Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36673714

RESUMO

The green production behavior of pig farmers is the basis for high-quality development in animal husbandry. In order to solve the problem of poor green production behaviors in small- and medium-sized pig farmers, it is necessary to analyze the influencing factors and how they interact with each other. The Rational Peasant Theory and Prospect Theory were used in this paper to analyze the occurrence motivation of the green production behaviors of small- and medium-sized pig farmers. The Logit model and the ISM analysis method were used to test the influencing factors and their mechanisms. This was conducted using data from a study of 747 small- and medium-sized pig farmers in Henan Province. The results show that the green production behaviors of small- and medium-sized pig farmers are motivated by internal expected return, affected by the monitoring pressure from external stakeholders and limited by their own resource capacity; the influencing factors of different green production behaviors are different, and there are more influencing factors of scientific disease control, standardized management and waste recycling than of rational feeding. The following shows how the influencing factors on pig farmers' green production behavior interact with one another: level of education → external pressure, farming conditions and operating characteristics → cognition of return → green production behavior (i.e., cognition of return is the direct factor; external pressure, farming conditions and operating characteristics are indirect factors; and level of education is the underlying factor). Some measures should be implemented to promote green production behaviors, such as the continuation of the support for green production, the strengthening of supervision and publicity, the increasing of investment in technology and equipment, and the improving of the green production literacy of farmers. In conclusion, this paper deepens the understanding of the mechanism of green production behaviors of small- and medium-sized pig farmers, and provides the theoretical basis and concrete measures for the government and for pig farmers.


Assuntos
Agricultura , Fazendeiros , Suínos , Animais , Humanos , Inquéritos e Questionários , Criação de Animais Domésticos/métodos , Fazendas , China
2.
Acta Biomater ; 157: 210-224, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36503077

RESUMO

Infections induced by intracellular pathogens are difficult to eradicate due to poor penetration of antimicrobials into cell membranes. It is of great importance to develop a new generation of antibacterial agents with dual functions of efficient cell penetration and bacterial inhibition. In this study, the association between hydrophobicity and cell-penetrating peptide delivery efficiency was investigated by fragment interception and hydrophobicity modification of natural porcine antimicrobial peptide PR-39 and the combination of cationic cell-penetrating peptide (R6) with antimicrobial peptide fragments modified with hydrophobic residues. The chimeric peptides P3I7 and P3L7, obtained through biofunctional screening, exhibited potent broad-spectrum antibacterial activity and low cytotoxicity. Moreover, P3I7 and P3L7 can effectively penetrate cells to eliminate intracellular pathogens mainly through endocytosis. The membrane destruction mechanism makes the peptides fast sterilizers and less prone to developing drug resistance. Finally, their good biocompatibility and antibacterial infection effects were verified in mice and piglets. To conclude, the chimeric peptides P3I7 and P3L7 show great potential as affordable and effective antimicrobial agents and may serve as ideal candidates for the treatment of intracellular bacterial infections. STATEMENT OF SIGNIFICANCE: The low permeability of antibacterial drugs makes infections induced by intracellular bacteria extremely difficult to treat. To address this issue, we designed chimeric peptides with dual cell-penetrating and antibacterial functions. The active peptides P3I7 and P3L7, acquired through functional screening have strong broad-spectrum antibacterial activity and powerful bactericidal effects against intracellular Staphylococcus aureus. The membrane permeation mechanism of P3I7 and P3L7 against bacteria endows fast bactericidal activity with low drug resistance. The biosafety and antibacterial activity of P3I7 and P3L7 were also validated by in vivo trials. This study provides an ideal drug candidate against intracellular bacterial infections.

