Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; : 1-2, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293799

RESUMO

Selective degradation of the endoplasmic reticulum (ER) by macroautophagy/autophagy (reticulophagy) is essential for maintaining ER morphology and homeostasis under environmental stresses. Several reticulophagy receptors have been identified in mammals and yeast, but their counterparts in plants have not been extensively explored yet. Recently, we demonstrated that the HVA22-family protein OsHLP1 is a reticulophagy receptor in rice plants, and its orthologs function similarly in Arabidopsis plants. In this punctum, we discuss why the HVA22 family proteins are the reticulophagy receptors in plants and how reticulophagy is highly associated with plant immune response.

2.
Microorganisms ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138134

RESUMO

Plant diseases caused by pathogenic fungi pose a significant threat to agricultural production. This study reports on a strain YBS22 with broad-spectrum antifungal activity that was isolated and identified, and its active metabolites were purified and systematically studied. Based on a whole genome sequence analysis, the new strain YBS22 was identified as Streptomyces melanogenes. Furthermore, eight gene clusters were predicted in YBS22 that are responsible for the synthesis of bioactive secondary metabolites. These clusters have homologous sequences in the MIBiG database with a similarity of 100%. The antifungal effects of YBS22 and its crude extract were evaluated in vivo and vitro. Our findings revealed that treatment with the strain YBS22 and its crude extract significantly reduced the size of necrotic lesions caused by Magnaporthe oryzae on rice leaves. Further analysis led to the isolation and purification of an active compound from the crude extract of the strain YBS22, identified as N-formylantimycin acid methyl ester, an analog of antimycin, characterized by NMR and MS analyses. Consistently, the active compound can significantly inhibit the germination and development of M. oryzae spores in a manner that is both dose- and time-dependent. As a result, we propose that the strain YBS22 could serve as a novel source for the development of biological agents aimed at controlling rice blast disease.

3.
Heliyon ; 9(8): e18772, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576328

RESUMO

Zeolite has become a promising material that can potentially play a pivotal role in resolving environmental crises. Among zeolite families, MCM-22 zeolite shows outstanding intrinsic properties associated with the topology and porous structure, offering ion-exchange advantages for catalytic activity processes. The synthesis of MCM-22 zeolite becomes challenging when concerning the cost and catalytic performance. To overcome this bottleneck, we demonstrate a sustainable route of a hydrothermal process using natural resources as starting materials. Rice husk from agricultural waste was used as a silica source while natural clays (kaolin and bentonite) were applied as alumina sources. The products from natural sources were compared with the use of commercial starting materials, e.g., NaAlO2 (for alumina) and Na2SiO3 and TEOS (for silica), in points of crystal, compositional, and morphological views. We showed that the high purity of MCM-22 zeolite can be obtained from rice husk silica (RHS) and aluminosilicate gel (ASG) extracted from kaolin, while the use of ASG extracted from bentonite tended to be unsuitable to generate the zeolite formation. We also studied the effects of reaction time and the ratio of RHS/ASG on the crystallinity and surface area of MCM-22. The architecture and acidity of an optimal product were explored by Nuclear magnetic resonance spectroscopy and Temperature-programmed desorption of ammonia, demonstrating the success of achieving well acidity.

4.
Steroids ; 196: 109248, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37169217

RESUMO

Five new brassinosteroid analogues were synthetized from 3ß-acetoxy-23,24-dinorchol-4-en-22-oic acid. All the obtained compound showed significant activity in the Rice Lamina Inclination Test. Interestingly the effects of the methyl ester of 3ß-hydroxy-6-oxo-23,24-dinorcholan-22-oic acid (14) at concentrations of 1 × 10-7 and 1 × 10-6 M proved to be higher than those produced by brassinolide. In silico Molecular Docking and Induced fit docking (IFD) simulations for the compounds with the highest biological activity data were carried out to investigate the binding mode interactions into the brassinolide-binding groove which revealed that the compound 14 had high binding energy values and a good affinity.


