Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Heliyon ; 10(7): e26791, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586373

RESUMO

Efferocytosis of apoptotic neutrophils (PMNs) by macrophages is helpful for inflammation resolution and injury repair, but the role of efferocytosis in intrinsic nature of macrophages during septic acute kidney injury (AKI) remains unknown. Here we report that CD47 and signal regulatory protein alpha (SIRPα)-the anti-efferocytotic 'don't eat me' signals-are highly expressed in peripheral blood mononuclear cells (PBMCs) from patients with septic AKI and kidney samples from mice with polymicrobial sepsis and endotoxin shock. Conditional knockout (CKO) of SIRPA in macrophages ameliorates AKI and systemic inflammation response in septic mice, accompanied by an escalation in mitophagy inhibition of macrophages. Ablation of SIRPA transcriptionally downregulates solute carrier family 22 member 5 (SLC22A5) in the lipopolysaccharide (LPS)-stimulated macrophages that efferocytose apoptotic neutrophils (PMNs). Targeting SLC22A5 renders mitophagy inhibition of macrophages in response to LPS stimuli, improves survival and deters development of septic AKI. Our study supports further clinical investigation of CD47-SIRPα signalling in sepsis and proposes that SLC22A5 might be a promising immunotherapeutic target for septic AKI.

2.
Transl Cancer Res ; 13(2): 798-807, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482450

RESUMO

Background: Kelch-like family member 22 (KLHL22) is a protein-coding gene that is responsible for several Mendelian diseases and has been reported to promote tumorigenesis and aging. The purpose of this study was to investigate its expression in triple-negative breast cancer (TNBC) and its prognostic significance. Methods: Immunohistochemistry (IHC) was performed to examine the expression levels of KLHL22 in 146 patients with TNBC. The Chi-squared test was used to analyze the correlations between KLHL22 expression level and clinicopathological features, and the Kaplan-Meier survival analysis and Cox multivariate regression model were used to analyze the prognostic significance of KLHL22 in patients with TNBC. Results: The results of immunohistochemical analysis showed that the high expression rate of KLHL22 protein in TNBC was 56.85% (83/146). Further analysis revealed a significantly positive correlation (P<0.05) between KLHL22 expression and primary tumor and regional lymph node status, clinical stage, and relapse. Kaplan-Meier survival analysis revealed that patients with low KLHL22 expression had a longer mean survival time than those with high KLHL22 expression (147.93 vs. 90.1 months; P<0.05). In the multivariate analysis, KLHL22 level, P53 expression, and clinical stage were found to be independent prognostic factors for overall survival (P<0.05), while clinical stage and KLHL22 level were independent prognostic factors for progression-free survival (P<0.05). Conclusions: The present study concludes that KLHL22 may serve as a biomarker for poor prognosis in patients with TNBC.

3.
Brain Behav ; 14(3): e3465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468469

RESUMO

BACKGROUND: SP gene family, consisting of SP100, SP110, SP140, and SP140L, has been implicated in the initiation and advancement of numerous malignancies. Nevertheless, their clinical significance in glioma remains incompletely understood. METHOD: Expression levels and prognostic significance of SP family members were evaluated in the TCGA and CGGA datasets. Multifactorial analysis was used to identify SP gene family members that can independently impact the prognosis of glioma patients. A SP140-based predictive risk model/nomogram was developed in TCGA dataset and validated in CGGA dataset. The model's performance was evaluated through receiver operating characteristic (ROC) curves, calibration plots, and decision curve analyses. Phenotypic associations of SP140 and TRIM22 were examined through CancerSEA and TIMER. The effect of SP140 inhibitor in glioma progress and TRIM22/PI3K/AKT signaling pathway was confirmed in U251/U87 glioma cells. RESULTS: The SP family members exhibited elevated expression in gliomas and were negatively correlated with prognosis. SP140 emerged as an independent prognostic factor, and a SP140-based nomogram/predictive risk model demonstrated high accuracy. SP140 inhibitor, GSK761, lead to the suppression of TRIM22 expression and the PI3K/AKT signaling pathway. GSK761 also restrain glioma proliferation, migration, and invasion. Furthermore, SP140 and TRIM22 coexpressed in glioma cells with high level of vascular proliferation, TRIM22 is closely associated with the immune cell infiltration. CONCLUSION: SP140-based nomogram proved to be a practical tool for predicting the survival of glioma patients. SP140 inhibitor could suppress glioma progress via TRIM22/PI3K/AKT signaling pathway.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Transdução de Sinais , Glioma/tratamento farmacológico , Glioma/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/farmacologia , Proteínas Repressoras/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Fatores de Transcrição , Antígenos Nucleares/metabolismo , Antígenos Nucleares/farmacologia
4.
Int J Mol Med ; 52(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615186

RESUMO

Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that certain of the colony formation assay data shown in Fig. 3A on p. 7 and the immunohistochemistry data in Fig. 5D were strikingly similar to data that had already appeared in previous publications. Owing to the fact that the contentious data in the above article had already been published elsewhere, or were under consideration for publication, prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract this paper. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 48: 211, 2021; DOI: 10.3892/ijmm.2021.5044].

5.
J Intellect Disabil ; : 17446295231186851, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402159

RESUMO

22q11.2 deletion syndrome is a rare multisystem genetic disorder with over 200 associated characteristics, occurring in various combinations and severity. Extensive biomedical research has been undertaken on 22q11.2 deletion syndrome, however, there is a dearth of research on families' experiences of managing a family member with this condition. The complex and at times serious phenotypical presentation of the syndrome can make the management of the condition difficult for families. The aim of this mixed method explanatory sequential study was to investigate family hardiness as a resilience factor for adaptation in families of children with 22q11.2 deletion syndrome from parents' perspectives. We found that adaptation scores increased by 0.57 points (95% CI: 0.19-0.94) for every one-point increase in family hardiness score. Qualitative results indicated that acceptance of the child's diagnosis and support positively influenced hardiness whereas fears about the future and their experiences of loss negatively influenced hardiness.

6.
Biochem Biophys Res Commun ; 676: 190-197, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523817

RESUMO

Brk/Ptk6, Srms, and Frk constitute a Src-related but distinct family of tyrosine kinases called Brk family kinases (BFKs) in higher vertebrates. To date, however, their biological roles have remained largely unknown. In this study, we generated BFK triple-knockout (BFK/TKO) mice lacking all BFK members using CRISPR/Cas9-mediated genome editing. BFK/TKO mice exhibited impaired intestinal homeostasis, represented by a reduced stem/progenitor cell population and defective recovery from radiation-induced severe mucosal damage, specifically in the ileum, which is the most distal segment of the small intestine. RNA-seq analysis revealed that BFK/TKO ileal epithelium showed markedly elevated IL-22/STAT3 signaling, resulting in the aberrant activation of mucosal immune response and altered composition of the ileal microbiota. Since single- or double-knockout of BFK genes did not elicit such abnormalities, BFKs may redundantly confer robust homeostasis to the ileum, the most recently added intestinal segment that plays crucial roles in nutrient absorption and mucosal immunity. Given that BFK diversification preceded the appearance of the ileum in vertebrate phylogeny, the present study highlights the coevolution of genes and organs, the former of which shapes up the latter in higher vertebrates.


Assuntos
Íleo , Transdução de Sinais , Camundongos , Animais , Intestino Delgado , Homeostase
7.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511542

