Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39007483

RESUMO

Magnetic hyperthermia (MH) has emerged as a promising technology with diverse applications in medical and technological fields, leveraging the remote induction of temperature elevation through an alternating magnetic field. While Fe3O4 nanoparticles with an average size around 12-25 nm are commonly employed in MH systems, this study introduces a strategy to produce smaller particles (less than or equal to 10 nm) with enhanced heating efficiency, as measured by specific power absorption (SPA). We conducted an exhaustive and detailed investigation into the morphological and magnetic properties of CoxFe3-xO4 nanoparticles, aiming to optimize their MH response. By varying the Co content, we successfully tuned the effective magnetic anisotropy while maintaining saturation magnetization nearly constant. The MH analysis indicates that these nanoparticles predominantly heat through the Néel mechanism, demonstrating robust reproducibility across different concentrations, viscosity mediums, and ac field conditions. Notably, we identified an optimal anisotropy or Co concentration that maximizes SPA, crucial for developing magnetic systems requiring particles with specific sizes. This work contributes to advancing the understanding and application of MH, particularly in tailoring nanoparticle properties for targeted and efficient heat generation in various contexts.

2.
ACS Appl Mater Interfaces ; 12(47): 53454-53461, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33169962

RESUMO

Magnetic skyrmions are nontrivial spin textures that resist external perturbations, being promising candidates for the next-generation recording devices. Nevertheless, a major challenge in realizing skyrmion-based devices is the stabilization of ordered arrays of these spin textures under ambient conditions and zero applied field. Here, we demonstrate for the first time the formation and stabilization of magnetic skyrmions on the arrays of self-assembled hexagonal nanodomes taking advantage of the intrinsic properties of its curved geometry. Magnetic force microscopy images from the arrays of 100 nm nanodomes showed stable skyrmions at the zero field that are arranged following the topography of the nanostructure. Micromagnetic simulations are compared to the experiments to determine the correlation of the domain textures with the topography of the samples. We propose a simple method to nucleate and annihilate skyrmions, opening the possibility for an ultradense data storage based on the high stability and low energy consumption of the skyrmionic textures.

3.
Beilstein J Nanotechnol ; 11: 651-661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363131

RESUMO

We studied in detail the in-plane magnetic properties of heterostructures based on a ferroelectric BaTiO3 overlayer deposited on a ferromagnetic La2/3Sr1/3MnO3 film grown epitaxially on pseudocubic (001)-oriented SrTiO3, (LaAlO3)0.3(Sr2TaAlO6)0.7 and LaAlO3 substrates. In this configuration, the combination of both functional perovskites constitutes an artificial multiferroic system with potential applications in spintronic devices based on the magnetoelectric effect. La2/3Sr1/3MnO3 single layers and BaTiO3/La2/3Sr1/3MnO3 bilayers using the pulsed-laser deposition technique. We analyzed the films structurally through X-ray reciprocal space maps and high-angle annular dark field microscopy, and magnetically via thermal demagnetization curves and in-plane magnetization versus applied magnetic field loops at room temperature. Our results indicate that the BaTiO3 layer induces an additional strain in the La2/3Sr1/3MnO3 layers close to their common interface. The presence of BaTiO3 on the surface of tensile-strained La2/3Sr1/3MnO3 films transforms the in-plane biaxial magnetic anisotropy present in the single layer into an in-plane uniaxial magnetic anisotropy. Our experimental evidence suggests that this change in the magnetic anisotropy only occurs in tensile-strained La2/3Sr1/3MnO3 film and is favored by an additional strain on the La2/3Sr1/3MnO3 layer promoted by the BaTiO3 film. These findings reveal an additional mechanism that alters the magnetic behavior of the ferromagnetic layer, and consequently, deserves further in-depth research to determine how it can modify the magnetoelectric coupling of this hybrid multiferroic system.

4.
Nanoscale Res Lett ; 9(1): 635, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489286

RESUMO

Co-doped SnO2 thin films were grown by sputtering technique on SiO2/Si(001) substrates at room temperature, and then, thermal treatments with and without an applied magnetic field (HTT) were performed in vacuum at 600°C for 20 min. HTT was applied parallel and perpendicular to the substrate surface. Magnetic M(H) measurements reveal the coexistence of a strong antiferromagnetic (AFM) signal and a ferromagnetic (FM) component. The AFM component has a Néel temperature higher than room temperature, the spin axis lies parallel to the substrate surface, and the highest magnetic moment m =7 µB/Co at. is obtained when HTT is applied parallel to the substrate surface. Our results show an enhancement of FM moment per Co(+2) from 0.06 to 0.42 µB/Co at. for the sample on which HTT was applied perpendicular to the surface. The FM order is attributed to the coupling of Co(+2) ions through electrons trapped at the site of oxygen vacancies, as described by the bound magnetic polaron model. Our results suggest that FM order is aligned along [101] direction of Co-doped SnO2 nanocrystals, which is proposed to be the easy magnetization axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA