillance studies.
RESUMO
Invasive Cryptosporidium sporozoites contain organelles that secrete unique proteins to facilitate invasion and remodeling of the infected cell. By identifying a novel secretory organelle, 'small granules', and defining the global content of all the secretory organelles, Guérin et al. set the stage to uncover molecular determinants of virulence at the host cell interface.
RESUMO
Studies worldwide have reported the presence of protozoan parasites in a variety of commercial bivalve shellfish. The uptake of these parasites by shellfish occurs during filter feeding in faecally-contaminated waters. The objective of the present study was to determine the prevalence of Giardia, Cryptosporidium and Toxoplasma in fresh, live shellfish purchased in three Canadian provinces as part of the retail surveillance activities led by FoodNet Canada (Public Health Agency of Canada). Packages containing mussels (n = 253) or oysters (n = 130) were purchased at grocery stores in FoodNet Canada sentinel sites on a biweekly basis throughout 2018 and 2019, and shipped in coolers to Health Canada for testing. A small number of packages were not tested due to insufficient quantity or poor quality. Following DNA extraction from homogenized, pooled tissues, nested PCR and DNA sequencing were used to detect parasite-specific sequences. Epifluorescence microscopy was used to confirm the presence of intact cysts and oocysts in sequence-confirmed PCR-positive samples. Giardia duodenalis DNA was present in 2.4 % of 247 packages of mussels and 4.0 % of 125 packages of oysters, while Cryptosporidium parvum DNA was present in 5.3 % of 247 packages of mussels and 7.2 % of 125 packages of oysters. Toxoplasma gondii DNA was only found in mussels in 2018 (1.6 % of 249 packages). Parasite DNA was detected in shellfish purchased in all three Canadian provinces sampled, and there was no apparent seasonal variation in prevalence. While the present study did not test for viability, parasites are known to survive for long periods in the marine environment, and these findings suggest that there is a risk of infection, especially when shellfish are consumed raw.
RESUMO
Conventional water treatment practices utilizing chemical disinfection, especially chlorination, are considered generally effective in producing microbiologically safe drinking water. However, protozoan pathogens such as oocysts of Cryptosporidium parvum are very resistant to chlorine, which has led to consideration of alternative disinfectants for their control. Free bromine, HOBr, has not been evaluated extensively as an alternative halogen disinfectant for inactivation of Cryptosporidium parvum in drinking water or reclaimed water for non-potable uses. Bromine is a versatile disinfectant consisting of different chemical forms with persistent microbicidal efficacy under varied water quality conditions and is effective against a range of waterborne microbes of health concern. The objectives of this study are to (1) compare the efficacy of free bromine to free chlorine at similar concentrations (as milligrams per liter) for disinfection of Cryptosporidium parvum oocysts, Bacillus atrophaeus spores, and MS2 coliphage in a model buffered water and (2) evaluate the kinetics of inactivation of these microorganisms using appropriate disinfection models. Overall, at a target concentration of â¼5 mg/L, bromine averaged 0.6 log (73.8%) reductions of C. parvum oocyst infectivity after 300 min (CT: 1166 min·mg/L) and produced up to a 0.8 log reduction disinfectant activity. An â¼5.0 mg/L chlorine dose increased oocyst infectivity by only 0.4 log (64%) after 300 min (CT: 895 min·mg/L). Bacillus atrophaeus spores and MS2 coliphage treated with bromine and chlorine were reduced by 4 log10 (99.99%) for both disinfectants over the duration of the experiments.
RESUMO
Cryptosporidiosis is a diarrheal disease particularly harmful to children and immunocompromised people. Infection is caused by the parasite Cryptosporidium and leads to dehydration, malnutrition, and death in severe cases. Nitazoxanide is the only FDA approved drug but is only modestly effective in children and ineffective in immunocompromised patients. To address this unmet medical need, we previously identified triazolopyridazine SLU-2633 as potent against Cryptosporidium parvum, with an EC50 of 0.17 µM. In the present study, we develop structure-activity relationships (SAR) for the replacement of the triazolopyridazine head group by exploring different heteroaryl groups with the aim of maintaining potency while reducing affinity for the hERG channel. 64 new analogs of SLU-2633 were synthesized and assayed for potency versus C. parvum. The most potent compound, 7,8-dihydro-[1,2,4]triazolo[4,3-b]pyridazine 17a, was found to have a Cp EC50 of 1.2 µM, 7-fold less potent than SLU-2633 but has an improved lipophilic efficiency (LipE) score. 17a was found to decrease inhibition in an hERG patch-clamp assay by about two-fold relative to SLU-2633 at 10 µM despite having similar inhibition in a [3H]-dofetilide competitive binding assay. While most other heterocycles were significantly less potent than the lead, some analogs such as azabenzothiazole 31b, have promising potency in the low micromolar range, similar to the drug nitazoxanide, and represent potential new leads for optimization. Overall, this work highlights the important role of the terminal heterocyclic head group and represents a significant extension of the understanding of the SAR for this class of anti-Cryptosporidium compounds.