3.
Front Environ Sci Eng ; 17(3): 31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36313056

RESUMO

The diverse and large-scale application of disinfectants posed potential health risks and caused ecological damage during the 2019-nCoV pandemic, thereby increasing the demands for the development of disinfectants based on natural products, with low health risks and low aquatic toxicity. In the present study, a few natural naphthoquinones and their derivatives bearing the 1,4-naphthoquinone skeleton were synthesized, and their antibacterial activity against selected bacterial strains was evaluated. In vitro antibacterial activities of the compounds were investigated against Escherichia coli and Staphylococcus aureus. Under the minimum inhibitory concentration (MIC) of ⩽ 0.125 µmol/L for juglone (1a), 5,8-dimethoxy-1,4-naphthoquinone (1f), and 7-methyl-5-acetoxy-1,4-naphthoquinone (3c), a strong antibacterial activity against S. aureus was observed. All 1,4-naphthoquinone derivatives exhibited a strong antibacterial activity, with MIC values ranging between 15.625 and 500 µmol/L and EC50 values ranging between 10.56 and 248.42 µmol/L. Most of the synthesized compounds exhibited strong antibacterial activities against S. aureus. Among these compounds, juglone (1a) showed the strongest antibacterial activity. The results from mechanistic investigations indicated that juglone, a natural naphthoquinone, caused cell death by inducing reactive oxygen species production in bacterial cells, leading to DNA damage. In addition, juglone could reduce the self-repair ability of bacterial DNA by inhibiting RecA expression. In addition to having a potent antibacterial activity, juglone exhibited low cytotoxicity in cell-based investigations. In conclusion, juglone is a strong antibacterial agent with low toxicity, indicating that its application as a bactericidal agent may be associated with low health risks and aquatic toxicity. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s11783-023-1631-2 and is accessible for authorized users.

4.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5789-5796, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471996

RESUMO

Herbal pair is formed based on the experience summary of doctors' deep understanding and perception of the medicinal nature in long-term clinical practice. It gradually becomes the exquisite structural unit for preparing traditional Chinese medicine(TCM) prescriptions, and often plays a core bridge role in the prescription combination. Frankincense and myrrh are raw resin materials of incense abroad, which are subsequently included as Chinese medicinal herbs and endowed with rich medicinal connotation. With the functions of relaxing Zang-fu organs, activating blood and relieving pain, they have definite clinical efficacy. From the perspective of herbal description and clinical application, this study systematically analyzed the combination of frankincense and myrrh as well as their combination proportion, efficacy characterization, diseases and syndromes, effective components and action mechanism. On this basis, the focus of in-depth research of frankincense-myrrh and the application prospects were proposed, in order to further reveal the potential meditation law of this herbal pair, thus contributing to clinical practice and drug innovation of traditional Chinese medicine, and providing reference for understanding of TCM medicinal nature and research of herbal pairs.


Assuntos
Medicamentos de Ervas Chinesas , Franquincenso , Humanos , Franquincenso/química , Commiphora , Resinas Vegetais/química , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico
5.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5797-5805, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471997

RESUMO

Ulcerative colitis(UC) is a continuous inflammatory bowel disease with the main clinical manifestations of abdominal pain, diarrhea, and mucous bloody stools, mainly attacking the colorectal mucosa and submucosa. It is characterized by high recurrence rate, difficult cure, and clustering and regional occurrence. Chinese medicinal prescriptions for the treatment of UC have good therapeutic effect, multi-target regulation, slight toxicity, and no obvious side effects. In particular, the classical prescriptions highlight the characteristics and advantages of traditional Chinese medicine theory and have attracted much attention in recent years. To enable researchers to timely and comprehensively understand the classical prescriptions in the treatment of UC, we reviewed the studies about the pharmacodynamic material basis, quality control, action mechanism, and clinical application of relevant classical prescriptions. We first introduced the latest research progress in the active components such as alkaloids, polysaccharides, saponins, and flavonoids in relevant classical prescriptions. Then, we reviewed the latest research achievements on the quality control of classical prescriptions for the treatment of UC by gas chromatography, liquid chromatography, mass spectrometry, liquid chromatography-mass spectrometry and the like. Further, we summarized the research advances in the mechanisms of relevant prescriptions in the treatment of UC based on network pharmacology, molecular docking, integrated pharmacology platform, and animal experiments. Finally, we generalized the clinical application of the classical prescriptions for clearing heat and removing dampness, mildly regulating cold and heat, soothing liver and regulating spleen, strengthening spleen and invigorating Qi, and tonifying spleen and stomach. By systematic summary of the research progress in relevant classical prescriptions, we hope to promote the application and development of such prescriptions in UC treatment.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Animais , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular , Cromatografia Gasosa-Espectrometria de Massas , Medicina Tradicional Chinesa , Prescrições de Medicamentos
6.
Pestic Biochem Physiol ; 188: 105225, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464345

