Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.647
Filtrar
1.
Braz. j. biol ; 84: e259259, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364517

RESUMO

Rice is a widely consumed staple food for a large part of the world's human population. Approximately 90% of the world's rice is grown in Asian continent and constitutes a staple food for 2.7 billion people worldwide. Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae is one of the devastating diseases of rice. A field experiment was conducted during the year 2016 and 2017 to investigate the influence of different meteorological parameters on BLB development as well as the computation of a predictive model to forecast the disease well ahead of its appearance in the field. The seasonal dataset of disease incidence and environmental factors was used to assess five rice varieties/ cultivars (Basmati-2000, KSK-434, KSK-133, Super Basmati, and IRRI-9). The accumulated effect of two year environmental data; maximum and minimum temperature, relative humidity, wind speed, and rainfall, was studied and correlated with disease incidence. Average temperature (maximum & minimum) showed a negative significant correlation with BLB disease and all other variables; relative humidity, rainfall, and wind speed had a positive correlation with BLB disease development on individual varieties. Stepwise regression analysis was performed to indicate potentially useful predictor variables and to rule out incompetent parameters. Environmental data from the growing seasons of July to October 2016 and 2017 revealed that, with the exception of the lowest temperature, all environmental factors contributed to disease development throughout the cropping season. A disease prediction multiple regression model was developed based on two-year data (Y = 214.3-3.691 Max T-0.508 Min T + 0.767 RH + 2.521 RF + 5.740 WS), which explained 95% variability. This disease prediction model will not only help farmers in early detection and timely management of bacterial leaf blight disease of rice but may also help reduce input costs and improve product quality and quantity. The model will be both farmer and environmentally friendly.


O arroz é um alimento básico amplamente consumido por grande parte da população humana mundial. Aproximadamente 90% do arroz do mundo é cultivado no continente asiático e constitui um alimento básico para 2,7 bilhões de pessoas em todo o mundo. O crestamento bacteriano das folhas (BLB) causado por Xanthomonas oryzae pv. oryzae é uma das doenças devastadoras do arroz. Um experimento de campo foi realizado durante os anos de 2016 e 2017 para investigar a influência de diferentes parâmetros meteorológicos no desenvolvimento do BLB, bem como o cálculo de um modelo preditivo para prever a doença bem antes de seu aparecimento em campo. O conjunto de dados sazonais de incidência de doenças e fatores ambientais foi usado para avaliar cinco variedades/cultivares de arroz (Basmati-2000, KSK-434, KSK-133, Super Basmati e IRRI-9). O efeito acumulado de dados ambientais de dois anos; temperatura máxima e mínima, umidade relativa do ar, velocidade do vento e precipitação pluviométrica foram estudados e correlacionados com a incidência da doença. A temperatura média (máxima e mínima) apresentou correlação significativa negativa com a doença BLB e todas as outras variáveis; umidade relativa, precipitação e velocidade do vento tiveram uma correlação positiva com o desenvolvimento da doença BLB em variedades individuais. A análise de regressão stepwise foi realizada para indicar variáveis preditoras potencialmente úteis e para descartar parâmetros incompetentes. Os dados ambientais das safras de julho a outubro de 2016 e 2017 revelaram que, com exceção da temperatura mais baixa, todos os fatores ambientais contribuíram para o desenvolvimento da doença ao longo da safra. Um modelo de regressão múltipla de previsão de doença foi desenvolvido com base em dados de dois anos (Y = 214,3-3,691 Max T-0,508 Min T + 0,767 RH + 2,521 RF + 5,740 WS), que explicou 95% de variabilidade. Este modelo de previsão de doenças não só ajudará os agricultores na detecção precoce e gestão atempada da doença bacteriana das folhas do arroz, mas também pode ajudar a reduzir os custos de insumos e melhorar a qualidade e a quantidade do produto. O modelo será agricultor e ambientalmente amigável.