Assuntos
Antiprotozoários , Cryptosporidium , Criança , Humanos , Antiprotozoários/farmacologia , Nitrocompostos/farmacologia , Relação Estrutura-AtividadeRESUMO
In late 2010, an outbreak of Cryptosporidium hominis affected 27,000 inhabitants (45%) of Östersund, Sweden. Previous research shows that abdomen and joint symptoms commonly persist up to 5 years post-infection. It is unknown whether Cryptosporidium is associated with sequelae for a longer duration, how persisting symptoms present over time, and whether sequelae are associated with prolonged infection. In this prospective cohort study, a randomly selected cohort in Östersund was surveyed about cryptosporidiosis symptoms in 2011 (response rate 69.2%). A case was defined as a respondent reporting new diarrhoea episodes during the outbreak. Follow-up questionnaires were sent after 5 and 10 years. Logistic regressions were used to examine associations between case status and symptoms reported after 10 years, with results presented as adjusted odds ratios (aOR) with 95% confidence intervals. Consistency of symptoms and associations with case status and number of days with symptoms during outbreak were analysed using X2 and Mann-Whitney U tests. The response rate after 10 years was 74% (n = 538). Case status was associated with reporting symptoms, with aOR of ~3 for abdominal symptoms and ~2 for joint symptoms. Cases were more likely to report consistent symptoms. Cases with consistent abdominal symptoms at follow-up reported 9.2 days with symptoms during the outbreak (SD 8.1), compared to 6.6 days (SD 6.1) for cases reporting varying or no symptoms (p = 0.003). We conclude that cryptosporidiosis was associated with an up to threefold risk for reporting symptoms 10 years post-infection. Consistent symptoms were associated with prolonged infection.
RESUMO
The horse genotype is one of three common Cryptosporidium spp. in equine animals and has been identified in some human cases. The species status of Cryptosporidium horse genotype remains unclear due to the lack of extensive morphological, biological, and genetic data. In the present study, we have conducted biological and whole genome sequence analyses of an isolate of the genotype from hedgehogs and proposed to name it Cryptosporidium equi n. sp. to reflect its common occurrence in equine animals. Oocysts of C. equi measured 5.12 ± 0.36 µm × 4.46 ± 0.21 µm with a shape index of 1.15 ± 0.08 (n = 50). Cryptosporidium equi was infectious to 3-week-old four-toed hedgehogs (Atelerix albiventris) and mice, with a prepatent period of 2-9 days and a patent period of 30-40 days in hedgehogs. It was not infectious to rats and rabbits. Phylogenetic analyses of small subunit rRNA, 70 kDa heat shock protein, actin, 60 kDa glycoprotein and 100 other orthologous genes revealed that C. equi is genetically distinct from other known Cryptosporidium species and genotypes. The sequence identity between C. equi and Cryptosporidium parvum genomes is 97.9%. Compared with C. parvum, C. equi has lost two MEDLE genes and one insulinase-like protease gene and gained one SKSR gene. In addition, 60 genes have highly divergent sequences (sequence differences ≥ 5.0%), including those encoding mucin-like glycoproteins, insulinase-like peptidases, and MEDLE and SKSR proteins. The genetic uniqueness of C. equi supports its increasing host range and the naming of it as a valid Cryptosporidium species. This is the first known use of whole genome sequence data in delineating new Cryptosporidium species.