RESUMO

Green prevention and control of plant pathogens is a development direction of sustainable and low-carbon agriculture given the limitation of traditional chemicals. Plant-derived antipathogenic constituents (PAPCs) exhibit the advantages of being environmental benign and a broad spectrum of target pathogens over traditional chemicals. Here, we review the research advances on plant sources, chemical compositions, activities of antipathogenic constituents in the past 20 years. Reported PAPCs are classified into categories of phenols, flavonoids, terpenoids, alkaloids and antimicrobial peptides. Angiosperms, gymnosperms and some lower plants are the main plant source of detected PAPCs. The PAPCs act on pathogens through multiple pathways including destroying cell structures, blocking key composition synthesis and inhibiting cell metabolism. The development trends of PAPCs are finally prospected. This review serves as a comprehensive review on the study of plant antipathogenic constituents and a key reference for forecasting the source, characteristic and activity of PAPC.


Assuntos
Magnoliopsida , Terpenos , Agricultura , Peptídeos Antimicrobianos , Flavonoides/farmacologia
7.
Crit Rev Food Sci Nutr ; : 1-22, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469643

RESUMO

Traditional processing methods can no longer meet the demands of consumers for high-quality muscle food. As a green and non-thermal processing technology, ultrasound has the advantage of improving processing efficiency and reducing processing costs. Of these, the positive effect of power ultrasound in the processing of muscle foods is noticeable. Based on the action mechanism of ultrasound, the factors affecting the action of ultrasound are analyzed. On this basis, the effect of ultrasound technology on muscle food quality and its action mechanism and application status in processing operations (freezing-thawing, tenderization, marination, sterilization, drying, and extraction) is discussed. The transient and steady-state effects, mechanical effects, thermal effects, and chemical effects can have an impact on processing operations through complex correlations, such as improving the efficiency of mass and heat transfer. Ultrasound technology has been proven to be valuable in muscle food processing, but inappropriate ultrasound treatment can also have adverse effects on muscle foods. In the future, kinetic models are expected to be an effective tool for investigating the application effects of ultrasound in food processing. Additionally, the combination with other processing technologies can facilitate their intensive application on an industrial level to overcome the disadvantages of using ultrasound technology alone.

8.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500729

RESUMO

Pathogenic plant oomycetes cause devastating damage to fruits and vegetables worldwide. Plant essential oils (EOs) are known to be promising candidates for the development of fungicides. In this study, we isolated twelve EOs from Tetradium ruticarpum, Tetradium daniellii, Tetradium fraxinifolium, Zanthoxylum armatum, Ruta graveolens, and Citrus medica leaves and fruits. We then investigated their chemical composition and antifungal activity against phytopathogenic oomycetes. Our results demonstrated that Z. armatum fruit essential oil (ZFO) in particular substantially inhibited the mycelial growth of Phytophthora capsici. Similarly, ZFO also strongly suppressed spore production and germination of P. capsici, and the application of ZFO significantly reduced disease symptoms caused by P. capsici in pepper. Furthermore, results from microscopic and biochemical studies indicated that ZFO damaged the ultrastructure and destroyed the membrane integrity of P. capsici, leading to the leakage of the cellular contents and ultimately causing cell death. It was concluded that ZFO could enhance the activities of defense-related enzymes in pepper fruits, which may also be responsible for the inhibition of phytophthora disease. Moreover, linalool and D-limonene were proven to be the primary effective components of ZFO. Our results collectively indicate that ZFO could be a potential candidate for the management of disease caused by P. capsici.