RESUMO

PLAC8 is a cysteine-rich protein that serves as a central mediator of tumor evolution in mammals. PLAC8 motif-containing proteins widely distribute in fungi, algae, higher plants and animals that have been described to be implicated in fruit size, cell number and the transport of heavy metals such as cadmium or zinc. In tomatoes, FW2.2 is a PLAC8 motif-containing gene that negatively controls fruit size by regulating cell division and expansion in the carpel ovary during fruit development. However, despite FW2.2, other FWL (FW2.2-Like) genes in tomatoes have not been investigated. In this study, we identified the 21 SlFWL genes, including FW2.2, examined their expression profiles under various abiotic adversity-related conditions. The SlFWL gene structures and motif compositions are conserved, indicating that tomato SlFWL genes may have similar roles. Cis-acting element analysis revealed that the SlFWL genes may participate in light and abiotic stress responses, and they also interacted with a variety of phytohormone-responsive proteins and plant development elements. Phylogenetic analyses were performed on five additional plant species, including Arabidopsis, pepper, soybean, rice and maize, these genes were classified into five subfamilies. Based on the results of collinearity analyses, the SlFWL genes have a tighter homologous evolutionary relationship with soybean, and these orthologous FWL gene pairs might have the common ancestor. Expression profiling of SlFWL genes show that they were all responsive to abiotic stresses, each subgroup of genes exhibited a different expression trend. Our findings provide a strong foundation for investigating the function and abiotic stress responses of the SlFWL family genes.


Assuntos
Solanum lycopersicum , Animais , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Secas , Filogenia , Temperatura Alta , Estudo de Associação Genômica Ampla , Plantas/metabolismo , Cloreto de Sódio/metabolismo , Família Multigênica , Cloreto de Sódio na Dieta/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Mamíferos/metabolismo
8.
Eur Thyroid J ; 12(4)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074673

RESUMO

Objective: Thyroid hormone (TH) transport represents a critical first step in governing intracellular TH regulation. It is still unknown whether the full repertoire of TH transporters has been identified. Members of the solute carrier (SLC) 22 family have substrates in common with the known TH transporters of the organic anion-transporting peptide family. Therefore, we screened the SLC22 family for TH transporters. Methods: Uptake of 1 nM of iodothyronines or sulfated iodothyronines in COS1 cells expressing SLC22 proteins was performed. Results: We first tested 25 mouse (m) SLC22 proteins for TH uptake and found that the majority of the organic anion transporter (OAT) clade were capable of 3,3',5-triiodothyronine and/or thyroxine (T4) transport. Based on phylogenetic tree analysis of the mouse and human (h) SLC22 family, we selected eight hSLC22s that grouped with the newly identified mouse TH transporters. Of these, four tested positive for uptake of one or more substrates, particularly hSLC22A11 showed robust (3-fold over control) uptake of T4. Uptake of sulfated iodothyronines was strongly (up to 17-fold) induced by some SLC22s, most notably SLC22A8, hSLC22A9, mSLC22A27 and mSLC22A29. Finally, the zebrafish orthologues of SLC22A6/8 drOatx and drSlc22a6l also transported almost all (sulfated) iodothyronines tested. The OAT inhibitors lesinurad and probenecid inhibited most SLC22 proteins. Conclusions: Our results demonstrated that members of the OAT clade of the SLC22 family constitute a novel, evolutionary conserved group of transporters for (sulfated) iodothyronines. Future studies should reveal the relevance of these transporters in TH homeostasis and physiology.


Assuntos
Transportadores de Ânions Orgânicos , Peixe-Zebra , Humanos , Camundongos , Animais , Filogenia , Peixe-Zebra/metabolismo , Sulfatos/metabolismo , Hormônios Tireóideos , Proteínas de Membrana Transportadoras/genética , Transportadores de Ânions Orgânicos/genética
9.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901693