RESUMO
Soil contamination with Cryptosporidium is a serious environmental and public health concern. In this systematic review and meta-analysis we estimated the global prevalence of Cryptosporidium contamination in soil and evaluated its association with climatic and hydrometeorological factors. PubMed, Web of Science, Science Direct, China National Knowledge Infrastructure, and Wanfang were searched from database inception up to 24 August 2022. The initial search identified 3220 studies, of which 14 met the inclusion criteria. The results were pooled using a random-effects model, and the statistical heterogeneity among the included studies was examined using Cochrane's Q test and I2 statistic. The estimated pooled global prevalence of Cryptosporidium in soil across all studies was 8.13â¯% (95â¯% confidence interval, 1.54-18.44). Meta-regression and subgroup analyses showed that Cryptosporidium prevalence in soil was significantly influenced by continent (pâ¯=â¯0.0002; R2â¯=â¯49.99â¯%), air pressure (pâ¯=â¯0.0154; R2â¯=â¯24.01â¯%), temperature (pâ¯=â¯0.0437; R2â¯=â¯14.53â¯%), and detection method (pâ¯=â¯0.0131; R2â¯=â¯26.94â¯%). These results highlight the need for increased surveillance of Cryptosporidium in soil and its risk factors to inform future development of environmental control interventions and public health policies.
RESUMO
Radiation-attenuated intracellular parasites are promising immunization strategies. The irradiated parasites are able to invade host cells but fail to fully replicate, which allows for the generation of an efficient immune response. Available radiation technologies such as gamma rays require complex shielding constructions and are difficult to be integrated into pharmaceutical production processes. In this study, we evaluated for the first time low-energy electron irradiation (LEEI) as a method to generate replication-deficient Toxoplasma gondii and Cryptosporidium parvum. Similar to other radiation technologies, LEEI mainly damages nucleic acids; however, it is applicable in standard laboratories. By using a novel, continuous, and microfluidic-based LEEI process, tachyzoites of T. gondii and oocysts of C. parvum were irradiated and subsequently analyzed in vitro. The LEEI-treated parasites invaded host cells but were arrested in intracellular replication. Antibody-based analysis of surface proteins revealed no significant structural damage due to LEEI. Similarly, excystation rates of sporozoites from irradiated C. parvum oocysts were similar to those from untreated controls. Upon immunization of mice, LEEI-attenuated T. gondii tachyzoites induced high levels of antibodies and protected the animals from acute infection. These results suggest that LEEI is a useful technology for the generation of attenuated Apicomplexan parasites and has potential for the development of anti-parasitic vaccines.
RESUMO
BACKGROUND: As part of the Vaccine Impact on Diarrhea in Africa (VIDA) Study, we examined the prevalence, clinical presentation, and seasonality of Cryptosporidium in children to understand its relative burden after the introduction of rotavirus vaccine. METHODS: VIDA was a 3-year, age-stratified, matched case-control study of medically attended acute moderate-to-severe diarrhea (MSD) in children aged 0-59 months residing in censused populations at sites in Kenya, Mali, and The Gambia. Clinical and epidemiologic data were collected at enrollment, and a stool sample was tested for enteropathogens by quantitative PCR. An algorithm was created based on the organism's cycle threshold (Ct) and association with MSD to identify the subset of Cryptosporidium PCR-positive (Ct <35) cases most likely to be attributed to MSD. Clinical outcomes were assessed at 2-3 months after enrollment. RESULTS: One thousand one hundred six (22.9%) cases of MSD and 873 controls (18.1%) were PCR positive for Cryptosporidium; 465 cases (42.0%) were considered attributable to Cryptosporidium, mostly among children 6-23 months. Cryptosporidium infections peaked in The Gambia and Mali during the rainy season, while in Kenya they did not have clear seasonality. Compared with cases with watery MSD who had a negative PCR for Cryptosporidium, cases with watery MSD attributed to Cryptosporidium were less frequently dehydrated but appeared more severely ill using a modified Vesikari scale (38.1% vs 27.0%; P < 0.001), likely due to higher rates of hospitalization and intravenous fluid administration, higher prevalence of being wasted or very thin very thin (23.4% vs 14.7%; P < 0.001), and having severe acute malnutrition (midupper arm circumference <115 mm, 7.7% vs 2.5%; P < 0.001). On follow-up, Cryptosporidium-attributed cases had more prolonged and persistent episodes (43.2% vs 32.7%; P <0 .001) and linear growth faltering (change in height-for-age z score between enrollment and follow-up: -0.29 vs -0.17; P < 0.001). CONCLUSIONS: The burden of Cryptosporidium remains high among young children in sub-Saharan Africa. Its propensity to cause illness and further impact children longer term by compromising nutritional status early in life calls for special attention to enable appropriate management of clinical and nutritional consequences.