Assuntos
Oryza , Temperatura , Pragas da Agricultura , Umidade
2.
Plant Signal Behav ; 18(1): 2172517, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36722712

RESUMO

Barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] is the most difficult-to-control weed species of rice production systems worldwide. It has evolved resistance to different herbicide sites of action, including the acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. Target-site mutations conferring resistance to ACCase-inhibiting herbicides are well documented; however, the role of the different ACCase genes in conferring resistance to cyhalofop-p-butyl (cyhalofop), an ACCase-inhibiting herbicide, remains poorly understood. This research assessed the contribution of gene amplification and expression of ACCase genes in a cyhalofop-resistant barnyardgrass accession. Additionally, the expression of glutathione-S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) genes as possible contributors to resistance to cyhalofop were investigated. Results demonstrated that ACCase gene amplification does not contribute to cyhalofop resistance. However, ACCase1 and ACCase3 were found to be overexpressed in the cyhalofop-resistant barnyardgrass accession. At 24 h after cyhalofop treatment, an overexpression of 2.0- and 2.8-fold was detected in ACCase1 and ACCase3, respectively. In addition, CYP81A21 (a P450 gene) was found to be 2.5-fold overexpressed compared to the susceptible accession in the same time period. These results suggest that ACCase1, ACCase3, and CYP81A21 are crucial genes in contributing cyhalofop resistance in this barnyardgrass accession.


Assuntos
Echinochloa , Herbicidas , Acetil-CoA Carboxilase/genética , Echinochloa/genética , Arkansas , Herbicidas/farmacologia
3.
Chemosphere ; 318: 137967, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36731661

RESUMO

Decreases in microelement contents and increases in toxic element levels seriously affect crop growth and human health. Thus, improving the elemental content of food crops is an important environmental issue for enhancing crop production and quality. Previous research showed that metal tolerance protein 1 (MTP1) is localized at the vacuole membrane, wherein it mediates the translocation of heavy metal ions. Therefore, LmMTP1 was isolated from annual ryegrass (Lolium multiflorum). Real-time quantitative PCR analyses revealed LmMTP1 expression increased significantly in the roots after Zn, Co, and Cd treatments. Confocal microscopy images indicated LmMTP1 was localized at the vacuole membrane. The expression of LmMTP1 in transgenic yeast and rice resulted in increased Zn, Co, and Cd tolerance. The examination of heavy metal contents detected increases in the Zn and Co contents, but decreases in the Cd contents, of yeast and rice. Moreover, the grains of LmMTP1-expressing transgenic rice had higher Zn/Co contents and lower Cd contents than wild-type rice grains. These results imply that LmMTP1 influences Zn, Co, and Cd tolerance and accumulation. Furthermore, LmMTP1 might be a novel biofortification-related candidate gene useful for improving the storage of essential elements and eliminating toxic heavy metals from crops.

4.
Rice (N Y) ; 16(1): 5, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732485

RESUMO

Starch is a carbon sink for most plants, and its biological role changes with response to the environment and during plant development. Disproportionating Enzyme 2 (DPE2) is a 4-α-glycosyltransferase involved in starch degradation in plants at night. LAX1 plays a vital role in axillary meristem initiation in rice. Herein, results showed that Oryza sativa Disproportionating Enzyme 2 (OsDPE2) could rescue the mutant phenotype of lax1-6, LAX1 mutant. OsDPE2 encodes rice DPE2 located in the cytoplasm. In this study, OsDPE2 affected the vegetative plant development of rice via DPE2 enzyme. Additionally, OsDPE2 regulated the reproductive plant development of rice by modulating starch content in young panicles. Furthermore, haplotype OsDPE2(AQ) with higher DPE2 enzyme activity increased the panicle yield of rice. In summary, OsDPE2 can regulate vegetative and reproductive plant development of rice by modulating starch content. Furthermore, DPE2 activities of OsDPE2 haplotypes are associated with the panicle yield of rice. This study provides guidance for rice breeding to improve panicle yield traits.

5.
Front Plant Sci ; 14: 1103028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733718

RESUMO

LYST-INTERACTING PROTEIN5 (LIP5) is a conserved regulator of multivesicular body (MVB) biogenesis in eukaryotes. In Arabidopsis, AtLIP5 is a target of stress-responsive MITOGEN-ACTIVATED PROTEIN KINASE3 and 6 and mediates stress-induced MVB biogenesis to promote stress responses. However, Arabidopsis atlip5 knockout mutants are normal in growth and development. Here we report that rice OsLIP5 gene could fully restore both the disease resistance and salt tolerance of the Arabidopsis oslip5 mutant plants to the wild-type levels. Unlike Arabidopsis atlip5 mutants, rice oslip5 mutants were severely stunted, developed necrotic lesions and all died before flowering. Unlike in Arabidopsis, LIP5 regulated endocytosis under both stress and normal conditions in rice. These findings indicate that there is strong evolutionary divergence among different plants in the role of the conserved LIP5-regulated MVB pathway in normal plant growth.