RESUMO

Although the aetiology of non-syndromic orofacial clefts (nsOFCs) is usually multifactorial, syndromic OFCs (syOFCs) are often caused by single mutations in known genes. Some syndromes, e.g., Van der Woude syndrome (VWS1; VWS2) and X-linked cleft palate with or without ankyloglossia (CPX), show only minor clinical signs in addition to OFC and are sometimes difficult to differentiate from nsOFCs. We recruited 34 Slovenian multi-case families with apparent nsOFCs (isolated OFCs or OFCs with minor additional facial signs). First, we examined IRF6, GRHL3, and TBX22 by Sanger or whole exome sequencing to identify VWS and CPX families. Next, we examined 72 additional nsOFC genes in the remaining families. Variant validation and co-segregation analysis were performed for each identified variant using Sanger sequencing, real-time quantitative PCR and microarray-based comparative genomic hybridization. We identified six disease-causing variants (three novel) in IRF6, GRHL3, and TBX22 in 21% of families with apparent nsOFCs, suggesting that our sequencing approach is useful for distinguishing syOFCs from nsOFCs. The novel variants, a frameshift variant in exon 7 of IRF6, a splice-altering variant in GRHL3, and a deletion of the coding exons of TBX22, indicate VWS1, VWS2, and CPX, respectively. We also identified five rare variants in nsOFC genes in families without VWS or CPX, but they could not be conclusively linked to nsOFC.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Hibridização Genômica Comparativa , Proteínas de Ligação a DNA/metabolismo , Fatores Reguladores de Interferon/genética , Mutação , Linhagem , Fatores de Transcrição/metabolismo
10.
Res Sq ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798246

RESUMO

Economists have limited causal evidence on how families receiving unconditional income would spend those funds. We examine financial and time investments in infants among families living in poverty from a large-scale, multi-site randomized controlled study of monthly unconditional cash. We find increased spending on child-specific goods and mothers' early-learning activities with their infants. The marginal propensity to consume child-focused items from the cash transfer exceeded that from other income, consistent with the behavioral cues in the design. We find no statistically detectable offsets in household earnings or impacts on pre-registered outcomes related to expenditures, labor supply, childcare or subjective well-being.

11.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498878

RESUMO

Camelina sativa (L.) Crantz is an indispensable oilseed crop, and its seeds contain many unsaturated fatty acids. FAD (fatty acid desaturase) regulates the synthesis of unsaturated fatty acids. In this research, we performed CsFAD gene family analysis and identified 24 CsFAD genes in Camelina, which were unevenly distributed on 14 of the 19 total chromosomes. Phylogenetic analysis showed that CsFAD includes four subfamilies, supported by the conserved structures and motifs of CsFAD genes. In addition, we investigated the expression patterns of the FAD family in the different tissues of Camelina. We found that CsFAD family genes were all expressed in the stem, and CsFAD2-2 was highly expressed in the early stage of seed development. Moreover, during low temperature (4 °C) stress, we identified that the expression level of CsFAD2-2 significantly changed. By observing the transient expression of CsFAD2-2 in Arabidopsis protoplasts, we found that CsFAD2-2 was located on the nucleus. Through the detection and analysis of fatty acids, we prove that CsFAD2-2 is involved in the synthesis of linolenic acid (C18:3). In conclusion, we identified CsFAD2-2 through the phylogenetic analysis of the CsFAD gene family and further determined the fatty acid content to find that CsFAD2-2 is involved in fatty acid synthesis in Camelina.


Assuntos
Arabidopsis , Brassicaceae , Filogenia , Brassicaceae/genética , Brassicaceae/metabolismo , Sementes/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
12.
Animals (Basel) ; 12(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077994

RESUMO

Recently, miR-22 has been suggested to be an important microRNA (miRNA) affecting meat quality. Studies have shown that muscle fatty acid composition and mitochondrial function are closely related to meat quality. The regulatory mechanism of miR-22 on skeletal muscle fatty acid composition and mitochondrial function is not well characterized. Therefore, we aimed to explore the effects of miR-22 on fatty acid composition and mitochondrial function in C2C12 cells. Here, it demonstrate that elevated expression of miR-22 significantly repressed fatty acid elongation and mitochondrial morphology in C2C12 myoblasts, while the knockdown of miR-22 showed opposite results. Furthermore, miR-22 targets the elongase of very long chain fatty acids 6 (ELOVL6) and represses its expression in muscle cells. Knockdown of ELOVL6 mimicked the effect of miR-22 on fatty acid composition and mitochondrial function, while overexpression of ELOVL6 restored the effects of miR-22. These findings indicate that miR-22 downregulates the elongation of fatty acids and mitochondrial morphology by inhibiting ELOVL6 expression in muscle cells, which may provide some useful information for controlling muscle lipid accumulation and mitochondrial function in livestock in the future.