Assuntos
Brassinosteroides , Ésteres , Brassinosteroides/farmacologia , Simulação de Acoplamento Molecular , Fatores de Crescimento Neural
5.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175730

RESUMO

Climate change has caused high salinity in many fields, particularly in the mud flats in coastal regions. The resulting salinity has become one of the most significant abiotic stresses affecting the world's rice crop productivity. Developing elite cultivars with novel salinity-tolerance traits is regarded as the most cost-effective and environmentally friendly approach for utilizing saline-alkali land. To develop a highly efficient green strategy and create novel rice germplasms for salt-tolerant rice breeding, this study aimed to improve rice salinity tolerance by combining targeted CRISPR/Cas9-mediated editing of the OsRR22 gene with heterosis utilization. The novel alleles of the genic male-sterility (GMS) and elite restorer line (733Srr22-T1447-1 and HZrr22-T1349-3) produced 110 and 1 bp deletions at the third exon of OsRR22 and conferred a high level of salinity tolerance. Homozygous transgene-free progeny were identified via segregation in the T2 generation, with osrr22 showing similar agronomic performance to wild-type (733S and HZ). Furthermore, these two osrr22 lines were used to develop a new promising third-generation hybrid rice line with novel salinity tolerance. Overall, the results demonstrate that combining CRISPR/Cas9 targeted gene editing with the "third-generation hybrid rice system" approach allows for the efficient development of novel hybrid rice varieties that exhibit a high level of salinity tolerance, thereby ensuring improved cultivar stability and enhanced rice productivity.


Assuntos
Edição de Genes , Oryza , Sistemas CRISPR-Cas/genética , Oryza/genética , Salinidade , Melhoramento Vegetal/métodos
6.
Plant Cell Environ ; 46(4): 1312-1326, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36624579

RESUMO

Ubiquitin-specific proteases (UBPs) process deubiquitination in eukaryotic organisms and are widely involved in plant development and responses to environmental stress. However, their role in cell death and plant immunity remains largely unknown. Here, we identified a rice lesion mimic mutant (LMM) and cloned its causative gene, LMM22. Both dysfunction and overexpression of LMM22 gave rise to the hypersensitive response-like cell death, reactive oxygen species bursts, and activated defence responses. LMM22 encodes an active UBP that is localised to the endoplasmic reticulum (ER) and displays a constitutive expression pattern in rice. LMM22 interacts with SPOTTED LEAF 35 (SPL35), a coupling of ubiquitin conjugation to ER degradation domain-containing protein that is known to participate in ubiquitination and the regulation of cell death and disease response in rice. Additional analyses suggest that LMM22 can positively regulate and stabilise the abundance of SPL35 protein likely through its deubiquitination activity. These data therefore improve our understanding of the function of UBP in rice innate immune responses by demonstrating that LMM22 functions as a critical regulator of SPL35 in cell death and disease resistance.


Assuntos
Oryza , Proteases Específicas de Ubiquitina , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Morte Celular , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas
7.
IBRO Neurosci Rep ; 14: 38-49, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36590249

RESUMO

The anti-apoptosis effect of germinated brown rice (GBR) focusing on differentiated HT22 cells results in improved nutritional values after the germination process of GBR which contains total phenolic compounds and γ-aminobutyric acid (GABA). Cell death induced by 5 mM glutamate was investigated for 24 h to determine whether GBR mediates cell death through GABA receptors by using antagonists. The results showed that GBR (100 µg/ml) suppressed glutamate-induced cytotoxicity and caused arrest at the G1/S phase of the cell cycle in differentiated HT22 cells. Furthermore, GBR significantly decreased the expression level of c-Jun, while its active form, p-c-Jun, is the downstream product of the JNK-mediated apoptotic pathway and causes subsequent cell death. In addition, bicuculline (12.5 nM), a GABAA antagonist, could eliminate GBR effects, but phaclofen (1 mM), a GABAB antagonist, could not. Surprisingly, GBR exhibited a better neuroprotective effect than a pure commercial GABA compound (0.115 µM). These results indicated that GBR possessed high anti-apoptotic activity and inhibited cell death in differentiated HT22 cells by perturbing re-entry of the cell cycle and apoptosis via the GABAA receptor. Hence, GBR could be further used as a valuable nutritional compound to prevent apoptosis-induced neurodegenerative diseases.

8.
Sci China Life Sci ; 66(2): 197-208, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36239908

RESUMO

Phased small interfering RNAs (phasiRNAs) are abundantly expressed in anthers and linked to environment-related male fertility in grasses, yet how they function under different environmental conditions remains unclear. Here, we identified a rice (Oryza sativa) low temperature-induced Argonaute (AGO) protein, OsAGO1d, that is responsible for generating phasiRNAs and preserving male fertility at low temperature. Loss of OsAGO1d function causes low-temperature male sterility associated with delayed programmed cell death of tapetal cells during anther development. OsAGO1d binds miR2118 and miR2275 family members and triggers phasiRNA biogenesis; it also binds 21-nt phasiRNAs with a 5' terminal U. In total, phasiRNAs from 972 loci are OsAGO1d-dependent. OsAGO1d protein moves from anther wall cells into meiocytes, where it loads miR2275 to produce 24-nt phasiRNAs. Together, our results show that OsAGO1d acts as a mobile signal to fine-tune phasiRNA production and this function is important for male fertility at low temperature.