Assuntos
Fungicidas Industriais , Óleos Voláteis , Phytophthora , Óleos Voláteis/farmacologia , Frutas , Antifúngicos/farmacologia , Antifúngicos/química , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-36498048

RESUMO

Glucose-regulated protein 78 (GRP78), a molecular chaperone, is overexpressed in patients suffering from obesity, fatty liver, hyperlipidemia and diabetes. GRP78, therefore, can be not only a biomarker to predict the progression and prognosis of obesity and metabolic diseases but also a potential therapeutic target for anti-obesity treatment. In this paper, GRP78 inhibitors targeting its ATPase domain have been reviewed. Small molecules and proteins that directly bind GRP78 have been described. Putative mechanisms of GRP78 in regulating lipid metabolism were also summarized so as to investigate the role of GRP78 in obesity and other related diseases and provide a theoretical basis for the development and design of anti-obesity drugs targeting GRP78.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Obesidade , Humanos , Chaperona BiP do Retículo Endoplasmático/antagonistas & inibidores , Obesidade/tratamento farmacológico , Obesidade/metabolismo
10.
Int J Food Microbiol ; 387: 110050, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36508953

RESUMO

As a human foodborne pathogen, Listeria monocytogenes can cause severe human listeriosis and develop resistance to antibiotics. Antimicrobial peptides (AMPs) are produced from all kingdoms of life and regarded as promising alternatives to conventional antibiotics. Jelleine-I is an AMP identified from honeybees royal jelly. In this study, we explored the activity and action mechanism of Jelleine-I against L. monocytogenes. We found its minimum inhibitory concentration to be 12.5 µg/mL. Membrane permeability analysis revealed that Jelleine-I increased L. monocytogenes cell membrane permeability, causing calcium leakage. Scanning, transmission electron microscopy and fluorescence microscopy revealed that Jelleine-I destroyed membrane integrity, disrupted intracellular structures and interacted with the bacterial DNA. DNA binding analysis demonstrated that Jelleine-I bound to bacterial genomic DNA. Results of reverse transcription-quantitative PCR revealed that Jelleine-I affected bacterial DNA replication gene expression levels. Moreover, Jelleine-I induced cellular reactive oxygen species (ROS) production from fluorescence intensity analysis, and inhibited bacterial biofilm formation. Results of immunomodulation in Galleria mellonella revealed that Jelleine-I increased host hemocyte counts, upregulated host AMP gene (Gloverin and Cecropin D) expression, and inhibited proinfammatory cytokine (tumor necrosis factor α and interleukin 6) production induced by bacterial infection. It efficiently killed bacteria and increased the survival rate of infected insects to 70 %. Furthermore, Jelleine-I increased the G1 to S phase transition in mammalian cells from cells cycle analysis, and cytotoxicity assay results indicated that it promoted cell proliferation without hemolysis or cytotoxicity. Collectively, Jelleine-I possesses antimicrobial, immunomodulatory and cell proliferative activities, and is a promising candidate for preventing L. monocytogenes emergence and dissemination.

11.
Phytochem Anal ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479744

RESUMO

INTRODUCTION: Panax notoginseng (Burkill) F. H. Chen ex C. H. Chow, is a well-known herb with multitudinous efficacy. In this study, a series of overall analyses on the action mechanism, component content, origin identification, and content prediction of P. notoginseng are conducted. OBJECTIVES: The purpose was to analyse the mechanism of pharmacological efficacy, differences between contents and groups of P. notoginseng from different origins, and to identify the origin and predict the content. MATERIALS AND METHODS: The P. notoginseng samples from four different origins were used for analysis by the database, network pharmacology (Q-marker) and fingerprint analysis [high-performance liquid chromatography (HPLC), attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and near-infrared (NIR)] combined with data fusion strategy (low- and feature-level). RESULTS: Four saponins were identified as Q-markers, and exerted pharmacological effects on signalling pathways through 24 core targets. The qualitative and quantitative analysis of HPLC showed that there were differences among groups and different origins. Therefore, considering the need to treat diseases, combined with network database and network pharmacology, the suitable producing areas were determined through the mechanism of action and the required saponin content. The low-level data fusion successfully identified the origin and predicted the content of P. notoginseng from different origins. The accuracy rate of each evaluation index of the partial least squares discriminant analysis (PLS-DA) model was 1, and the t-SNE (t-distributed stochastic neighbor embedding) visualisation results were good. The coefficient of determination (R2 ) of the partial least squares regression (PLSR) model ranged from 0.9235-0.9996, and the root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP) range is 0.301-1.519. CONCLUSION: This study was designed to provide a sufficient theoretical basis for the quality control of P. notoginseng.

12.
Chin Herb Med ; 14(4): 479-493, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36405057

RESUMO

Zedoary tumeric (Curcumae Rhizoma, Ezhu in Chinese) has a long history of application and has great potential in the treatment of liver cancer. The antiliver cancer effect of zedoary tumeric depends on the combined action of multiple pharmacodynamic substances. In order to clarify the specific mechanism of zedoary tumeric against liver cancer, this paper first analyzes the mechanism of its single pharmacodynamic substance against liver cancer, and then verifies the joint anti liver cancer mechanism of its "pharmacodynamic group". By searching the research on the antihepatoma effect of active components of zedoary tumeric in recent years, we found that pharmacodynamic substances, including curcumol, zedoarondiol, curcumenol, curzerenone, curdione, curcumin, germacrone, ß-elemene, can act on multi-target and multi-channel to play an antihepatoma role. For example, curcumin can regulate miR, GLO1, CD133, VEGF, YAP, LIN28B, GPR81, HCAR-1, P53 and PI3K/Akt/mTOR, HSP70/TLR4 and NF-κB. Wnt/TGF/EMT, Nrf2/Keap1, JAK/STAT and other pathways play an antihepatoma role. Network pharmacological analysis showed that the core targets of the "pharmacodynamic group" for anti-life cancer are AKT1, EGFR, MAPK8, etc, and the core pathways are neuroactive live receiver interaction, nitrogen metabolism, HIF-1 signaling pathway, etc. At the same time, by comparing and analyzing the relationship between the specific mechanisms of pharmacodynamic substance and "pharmacodynamic group", it is found that they have great reference significance in target, pathway, biological function, determination of core pharmacodynamic components, formation of core target protein interaction, in-depth research of single pharmacodynamic substance, increasing curative effect and so on. By analyzing the internal mechanism of zedoary tumeric pharmacodynamic substance and "pharmacodynamic group" in the treatment of liver cancer, this paper intends to provide some ideas and references for the deeper pharmacological research of zedoary tumeric and the relationship between pharmacodynamic substance and "pharmacodynamic group".

13.
Water Res ; 226: 119318, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369687

RESUMO

Unlocking the antibacterial potential is an emerging strategy to valorizing the toxic wastewater from hydrothermal liquefaction (HTL). Here, we investigated the response and biological mechanism of antibacterial properties of HTL wastewater. Four different biowastes i.e. microalgae, cornstalk, cow manure and swine manure were used as the feedstock of HTL to create wastewater with diverse molecule spectrum, whereas ten strains i.e. five gram-positive strains and five gram-negative strains were employed to represent typical pathogenic microorganism. HTL wastewater exhibited antibacterial potential and obvious reduction on cell viability at high inclusion ratio, although the minimum inhibitory concentration (MIC) and cell response intensity varied depending on different HTL feedstocks and strain species. The decreased ATP generation and increased H2O2 accumulation in treated cells further confirmed the inhibition of HTL wastewater on the cell metabolism. The antibacterial mechanism of HTL wastewater was confirmed, including damage to biomolecules or membranes, depletion of crucial components, disruption of metabolic circuits and imbalance of creation of redox cofactor. The complex compounds in HTL wastewater were probably attributed to the multiple inhibition pathways and the relationship among those multiple pathways was speculated. The present study contributes to the mechanism analysis of complex compound mixture and bactericide characteristics of HTL wastewater.