13.
Front Cell Dev Biol ; 10: 877532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547822

RESUMO

Molecular motors of the kinesin superfamily (KIF) are a class of ATP-dependent motor proteins that transport cargo, including vesicles, along the tracks of the microtubule network. Around 45 KIF proteins have been described and are grouped into 14 subfamilies based on the sequence homology and domain organization. These motors facilitate a plethora of cellular functions such as vesicle transport, cell division and reorganization of the microtubule cytoskeleton. Current studies suggest that KIF13A, a kinesin-3 family member, associates with recycling endosomes and regulates their membrane dynamics (length and number). KIF13A has been implicated in several processes in many cell types, including cargo transport, recycling endosomal tubule biogenesis, cell polarity, migration and cytokinesis. Here we describe the recent advances in understanding the regulatory aspects of KIF13A motor in controlling the endosomal dynamics in addition to its structure, mechanism of its association to the membranes, regulators of motor activity, cell type-specific cargo/membrane transport, methods to measure its activity and its association with disease. Thus, this review article will provide our current understanding of the cell biological roles of KIF13A in regulating endosomal membrane remodeling.

14.
Biochem Biophys Rep ; 29: 101223, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146136

RESUMO

Selenium is a chalcogen element that is essential in animals, but is highly toxic when ingested above the nutritional requirement. Selenite is used as a supplement in patients receiving total parenteral nutrition. However, the therapeutic and toxic doses of selenite are separated by a narrow range. This ambivalent character of selenite implies the presence of cellular mechanisms that precisely control selenite homeostasis. Here, we investigated mechanisms that determine cellular susceptibility to selenite exposure. The resistance to selenite exposure was significantly different among cell lines. We determined the expression levels of TPMT (thiopurine S-methyltransferase) and SLC4A1 (solute carrier family 4 member 1), which encode selenium methyltransferase and selenite transporter, respectively. We also examined the effect of inhibition of Band 3 protein activity, which is encoded by SLC4A1, on the cellular sensitivity to selenite. The data suggest that the expression level of SLC4A1 is the determinant of cellular sensitivity to selenite.

15.
Mycotoxin Res ; 38(1): 61-70, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028911

RESUMO

Ochratoxin A (OTA) and citrinin (CIT) are nephrotoxins found co-occurring in various human/animal food/feed and recognized as a health threat. However, most studies investigate individual effects and neglect their combined nephrotoxic effects in mammals. Previous studies have indicated that organic anion/cation transporters (OATs/OCTs) localized in renal proximal tubules mediate the transport of OTA and CIT. Still, little is known about the in vivo effects of individual/combined OTA and CIT on protein localization/expression of OCTs, physiologically/pharmacologically important renal transporters. Here, we used Western blot and immunofluorescence microscopy to study the effects of subchronic (21-day) exposure to individual/combined OTA (0.125 and 0.250 mg kg-1 b.w.) and CIT (20 mg kg-1 b.w.) on protein localization/expression of organic cation transporters (rOct1/Slc22a1 and rOct2/Slc22a2) in kidneys of Wistar rats. Since the antioxidant resveratrol (RSV) has shown measurable protective effects against OTA- and CIT-related oxidative stress toxicity in vitro, we investigated the effects of an OTA + CIT + RSV combination on rOct1/2 localization/expression in the same model. Individual OTA induced a dose-dependent decrease of rOct1 but not rOct2 protein expression, whereas their localization pattern remained unchanged. Individual CIT did not affect the renal rOct1/2 protein localization/expression. Combined OTA + CIT exposure induced a significant decrease of rOct1 protein expression by an OTA250 dose, whereas oral co-administration of OTA + CIT + RSV resulted in a significant decrease of rOct1/2 protein expression. Thus, we revealed an OTA-related selective effect on the rOct1/2 protein expression and a non-specific adverse effect of RSV in the OTA + CIT + RSV combination on the renal organic cation transport system in rat.