Assuntos
Criptosporidiose , Cryptosporidium , Vacinas contra Rotavirus , Humanos , Criança , Lactente , Pré-Escolar , Cryptosporidium/genética , Criptosporidiose/epidemiologia , Criptosporidiose/complicações , Estudos de Casos e Controles , Diarreia/epidemiologia , Diarreia/etiologia , Quênia/epidemiologiaRESUMO
BACKGROUND: Cryptosporidiosis is a zoonotic intestinal infectious disease caused by Cryptosporidium spp., and its transmission is highly influenced by climate factors. In the present study, the potential spatial distribution of Cryptosporidium in China was predicted based on ecological niche models for cryptosporidiosis epidemic risk warning and prevention and control. METHODS: The applicability of existing Cryptosporidium presence points in ENM analysis was investigated based on data from monitoring sites in 2011-2019. Cryptosporidium occurrence data for China and neighboring countries were extracted and used to construct the ENMs, namely Maxent, Bioclim, Domain, and Garp. Models were evaluated based on Receiver Operating Characteristic curve, Kappa, and True Skill Statistic coefficients. The best model was constructed using Cryptosporidium data and climate variables during 1986â2010, and used to analyze the effects of climate factors on Cryptosporidium distribution. The climate variables for the period 2011â2100 were projected to the simulation results to predict the ecological adaptability and potential distribution of Cryptosporidium in future in China. RESULTS: The Maxent model (AUC = 0.95, maximum Kappa = 0.91, maximum TSS = 1.00) fit better than the other three models and was thus considered the best ENM for predicting Cryptosporidium habitat suitability. The major suitable habitats for human-derived Cryptosporidium in China were located in some high-population density areas, especially in the middle and lower reaches of the Yangtze River, the lower reaches of the Yellow River, and the Huai and the Pearl River Basins (cloglog value of habitat suitability > 0.9). Under future climate change, non-suitable habitats for Cryptosporidium will shrink, while highly suitable habitats will expand significantly (χ2 = 76.641, P < 0.01; χ2 = 86.836, P < 0.01), and the main changes will likely be concentrated in the northeastern, southwestern, and northwestern regions. CONCLUSIONS: The Maxent model is applicable in prediction of Cryptosporidium habitat suitability and can achieve excellent simulation results. These results suggest a current high risk of transmission and significant pressure for cryptosporidiosis prevention and control in China. Against a future climate change background, Cryptosporidium may gain more suitable habitats within China. Constructing a national surveillance network could facilitate further elucidation of the epidemiological trends and transmission patterns of cryptosporidiosis, and mitigate the associated epidemic and outbreak risks.
Assuntos
Criptosporidiose , Cryptosporidium , Humanos , Mudança Climática , Ecossistema , Surtos de Doenças , ChinaRESUMO
BACKGROUND: The Girinka program in Rwanda has contributed to an increase in milk production, as well as to reduced malnutrition and increased incomes. But dairy products can be hazardous to health, potentially transmitting diseases such as bovine brucellosis, tuberculosis, and cause diarrhea. We analyzed the burden of foodborne disease due to consumption of raw milk and other dairy products in Rwanda to support the development of policy options for the improvement of the quality and safety of milk. METHODS: Disease burden data for five pathogens (Campylobacter spp., nontyphoidal Salmonella enterica, Cryptosporidium spp., Brucella spp., and Mycobacterium bovis) were extracted from the 2010 WHO Foodborne Disease Burden Epidemiology Reference Group (FERG) database and merged with data of the proportion of foodborne disease attributable to consuming dairy products from FERG and a separately published Structured Expert Elicitation study to generate estimates of the uncertainty distributions of the disease burden by Monte Carlo simulation. RESULTS: According to WHO, the foodborne disease burden (all foods) of these five pathogens in Rwanda in 2010 was like or lower than in the Africa E subregion as defined by FERG. There were 57,500 illnesses occurring in Rwanda owing to consumption of dairy products, 55 deaths and 3,870 Disability Adjusted Life Years (DALYs) causing a cost-of-illness of $3.2 million. 44% of the burden (in DALYs) was attributed to drinking raw milk and sizeable proportions were also attributed to traditionally (16-23%) or industrially (6-22%) fermented milk. More recent data are not available, but the burden (in DALYs) of tuberculosis and diarrheal disease by all causes in Rwanda has declined between 2010 and 2019 by 33% and 46%, respectively. CONCLUSION: This is the first study examining the WHO estimates of the burden of foodborne disease on a national level in Rwanda. Transitioning from consuming raw to processed milk (fermented, heat treated or otherwise) may prevent a considerable disease burden and cost-of-illness, but the full benefits will only be achieved if there is a simultaneous improvement of pathogen inactivation during processing, and prevention of recontamination of processed products.