6.
Environ Int ; 172: 107789, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36736026

RESUMO

Rice-crayfish co-culture (RC) has been widely and rapidly promoted as a sustainable agricultural system in many countries. The accumulation of crayfish residues could enhance soil organic matters; however, impacts of this integrated farming model on the dissemination and pathogenicity of resistance and virulence genes remain poorly understood. Here, we characterized antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), metal resistance genes (MRGs) and virulence factor genes (VFGs) using metagenomic methods in paired RC and rice monoculture (RM) systems across China. The RC model did not increase the abundance of soil ARGs, BRGs, MRGs, or VFGs in comparison to the RM model, but selectively enriched 35 subtypes of these potential resistance and virulence genes. Network analysis revealed that resistance and virulence genes had a higher number of connections with mobile genetic elements (MGEs) in the RC system than that in the RM system, suggesting a higher horizontal transfer potential of these genes. Moreover, the RC model had a higher abundance of human opportunistic pathogens such as Salmonella enterica, Vibrio cholerae, and Shigella dysenteriae which were potential hosts of VFGs such as phoP, fleS, and gspE, suggesting a potential threat to human health. We further unraveled that stochastic process was the main driver of the assembly of resistance and virulence genes in the RC system. The abundance of ARGs and VFGs were primarily associated with microbial community compositions, while the abundance of BRGs and MRGs were mainly associated with that of MGEs. Taken together, our results suggest that the RC model has potential to cause the dissemination and pathogenicity of resistance and virulence genes, which has important implications for the control of soil-borne biological risks and the strategic management of sustainable agriculture.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 292: 122359, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36736044

RESUMO

This study evaluated the feasibility of colorimetric sensor array (CSA), near-infrared (NIR) and mid-infrared (MIR) spectroscopy for quantitation of free fatty acids in rice using data fusion. Purposely, different data sets of low-level (CSA-NIRLL, CSA-MIRLL, and NIR-MIRLL) and mid-level (CSA-NIRML, CSA-MIRML, and NIR-MIRML) fusion were adopted to enhance the statistical parameters. The model performance was evaluated using coefficient of determination for prediction, (R2p), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD). Synergetic low-level and mid-level fusion model yielded 0.7707 ≤ R2p ≤ 0.8275, 14.4 ≤ RMSEP ≤ 16.3 and 2.19 ≤ RPD ≤ 2.48; and 0.7788 ≤ R2p ≤ 0.8571, 12.4 ≤ RMSEP ≤ 16.8 and 2.12 ≤ RPD ≤ 2.88, respectively. The CSA-NIRML model delivered an optimal performance for prediction of free fatty acid. The integration of CSA, NIR and MIR was feasible and could improve the prediction accuracy of free fatty acids in rice.

8.
Chemosphere ; : 138028, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36736477

RESUMO

Identification the sources of heavy metals can effectively control and prevent agricultural soil pollution. Here we performed a three-year mass balance study along a gradient of soil pollution near a smelter to quantify the potential contribution and net cadmium (Cd) fluxes and predict Cd concentration in rice grains by multiple regression (MR) and back propagation (BP) neural network. The Cd inputs were mainly from the irrigation water (54.6-60.8%) in the moderately polluted and background sites but from atmospheric deposition (90.9%) in the highly polluted site. The Cd outputs were mainly from the surface runoff (55.8-59.5%) in the moderately polluted and background sites, but from Sedum plumbizincicola phytoextraction (83.6%) in the highly polluted site. The soil Cd concentrations, the annual fluxes of atmospheric deposition, pesticides and fertilizers, irrigation water, surface runoff, and leaching water were selected as the dependent factors to predict Cd concentrations in rice grains. The genetic algorithms (GA)-BP neural network model gives the best prediction accuracy compared to the BP neural network model and multivariate regression analysis. The major implication is that the health risks through the consumption of rice can be rapidly assessed based on the Cd concentrations in rice grains predicted by the model.