Assuntos
Citrinina , Ocratoxinas , Animais , Citrinina/toxicidade , Rim , Transportador 2 de Cátion Orgânico , Ratos , Ratos Wistar
16.
J Lipid Res ; 63(1): 100153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808192

RESUMO

We previously reported that adding a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F) to a Western diet (WD) ameliorated systemic inflammation. To determine the mechanism(s) responsible for these observations, Ldlr-/- mice were fed chow, a WD, or WD plus Tg6F. We found that a WD altered the taxonomic composition of bacteria in jejunum mucus. For example, Akkermansia muciniphila virtually disappeared, while overall bacteria numbers and lipopolysaccharide (LPS) levels increased. In addition, gut permeability increased, as did the content of reactive oxygen species and oxidized phospholipids in jejunum mucus in WD-fed mice. Moreover, gene expression in the jejunum decreased for multiple peptides and proteins that are secreted into the mucous layer of the jejunum that act to limit bacteria numbers and their interaction with enterocytes including regenerating islet-derived proteins, defensins, mucin 2, surfactant A, and apoA-I. Following WD, gene expression also decreased for Il36γ, Il23, and Il22, cytokines critical for antimicrobial activity. WD decreased expression of both Atoh1 and Gfi1, genes required for the formation of goblet and Paneth cells, and immunohistochemistry revealed decreased numbers of goblet and Paneth cells. Adding Tg6F ameliorated these WD-mediated changes. Adding oxidized phospholipids ex vivo to the jejunum from mice fed a chow diet reproduced the changes in gene expression in vivo that occurred when the mice were fed WD and were prevented with addition of 6F peptide. We conclude that Tg6F ameliorates the WD-mediated increase in oxidized phospholipids that cause changes in jejunum mucus, which induce dysbiosis and systemic inflammation.


Assuntos
Disbiose
17.
Ann Biol Clin (Paris) ; 79(6): 551-565, 2021 Dec 01.
Artigo em Francês | MEDLINE | ID: mdl-34961738

RESUMO

Palmoplantar keratodermas (PPK) comprise a heterogenous group of acquired and hereditary disorders marked by excessive thickening of the epidermis of palms and soles. Hereditary PPKs can be classified into 3 groups: 1) isolated non-syndromic PPKs; 2) complex non-syndromic PPKs associated with other ectodermal defects; and 3) syndromic PPKs associated with extracutaneous manifestations. All types of inheritance have been observed: autosomal dominant, autosomal recessive, X-linked recessive, and mitochondrial. Some of these disorders are restricted to geographic isolates. This review describes the different genetic causes of hereditary syndromic and complex PPKs for which the genes have been identified. The identification of pathogenic variants has consequences in terms of genetic counseling, appropriate medical care and follow-up, especially for PPKs predisposing to hearing loss, cardiomyopathies, benign tumors or carcinomas. In addition, the development of targeted therapies based on pathophysiology of disorders should allow a more effective treatment of these conditions in the near future.


Assuntos
Ceratodermia Palmar e Plantar , Humanos , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/genética , Linhagem
18.
Int J Mol Med ; 48(6)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34633053

RESUMO

Bladder cancer is a common malignant tumor of the urinary system and is associated with a high morbidity and mortality, due to the difficulty in the accurate diagnosis of patients with early­stage bladder cancer and the lack of effective treatments for patients with advanced bladder cancer. Thus, novel therapeutic targets are urgently required for this disease. Kinesin family member 22 (KIF22) is a kinesin­like DNA binding protein belonging to kinesin family, and is involved in the regulation of mitosis. KIF22 has also been reported to promote the progression of several types of cancer, such as breast cancer and melanoma. The present study demonstrates the high expression of KIF22 in human bladder cancer tissues. KIF22 was found to be associated with clinical features, including clinical stage (P=0.003) and recurrence (P=0.016), and to be associated with the prognosis of patients with bladder cancer. Furthermore, it was found that KIF22 silencing inhibited the proliferation of bladder cancer cells in vitro and tumor progression in mice. Additionally, it was noted that KIF22 transcriptionally activated cell division cycle­associated protein 3 expression, which was also confirmed in tumors in mice. Taken together, the present study investigated the molecular mechanisms underlying the promotion of bladder cancer by KIF22 and provide a novel therapeutic target for the treatment of bladder cancer. Introduction.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Cinesinas/metabolismo , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Idoso , Animais , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cinesinas/genética , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681573