Assuntos
Criptosporidiose , Cryptosporidium , Doenças Transmitidas por Alimentos , Animais , Bovinos , Humanos , Ruanda/epidemiologia , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Leite/microbiologia , Efeitos Psicossociais da DoençaRESUMO
Little is known about Cryptosporidium and Giardia in biogas waste and humans in Vietnam. There is a potential risk of infections during or after using the biogas system. The detected protozoan genotypes are zoonotic pathogens, and contamination of vegetables may relay through runoff to the surface waters and soil. The objective of this study was to understand the role of the environment in the epidemiology of human infections in Bac Giang province, Vietnam, with a focus on investigating the presence of Cryptosporidium spp. genotypes and Giardia assemblages among 239 environmental samples and 94 faecal samples of biogas users. PCR and sequencing analysis were used to identify the occurrence and genotypes of Cryptosporidium and Giardia in these samples. Results showed that 13/333 (3.9 %) and 9/333 (2.7 %) samples were positive for Cryptosporidium oocyst and Giardia cysts, respectively. Characterization revealed the presence of Cryptosporidium scrofarum, C. suis, C. meleagridis, C. bailey and Giardia intestinalis assemblage A and E. C. scrofarum and Giardia assemblage E were identified for the first time in humans in Bac Giang. The current information from the above investigations will be valuable for protozoan source tracking and control interventions against Cryptosporidium and Giardia infection associated with biogas wastes in Vietnam.
RESUMO
Cryptosporidium spp. are important enteric protozoan parasites that infect humans and other animals throughout the world. Cryptosporidium infection in cattle industry leads to substantial economic losses due to diarrhea, growth retardation, weight loss, and possibly death. Most studies have focused on C. parvum, and studies on other Cryptosporidium spp. and calf diarrhea are limited. Therefore, this study aimed to investigate the occurrence of Cryptosporidium spp. in pre-weaned calves, to determine the risk factors for Cryptosporidium spp. infection such as age and season, and to identify subtypes of C. parvum circulating in the Republic of Korea (ROK). A total of 510 fecal samples were collected from calves with diarrhea and divided by age and season. Cryptosporidium spp. were first screened using PCR targeting the small subunit (SSU) rRNA gene and further the 60-kDa glycoprotein gene for subtyping of C. parvum. Out of 510 fecal samples, 71 (13.9%) were positive for Cryptosporidium spp. in pre-weaned calves with diarrhea. C. andersoni (2.8%), C. bovis (30.9%), C. parvum (29.6%), and C. ryanae (36.6%) were identified. C. ryanae was the most predominant in calves in the ROK. Calf age was a significant risk factor for C. bovis (χ2 = 13.83, P = 0.001), C. parvum (χ2 = 7.57, P = 0.023), and C. ryanae (χ2 = 20.18, P = 0.000) occurrence. Additionally, C. parvum was detected 3.1-fold more frequently in pre-weaned calves with diarrhea in fall (95% CI: 1.23-7.81; P = 0.016) than in spring, whereas C. ryanae was 8.9-fold more frequently detected in summer (95% CI: 1.65-48.68; P = 0.011) than in spring. Three subtypes (IIaA17G4R1, IIaA18G3R1, and IIaA20G3R1) of C. parvum were identified. Of them, IIaA17G4R1 was the most common, whereas IIaA20G3R1 was not previously detected in calves in the ROK. To our knowledge, this is the first report of C. andersoni in pre-weaned calves in the ROK. The occurrence of Cryptosporidium spp. appears to be age-dependent in calves. Season had a significant effect on the occurrence of C. parvum and C. ryanae. Taken together, C. bovis and C. ryanae along with C. parvum are detected in pre-weaned calves with diarrhea and these two pathogens should not be overlooked in the diagnosis of calf diarrhea.