9.
Environ Pollut ; : 121200, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736815

RESUMO

The alteration of agricultural wastes into novel adsorbents can stimulate their scalability in realistic application, showing great economic and environmental advantages. Here, we proposed a strategy to engineer rice husk (RH) with microporous melamine-formaldehyde networks (MFNs) resins and the utilization for dynamic removal of organic micropollutants rapidly and efficiently. was pre-treated to acquire attractive surface and unique hierarchical porosity, endowing with surface functionalization and essential filtering properties. MFNs can be uniformly generated in-situ on the fully exposed cellulose backbones of the pre-treated RH. MFNs granules functionalized RH (RH@MFNs) exhibited high removal efficiencies over 90% within 30 min for the adsorption of hazardous organic compounds (e.g., phenolic and antibiotic micropollutants) in static tests. Experiment results and density functional theory (DFT) simulation revealed that the synergy of hydrogen bonding, π-πinteraction, and micropore preservation dominates the adsorption. Further dynamic adsorption experiments showed that the removal efficiency and equilibrium removal capacity towards bisphenol A by RH@MFNs packed bed up-flow column were 2.6 and 67 times higher than that of raw RH, respectively. The column adsorption fits well with the Thomas model and bed depth service time (BDST) kinetic model. The inherent macropores inside RH and the roughness caused by the spiky structures and mesopores outside RH, as well as the accumulated MFNs granules, can lead to local turbulence of water flow around RH@MFNs, enabling fast and efficient adsorption. This sustainable and cost-effective preparation of RH-based adsorbents sheds light on the rational design of biomass waste adsorbents for realistic wastewater.

10.
Plant Sci ; : 111627, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737003

RESUMO

Tillering is an important trait in rice productivity. We introduced mutations into the coding region of rice TEOSINTE BRANCHED1 (OsTB1), which is a negative regulator of tillering, using CRISPR/Cas9. The frameshift mutants exhibited substantially enhanced tillering and produced 3.5 times more panicles than the non-mutated plants at maturity. This enhanced tillering resulted in increased spikelet number; however, grain yields did not increase due to substantially reduced filled grain rate and 1,000-grain weight. In contrast, in-frame mutations in OsTB1 had the effect of slightly increasing tiller numbers, and the in-frame mutants had 40% more panicles than non-mutated plants. The grain yield of in-frame mutants also did not increase on nutrient-rich soil; however, under phosphorus-deficient conditions, where tillering is constrained, the in-frame mutants gave a significantly higher grain yield than non-mutated plants due to higher spikelet number and maintained filled grain rate. Rice grassy tiller1 (OsGT1)/OsHox12, which is directly regulated by OsTB1 to suppress tillering, was moderately down-regulated in in-frame mutants, suggesting that OsTB1 with the in-frame mutation shows partial function of intact OsTB1 in regulating OsGT1/OsHox12. We propose that mildly enhanced tillering by in-frame mutation of OsTB1 can improve grain yield under low phosphorus conditions. DATA AVAILABILITY: The microarray data were submitted to EMBL-EBI ArrayExpress (E-MTAB-11255 and E-MTAB-11256).

11.
Plant Sci ; : 111624, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737006

RESUMO

Stomata regulate photosynthesis and water loss. They have been an active subject of research for centuries, but our knowledge of the genetic components that regulate stomatal development in crops remains very limited in comparison to the model plant Arabidopsis thaliana. Leaf stomatal density was found to vary by over 2.5-fold across a panel of 235 rice accessions. Using GWAS, we successfully identified five different QTLs associated with stomatal density on chromosomes 2, 3, 9, and 12. Forty-two genes were identified within the haplotype blocks corresponding to these QTLs. Of these, nine genes contained haplotypes that were associated with different stomatal densities. These include a gene encoding a trehalose-6-phospate synthase, an enzyme that has previously been associated with altered stomatal density in Arabidopsis, and genes encoding a B-BOX zinc finger family protein, a leucine-rich repeat family protein, and the 40S ribosomal protein S3a, none of which have previously been linked to stomatal traits. We investigated further and show that a closely related B-BOX protein regulates stomatal development in Arabidopsis. The results of this study provide information on genetic associations with stomatal density in rice. The QTLs and candidate genes may be useful in future breeding programs for low or high stomatal density and, consequently, improved photosynthetic capacity, water use efficiency, or drought tolerance.