Assuntos
Microalgas , Animais , Suínos , Esterco , Peróxido de Hidrogênio/análise , Antibacterianos/farmacologia , Biocombustíveis/análise , Temperatura , Biomassa
14.
J Fungi (Basel) ; 8(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36422020

RESUMO

In this study, a γ-cyclodextrin-cinnamaldehyde inclusion compound (γ-CDCL) was prepared to control green mold caused by Penicillium digitatum (P. digitatum) in citrus. The results showed that the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of γ-CDCL against the mycelial growth of P. digitatum were 2.0 g L-1 and 4.0 g L-1, respectively. Simultaneously, eight × MFC γ-CDCL could effectively reduce the incidence of green mold in citrus fruit without impairment of the fruit qualities, meanwhile, eight × MFC γ-CDCL was comparable to Prochloraz in controlling fruit under natural storage conditions. The structure of γ-CDCL was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and nuclear magnetic resonance (NMR) analyses. Results showed that the successful preparation of γ-CDCL was due to the spatial interaction between H-4,8 of cinnamaldehyde and H-5' of γ-cyclodextrin. Meanwhile, the cell membrane permeability of P. digitatum was impaired by γ-CDCL through massive accumulation of reactive oxygen species, whereas the cell wall integrity was barely affected. These results indicated that γ-CDCL might inhibit the growth of P. digitatum through a membrane damage mechanism and it is a promising alternative to chemical fungicides in controlling the post-harvest citrus decay.

15.
Braz J Microbiol ; 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36422848

RESUMO

The emergence of itraconazole (ITZ)-resistant Sporothrix brasiliensis in feline and canine cases in southern Brazil has hampered the clinical cure of animal sporotrichosis, encouraging the search for therapeutic alternatives. The promising use of plants extracts from Lamiaceae family is known; however, there are no studies with its major compounds, as γ-terpinene (γTER), 1,8-cineole (1,8CIN), p-coumaric acid (pCOU), and quercetin (QUER). For the first time, we evaluated the antifungal, synergistic, cytotoxic activities and action mechanism of these compounds against S. brasiliensis. For this, 28 S. brasiliensis from cats (n = 24) and dogs (n = 4) and standard strains of S. brasiliensis and S. schenckii (n = 4) were tested by M38-A2 (CLSI), revealing non-wild-type (WT) isolates to ITZ on 54.2% (13/24) and 75% (03/04) of feline and canine isolates, respectively. Of the compounds, γTER stood out against all isolates (MIC/MFC 0.75 to > 3 mg/ml; MIC50 3 mg/ml). However, 1,8CIN, pCOU, and QUER showed little or no activity (MIC50 > 3 mg/ml). Thus, γTER was selected for checkerboard assay, whose combination with ITZ showed synergistic (WT isolates) and indifferent (non-WT isolates) interaction. For action mechanism (sorbitol protection and ergosterol effect), γTER acted in membrane by complexing with fungal ergosterol and at the cell wall level, showing two possible pathways as antifungal target. Finally, cytotoxicity (MTT assay) showed that γTER was the safest compound on MDBK cells, even at a concentration of 3 mg/ml (90.16%). Our findings support that γTER is a potent antifungal candidate for the control of sporotrichosis, including against non-WT S. brasiliensis.