Assuntos
Criptosporidiose , Cryptosporidium , Cyclospora , Gastrópodes , Giardíase , Toxoplasma , Animais , Humanos , Cryptosporidium/genética , Giardia , Cyclospora/genéticaRESUMO
Cryptosporidium spp. are protozoan parasites that mainly inhabit intestinal epithelial cells, causing diarrheal diseases in humans and a great number of animals. Cryptosporidium parvum is the most common zoonotic species, responsible for nearly 45% of human cryptosporidiosis worldwide. Understanding the interaction mechanisms between C. parvum and host gastrointestinal epithelial cells has significant implications to control cryptosporidiosis. One up-regulated circRNA ciRS-7 was found previously by our group to promote in vitro propagation of C. parvum in HCT-8 cells. In the present study, miR-135a-5p, was found to be a miRNA target of ciRS-7. Cryptosporidium parvum infection induced significantly down-regulation of miR-135a-5p and dramatic up-regulation of its potential target stat1 gene at mRNA and protein levels. Dual luciferase reporter assays validated the physical interactions between miR-135a-5p and stat1, and between ciRS-7 and miR-135a-5p. Further study revealed that ciRS-7 could sponge miR-135a-5p to positively regulate the protein levels of STAT1 and phosphorylated STAT1 (p-STAT1) and thus promote C. parvum propagation in HCT-8 cells. Our findings further reveal the mystery of regulatory roles of host circRNAs during Cryptosporidium infection, and provide a novel insight to develop strategies to control cryptosporidiosis.
RESUMO
Host immune responses are required for the efficient control of cryptosporidiosis. Immunity against Cryptosporidium infection has been best studied in mice, where it is mediated by both innate and adaptive immune responses. Dendritic cells are the key link between innate and adaptive immunity and participate in the defense against Cryptosporidium infection. While the effector mechanism varies, both humans and mice rely on dendritic cells for sensing parasites and restricting infection. Recently, the use of mouse-adapted strains C. parvum and mouse-specific strain C. tyzzeri have provided tractable systems to study the role of dendritic cells in mice against this parasite. In this review, we provide an overview of recent advances in innate immunity acting during infection with Cryptosporidium with a major focus on the role of dendritic cells in the intestinal mucosa. Further work is required to understand the role of dendritic cells in the activation of T cells and to explore associated molecular mechanisms. The identification of Cryptosporidium antigen involved in the activation of Toll-like receptor signaling in dendritic cells during infection is also a matter of future study. The in-depth knowledge of immune responses in cryptosporidiosis will help develop targeted prophylactic and therapeutic interventions.
RESUMO
Cryptosporidium parvum is an enteric parasite and a major contributor to acute enteritis in calves worldwide, causing an important economic burden for farmers. This parasite poses a major public health threat through transmission between livestock and humans. Our previous pilot study in Western Europe revealed a high prevalence of Cryptosporidium in calves of dairy farms. In the sequel study herein, 936 faecal samples were collected from the same 51 dairy farms across Belgium, France, and the Netherlands. Following DNA extraction, Cryptosporidium screening was carried out using nested-PCR amplification targeting the SSU rRNA gene. All positive samples were sequenced, and phylogenetic analyses were used to identify the Cryptosporidium spp. present. The 60 kDa glycoprotein (gp60) gene was also sequenced to determine the C. parvum subtypes present. Prevalence of Cryptosporidium ranged from 23.3% to 25%, across the three countries surveyed. The parasite was found in most of the farms sampled, with 90.2% testing positive. Cryptosporidium parvum, C. bovis, C. ryanae and C. andersoni were all identified, with the former being the most predominant, representing 71.4% of all infections. Cryptosporidium parvum was associated with pre-weaned calves, while other species were associated with older animals. Subtyping of gp60 gene revealed nine subtypes, eight of which have previously been reported to cause clinical disease in humans. Similarly to the first study, vertical transmission was not a major contributor to Cryptosporidium spread. Our study highlights the need for further investigation into cryptosporidiosis transmission, and future studies will require a One Health approach to reduce the impact of this disease.