12.
Food Res Int ; 164: 112306, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36737901

RESUMO

For the limitation of poor solubility and interfacial adsorption capacity of rice protein isolates (RPI), in this work the effects of pH-shifting treatments on the emulsifying properties of RPI were investigated. The results showed that the particle size of the emulsion stabilized by alkaline pH-shifting treated RPI was smaller than that stabilized by acid pH-shifting treated RPI. In addition, the RPI-10 stabilized emulsion showed a more uniform particle size distribution, which was explained by its high emulsifying activity and stability (EAI: 49.5 m2/g, ESI: 59.5 min). The interface rheology results showed that the alkaline pH-shifting treatment could promote the protein rearrangement and subsequently formed interface film with higher rate of protein penetration and rearrangement. The quantitative analysis of adsorbed proteins in the RPI-10 stabilized emulsion showed that glutelin-type isoforms as major proteins in RPI were increased at the oil-water interface for their balanced distribution of the hydrophilic and hydrophobic amino acid group. These quantitative and interfacial rheology analysis could improve deep understanding of the interfacial properties of pH-shifting treated RPI, and promote the development of application in grain protein stabilized emulsion.

13.
Food Res Int ; 164: 112320, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36737913

RESUMO

Late-season indica rice frequently encounters low temperature (LT) along with low light (LL) after heading in southern China, which deteriorates the grain quality by altering starch quality. However, the detailed effects on starch properties of these stressors remain unclear. Herein, two indica rice cultivars with good and poor grain quality were grown under control (CK), LT, and LT + LL conditions after heading and the structural and physicochemical properties of their starch were evaluated. Compared with CK, LT and LT + LL worsened thermal and pasting properties of starch in the two cultivars, mainly because they increased branch chain branching and A chain (DP ≤12), and decreased average branch chain length and crystallinity. Compared with LT, LT + LL deteriorated the pasting properties of the poor-quality cultivar, such as reducing breakdown (BD), final and peak viscosity, which mainly owing to decreasing the starch branching and crystallinity degrees, and increasing the small starch granules (d < 10 µm). Gelatinization enthalpy and BD both had significant and positive correlations with amylose content, the ratio of amylose and amylopectin, B3 chain and crystallinity. Taken together, these results suggest that LT and LT + LL during grain filling can deteriorate the physicochemical properties of starch in late-season indica rice cultivars by disrupting starch multilevel structure, especially upon LT + LL. In particular, while poor-quality cultivar had poorer physicochemical properties, the good-quality cultivar had poorer thermal properties under LT + LL.

14.
Food Res Int ; 164: 112457, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36738012

RESUMO

The isolated plant oil bodies (OBs) have shown promising applications as natural pre-emulsified O/W emulsions. Rice bran OBs can be used as a new type plant-based resource with superior fatty acids composition and abundant γ-oryzanol. This paper investigated the method of extracting structurally intact and stable rice bran OBs. Due to the adequate steric hindrance and electrostatic repulsion effects, rice bran OBs extracted by NaHCO3 medium had smaller particle size, better physical stability, and natural structure. The protein profile of NaHCO3-extracted rice bran OBs showed oleosin-L and oleosin-H, while exogenous proteins in PBS and enzyme-assisted- extracted rice bran OBs could interact with interfacial proteins through hydrophobic forces to aggregate adjacent OBs, further remodeling the OBs interface. It was also found that the small-sized rice bran OBs could adsorb on the interface of the larger-sized rice bran OBs like Pickering stabilizers. Rice bran OBs exhibited pseudoplastic fluids characteristic, but underwent a transition from solid-like to liquid-like behavior depending on the extraction method. The disorder of NaHCO3-extracted rice bran OBs protein molecules increased their surface hydrophobicity. The random coil structure favored more proteins adsorption at the interface of rice bran OBs extracted by PBS. Enzyme-assisted extraction of rice bran OBs had the highest content of ß-sheet structure, which facilitated the stretching and aggregation of protein spatial structure. It was also confirmed the hydrogen bonding and hydrophobic interaction between the triacylglycerol or phospholipid and proteins molecules, and the membrane compositions of rice bran OBs differed between extraction methods.