16.
Foods ; 11(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230015

RESUMO

Human listeriosis is a serious foodborne disease of which outbreaks are occurring increasingly frequently in Europe. Around the world, different legal requirements exist to guarantee food safety. Nanomaterials are increasingly used in the food industry as inhibitors of pathogens, and carbon nanomaterials are among the most promising. In the present study, novel carbon nanoparticles loaded with copper (CNP-Cu) were prepared, and their antimicrobial activity against Listeria monocytogenes was assessed. CNPs of two sizes were synthesized and characterized by dynamic light scattering (DLS), electrophoretic light scattering (ELS) and electron microscopy (EM). The minimum inhibitory concentration (MIC) of CNP-Cu was determined in accordance with the available standard. To get insights into its mechanism of action, the release of copper ions into a cell media was assessed by inductively coupled plasma optical emission (ICP-OE), and the ability of loaded CNPs to generate cytotoxic reactive oxygen species (ROS) was evaluated by EPR spectroscopy. Finally, the extent of release of copper in a food simulant was assessed. The results demonstrated the antimicrobial effectiveness of CNP-Cu, with growth inhibition up to 85% and a release of copper that was more pronounced in an acidic food simulant. Overall, the results indicate CNP-Cu as a promising agent for the design of active food packaging which is able to improve food shelf-life.

17.
Pest Manag Sci ; 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223125

RESUMO

BACKGROUND: The use of fungicides to protect crops from diseases is an effective method, and novel environmentally friendly plant-derived fungicides with enhanced performance and low toxicity are urgent requirements for sustainable agriculture. RESULTS: Two kinds of rosin-based acylhydrazone compounds were designed and prepared. Based on the antifungal activity assessment against Rhizoctonia solani, Fusarium oxysporum, Phytophthora capsici, Sclerotinia sclerotiorum, and Botrytis cinerea, acylhydrazone derivatives containing a thiophene ring were screened and showed an inhibitory effect on rice R. solani. Among them, Compound 4n, with an electron-withdrawing group on the benzene ring structure attached to the thiophene ring, showed optimal activity, and the EC50 value was 0.981 mg L-1 , which was lower than that of carbendazim. Furthermore, it was indicated that 4n could affect the mycelial morphology, cell membrane permeability and microstructure, cause the generation of reactive oxygen species in fungal cells, and damage the nucleus and mitochondrial physiological function, resulting in the cell death of R. solani. Meanwhile, Compound 4n exhibited a better therapeutic effect on in vivo rice plants. However, the induction activity of 4n on the defense enzyme in rice leaf sheaths showed that 4n stimulates the initial resistance of rice plants by removing active oxygen, thereby protecting the cell membrane or enhancing the strength of the cell wall. Through the quantitative structure-activity relationship study, the quantitative chemical and electrostatic descriptors significantly affect the binding of 4n with the receptor, which improves its antifungal activity. CONCLUSION: This study provides a basis for exploiting potential rosin-based fungicides in promoting sustainable crop protection. © 2022 Society of Chemical Industry.

18.
Chem Biodivers ; 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302719

RESUMO

In this study, eight naphthoquinone derivatives were synthesized in yields ranging from 52 to 96% using easy, fast, and low-cost methodologies. All naphthoquinone derivatives were screened for their in vitro anti-proliferative activities against OVCA A2780 cancer cell line. Amongst all analysed compounds, derivatives 3 - 5 presented the most prominent cytotoxic potential. Naphthoquinones 3 and 4, bearing sulfur-containing groups, were identified as having high potential for ROS production, in particular the superoxide anion. Furthermore, 3 and 4 compounds caused a decrease in the cell population in G0/G1 and induced more than 90% of the cell population to apoptosis. Compound 5 did not act in any of these processes.  Finally, compounds 3 - 5 were tested for their inhibitory ability against PI3K and MAPK. Compounds 3 and 4 do not inhibit the PI3K enzyme. On the other hand, the naphthoquinone-polyphenol 5 was only able to inhibit reduced the percentage of cells expressing pERK.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36231224