RESUMO

TSC-22 (TGF-ß stimulated clone-22) has been reported to induce differentiation, growth inhibition, and apoptosis in various cells. TSC-22 is a member of a family in which many proteins are produced from four different family genes. TSC-22 (corresponding to TSC22D1-2) is composed of 144 amino acids translated from a short variant mRNA of the TSC22D1 gene. In this study, we attempted to determine the intracellular localizations of the TSC22D1 family proteins (TSC22D1-1, TSC-22 (TSC22D1-2), and TSC22(86) (TSC22D1-3)) and identify the binding proteins for TSC22D1 family proteins by mass spectrometry. We determined that TSC22D1-1 was mostly localized in the nucleus, TSC-22 (TSC22D1-2) was localized in the cytoplasm, mainly in the mitochondria and translocated from the cytoplasm to the nucleus after DNA damage, and TSC22(86) (TSC22D1-3) was localized in both the cytoplasm and nucleus. We identified multiple candidates of binding proteins for TSC22D1 family proteins in in vitro pull-down assays and in vivo binding assays. Histone H1 bound to TSC-22 (TSC22D1-2) or TSC22(86) (TSC22D1-3) in the nucleus. Guanine nucleotide-binding protein-like 3 (GNL3), which is also known as nucleostemin, bound to TSC-22 (TSC22D1-2) in the nucleus. Further investigation of the interaction of the candidate binding proteins with TSC22D1 family proteins would clarify the biological roles of TSC22D1 family proteins in several cell systems.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Processamento Alternativo , Diferenciação Celular , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dano ao DNA , Células HEK293 , Humanos , Espectrometria de Massas , Mitocôndrias/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas
20.
Front Genet ; 12: 679027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367243

RESUMO

The current study aims to further delineate the associations between the synaptotagmin-like 3 (SYTL3) and solute carrier family 22 member 3 (SLC22A3) single-nucleotide polymorphisms (SNPs) and their haplotypes and gene-gene (G × G)/environment (G × E) interactions on the risk of hyperlipidemia (HLP) in the Maonan and Han ethnic groups. Genotype distribution among the SYTL3-SLC22A3 SNPs in 2,829 individual patients bearing no relationship to each other (Han, 1,436; Maonan, 1,393) was analyzed utilizing next-generation sequencing techniques. The genotype frequencies of the rs6455600, rs2129209, and rs446809 SNPs were varied between the two ethnic groups (P < 0.05-0.001). Various SNPs were correlated with serum levels of triglyceride (TG; rs446809), total cholesterol (TC; rs6455600, rs2129209, and rs539298), and low-density lipoprotein cholesterol (LDL-C; rs446809) among the Han population, whereas various SNPs were also correlated with TC (rs6455600 and rs539298), TG (rs446809), and LDL-C (rs446809) levels in the Maonan ethnic group (P < 0.008-0.001). One part of haplotypes resulted in worsened HLP-related morbidity in the Han (SYTL3 A-C-A-A; SLC22A3 A-A and A-G; and SYTL3-SLC22A3 A-C-A-A-A-A and A-C-A-A-A-G) and Maonan (SYTL3 A-C-A-A; SLC22A3 A-A and A-G; and SYTL3-SLC22A3 A-C-A-A-A-A, G-T-C-A-A-A, and G-T-C-A-C-A) ethnic groups, whereas another part of haplotypes lowered HLP-related health risks in the Han (SLC22A3 C-A and C-G and SYTL3-SLC22A3 A-C-A-A-C-A, A-C-A-A-C-G, and G-T-C-A-C-A) and Maonan (SLC22A3 C-G and SYTL3-SLC22A3 A-C-A-A-C-G) ethnic groups. We discovered that the SYTL3-SLC22A3 SNPs and their haplotypes were associated with serum lipid levels and the risk of HLP in our studied populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...