15.
Front Nutr ; 10: 1114880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726696

RESUMO

Introduction: Huangjiu is an important Chinese alcoholic beverage, usually prepared from rice. Although its unique flavor improves with prolonged storage in traditional pottery jars, knowledge of the aging mechanism, necessary for commercialization of an optimum product, remains unclear. Methods: Here, volatile aroma compounds from forced aged samples exposed to different temperatures and oxygen treatments were measured by GC/MS. After retention time alignment and normalization, the peak vectors were compared over storage time using Pearson's correlation, and a correlation network was established. Marker compounds, representative of traditionally aged Huangjiu, were then monitored and compared to similar compounds in the forced aged product. Results and discussion: Correlation network analysis revealed the following: Temperature had little effect on most aroma compounds; alcohols, acids, and esters all increased with increasing dissolved oxygen, while polyphenols, lactones, and ketones were readily oxidized; aldehydes (e.g., furfural and benzaldehyde) were highly dependent on both temperature and dissolved oxygen. Dynamic changes in the targeted aging-markers showed that a higher initial oxygen concentration intensified the "aging-aroma" of Huangjiu in the early and middle stages of storage. Consequently, careful control of oxygen supplementation and storage temperature could be beneficial in controlling the desirable flavor of Huangjiu in the artificially aged product.

16.
Front Genet ; 14: 1111318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726806

RESUMO

Seed germination is vital for ensuring the continuity of life in spermatophyte. High-quality seed germination usually represents good seedling establishment and plant production. Here, we identified OsLTPL23, a putative rice non-specific lipid transport protein, as an important regulator responsible for seed germination. Subcellular localization analysis confirmed that OsLTPL23 is present in the plasma membrane and nucleus. The knockout mutants of OsLTPL23 were generated by CRISPR/Cas9-mediated genome editing, and osltpl23 lines significantly germinated slower and lower than the Nipponbare (NIP). Starch and soluble sugar contents measurement showed that OsLTPL23 may have alpha-amylase inhibitor activity, and high soluble sugar content may be a causal agent for the delayed seed germination of osltpl23 mutants. Transcript profiles in the germinating seeds exhibited that the abscisic acid (ABA)-responsive genes, OsABI3 and OsABI5, and biosynthesis genes, OsNCED1, OsNCED2, OsNCED3 and OsNCED4, are obviously upregulated in the osltpl23 mutants compared to NIP plants, conversely, ABA metabolism genes OsABA8ox1, OsABA8ox2 and OsABA8ox3 are stepwise decreased. Further investigations found that osltpl23 mutants displays weakened early seedling growth, with elevated gene expresssion of ABA catabolism genes and repressive transcription response of defence-related genes OsWRKY45, OsEiN3, OsPR1a, OsPR1b and OsNPR1. Integrated analysis indicated that OsLTPL23 may exert an favorable effect on rice seed germination and early seedling growth via modulating endogenous ABA homeostasis. Collectively, our study provides important insights into the roles of OsLTPL23-mediated carbohydrate conversion and endogenous ABA pathway on seed germination and early seedling growth, which contributes to high-vigor seed production in rice breeding.

17.
Food Chem ; 412: 135461, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36731230

RESUMO

An alternative analytical method was developed for the quantification of inorganic arsenic (iAs) in rice by ICP OES. Iron nanoparticles modified with an organophosphorus compound were used as the solid phase for MSPE of iAs from the plant matrix. The MSPE procedure was performed using 4 mL of a buffer solution with pH 4.0, 20 mg of the nanomaterial, and a 15-min extraction time. The total As (tAs) by ICP OES was also quantified using the same MSPE procedure after solubilization of the samples by a block digester. The accuracy of tAs and iAs quantification was verified using CRM NIST 1568b (97 % and 101 % recovery, respectively). The precision (RSD < 15 %) and LOD and LOQ (1.08 and 3.70 µg kg-1, respectively) of the proposed method were satisfactory. The rice samples had tAs contents between 0.090 and 0.295 mg kg-1 and iAs mass fractions between 0.055 and 0.109 mg kg-1.