RESUMO

As an innovative tactic, the core aspects of green products should be comprehensively demonstrated and firmly promoted to enhance their adoption. For doing so, continuous governmental support and interventions through distinct sets of networking and relationships could be crucial for synthesizing and diffusing the extent of green production demonstration households. Interestingly, the structural relationship between these two has not yet been evaluated comprehensively by the existing literature. Therefore, the study empirically analyzes the impact and mechanism of government relationships embedded in fostering green production demonstration households. The study compiles the empirical data from 963 farmers which were collected from the major tea-producing areas of Shaanxi, Sichuan, and Anhui provinces, China. In order to craft the findings, first we constructed the ordered Probit for benchmark regression analysis. Meanwhile, the Ordinary Standard Error Ordered Probit model, Ordered Logit model, and multivariate linear model were constructed for the robustness test. Third, the Extended Ordered Probit model and Bootstrap mediation effect model were used to test the path diagram. Finally, robustness testing and endogeneity processing test were used to explore the reliability of the findings. The results showed that: (i) Government relationship embedding has a positive effect on fostering green production demonstration households. In particular, factors such as relationships with general government staff, professional and technical personnel, and village cadre are most significant. (ii) Seemingly, the heterogeneity analysis shows that the farmers with large operating scales and low family economic status have a relatively stronger impact. (iii) Further mechanism research results show that government relations are embedded through government identification (policy identification, government trust), improving farmers' behavioral ability (production knowledge reserve, self-efficacy), and strengthening farmers' perceived value of green production (self-interest perception, altruistic values). Therefore, the government should strengthen the interactive mechanism embedded with farm households and extend support for green production demonstration zones. The farmers' information-sharing facilities and platforms should be modernized and highlighted according to the local conditions and long-term targeted strategies.


Assuntos
Agricultura , Fazendeiros , China , Governo , Humanos , Reprodutibilidade dos Testes , Chá
20.
Front Neurosci ; 16: 946879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117612

RESUMO

Spinal cord injury (SCI) is a devastating condition with few treatment options. Metformin, a classical antidiabetic and antioxidant, has extended its application to experimental SCI treatment. Here, we performed a systematic review to evaluate the neurobiological roles of metformin for treating SCI in rats, and to assess the potential for clinical translation. PubMed, Embase, China National Knowledge Infrastructure, WanFang data, SinoMed, and Vip Journal Integration Platform databases were searched from their inception dates to October 2021. Two reviewers independently selected controlled studies evaluating the neurobiological roles of metformin in rats following SCI, extracted data, and assessed the quality of methodology and evidence. Pairwise meta-analyses, subgroup analyses and network analysis were performed to assess the roles of metformin in neurological function and tissue damage in SCI rats. Twelve articles were included in this systematic review. Most of them were of moderate-to-high methodological quality, while the quality of evidence from those studies was not high. Generally, Basso, Beattie, and Bresnahan scores were increased in rats treated with metformin compared with controls, and the weighted mean differences (WMDs) between metformin and control groups exhibited a gradual upward trend from the 3rd (nine studies, n = 164, WMD = 0.42, 95% CI = -0.01 to 0.85, P = 0.06) to the 28th day after treatment (nine studies, n = 136, WMD = 3.48, 95% CI = 2.04 to 4.92, P < 0.00001). Metformin intervention was associated with improved inclined plane scores, tissue preservation ratio and number of anterior horn motor neurons. Subgroup analyses indicated an association between neuroprotection and metformin dose. Network meta-analysis showed that 50 mg/kg metformin exhibited greater protection than 10 and 100 mg/kg metformin. The action mechanisms behind metformin were associated with activating adenosine monophosphate-activated protein kinase signaling, regulating mitochondrial function and relieving endoplasmic reticulum stress. Collectively, this review indicates that metformin has a protective effect on SCI with satisfactory safety and we demonstrate a rational mechanism of action; therefore, metformin is a promising candidate for future clinical trials. However, given the limitations of animal experimental methodological and evidence quality, the findings of this pre-clinical review should be interpreted with caution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...