18.
J Agric Food Chem ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734531

RESUMO

Food safety issue caused by aflatoxins has aroused widespread concern in society. Herein, a novel fluorine-functionalized triazine-based porous organic polymer (F-POP) was developed for the first time by the simple condensation polymerization of 2,2'-bis(trifluoromethyl)benzidine and cyanuric chloride. With in-built fluorine functional group (F) and imine group (-NH-), F-POP displayed significantly superior adsorption ability for aflatoxins, outperforming fluorine-free POP due to the multiple interaction mechanisms of hydrogen bond, F-O interaction, π-π interaction, F-π interaction, and hydrophobic interaction. Thus, magnetic F-POP was prepared by introducing Fe3O4 into F-POP and then utilized as a magnetic sorbent for the extraction of trace aflatoxins in peanut and rice samples prior to high-performance liquid chromatography-fluorescence detection. Under the optimal conditions, the proposed method presented high sensitivity with the limit of detections at 0.005-0.15 ng g-1. F-POP also exhibited outstanding adsorption capability for many other organic pollutants, revealing its great potential for analysis or adsorption applications.

19.
Plant Cell Rep ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723676

RESUMO

KEY MESSAGE: The resistance of Huaidao5 results from the high constitutive expression of tolerance genes, while that of Huaidao9 is due to the cold-induced resistance in flag leaves and panicles. The regulation mechanism of rice seedlings' cold tolerance is relatively clear, and knowledge of its underlying mechanisms at the reproductive stage is limited. We performed differential expression and co-expression network analyses to transcriptomes from panicle and flag leaf tissues of a cold-tolerant cultivar (Huaidao5), and a sensitive cultivar (Huaidao9), under reproductive-stage cold stress. The results revealed that the expression levels of genes in stress-related pathways such as MAPK signaling pathway, diterpenoid biosynthesis, glutathione metabolism, plant-pathogen interaction and plant hormone signal transduction were constitutively highly expressed in Huaidao5, especially in panicles. Moreover, the Hudaidao5's panicle sample-specific (under cold) module contained some genes related to rice yield, such as GW5L, GGC2, SG1 and CTPS1. However, the resistance of Huaidao9 was derived from the induced resistance to cold in flag leaves and panicles. In the flag leaves, the responses included a series of stress response and signal transduction, while in the panicles nitrogen metabolism was severely affected, especially 66 endosperm-specific genes. Through integrating differential expression with co-expression networks, we predicted 161 candidate genes (79 cold-responsive genes common to both cultivars and 82 cold-tolerance genes associated with differences in cold tolerance between cultivars) potentially affecting cold response/tolerance, among which 85 (52.80%) were known to be cold-related genes. Moreover, 52 (65.82%) cold-responsive genes (e.g., TIFY11C, LSK1 and LPA) could be confirmed by previous transcriptome studies and 72 (87.80%) cold-tolerance genes (e.g., APX5, OsFbox17 and OsSTA109) were located within QTLs associated with cold tolerance. This study provides an efficient strategy for further discovery of mechanisms of cold tolerance in rice.

20.
Pest Manag Sci ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729081

RESUMO

BACKGROUND: Frequent fungal diseases tend to cause severe loss in rice production. As a main component of fungal cell wall, glucan plays an important role in the growth and development of fungi. Glucanase can inhibit the growth of fungi by breaking the glycosidic bond, which may be a promising target for developing rice varieties with broad-spectrum disease resistance. RESULTS: We transferred a codon-optimized ß-1,6-glucanase gene (GluM) from myxobacteria into the japonica rice variety ZH11, and obtained a large number of individual transgenic plants with GluM overexpression. Based on molecular analysis, three single-copy homozygous lines with GluM overexpression were selected for assessment of fungal disease resistance at the T3 generation. Compared with that of recipient cultivar ZH11, the area of rice blast lesion in transgenic rice was reduced by 82.71%; that of sheath blight lesion was decreased by 35.76%-43.67%; the sheath blight resistance in the field was enhanced by an average of 0.75 grade over three years; and the incidence of diseased panicles due to rice false smut was decreased by 65.79%. More importantly, there was no obvious loss in yield (without significant effect on agronomic traits). Furthermore, the plants overexpressing a ß-1,6-glucanase gene showed higher disease resistance than the rice plants overexpressing a ß-1,3-glucanase gene derived from tobacco. CONCLUSION: The ß-1,6-glucanase gene GluM can confer broad-spectrum disease resistance to rice, providing an environment-friendly alternative way to effectively manage fungal pathogens in rice production. This article is protected by copyright. All rights reserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...