Assuntos
MicroRNAs , Oryza , RNA Interferente Pequeno/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/metabolismo , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética
9.
Mol Plant ; 15(7): 1227-1242, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684964

RESUMO

Plants have evolved a sophisticated set of mechanisms to adapt to drought stress. Transcription factors play crucial roles in plant responses to various environmental stimuli by modulating the expression of numerous stress-responsive genes. However, how the crosstalk between different transcription factor families orchestrates initiation of the key transcriptional network and the role of posttranscriptional modification of transcription factors, especially in cellular localization/trafficking in response to stress in rice, remain still largely unknown. In this study, we isolated an Osmybr57 mutant that displays a drought-sensitive phenotype through a genetic screen for drought stress sensitivity. We found that OsMYBR57, an MYB-related protein, directly regulates the expression of several key drought-related OsbZIPs in response to drought treatment. Further studies revealed that OsMYBR57 interacts with a homeodomain transcription factor, OsHB22, which also plays a positive role in drought signaling. We further demonstrate that OsFTIP6 interacts with OsHB22 and promotes the nucleocytoplasmic translocation of OsHB22 into the nucleus, where OsHB22 cooperates with OsMYBR57 to regulate the expression of drought-responsive genes. Our findings have revealed a mechanistic framework underlying the OsFTIP6-OsHB22-OsMYBR57 module-mediated regulation of drought response in rice. The OsFTIP6-mediated OsHB22 nucleocytoplasmic shuttling and OsMYBR57-OsHB22 regulation of OsbZIP transcription ensure precise control of expression of OsLEA3 and Rab21, and thereby regulate the response to water deficiency in rice.


Assuntos
Oryza , Secas , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Mol Plant ; 15(4): 723-739, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217224

RESUMO

Changes in global temperatures profoundly affect the occurrence of plant diseases. It is well known that rice blast can easily become epidemic in relatively warm weather. However, the molecular mechanism remains unclear. In this study, we show that enhanced blast development at a warm temperature (22°C) compared with the normal growth temperature (28°C) is rice plant-determined. Comparative transcriptome analysis revealed that jasmonic acid (JA) biosynthesis and signaling genes in rice could be effectively induced by Magnaporthe oryzae at 28°C but not at 22°C. Phenotypic analyses of the osaoc1 and osmyc2 mutants, OsCOI1 RNAi lines, and OsMYC2-OE plants further demonstrated that compromised M. oryzae-induced JA biosynthesis and signaling lead to enhanced blast susceptibility at the warm temperature. Consistent with these results, we found that exogenous application of methyl jasmonate served as an effective strategy for improving blast resistance under the warm environmental conditions. Furthermore, decreased activation of JA signaling resulted in the downregulated expression of some key basal resistance genes at 22°C when compared with 28°C. Among these affected genes, OsCEBiP (chitin elicitor-binding protein precursor) was found to be directly regulated by OsMYB22 and its interacting protein OsMYC2, a key component of JA signaling, and this contributed to temperature-modulated blast resistance. Taken together, these results suggest that warm temperature compromises basal resistance in rice and enhances M. oryzae infection by reducing JA biosynthesis and signaling, providing potential new strategies for managing rice blast disease under warm climate conditions.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Magnaporthe/fisiologia , Oryza/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Temperatura
11.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830475

RESUMO

Micronutrient metals, such as Mn, Cu, Fe, and Zn, are essential heavy metals for plant growth and development, while Cd is a nonessential heavy metal that is highly toxic to both plants and humans. Our understanding of the molecular mechanisms underlying Cd and micronutrient metal accumulation in plants remains incomplete. Here, we show that OsFWL7, an FW2.2-like (FWL) family gene in Oryza sativa, is preferentially expressed in the root and encodes a protein localized to the cell membrane. The osfwl7 mutation reduces both the uptake and the root-to-shoot translocation of Cd in rice plants. Additionally, the accumulation of micronutrient metals, including Mn, Cu, and Fe, was lower in osfwl7 mutants than in the wildtype plants under normal growth conditions. Moreover, the osfwl7 mutation affects the expression of several heavy metal transporter genes. Protein interaction analyses reveal that rice FWL proteins interact with themselves and one another, and with several membrane microdomain marker proteins. Our results suggest that OsFWL7 is involved in Cd and micronutrient metal accumulation in rice. Additionally, rice FWL proteins may form oligomers and some of them may be located in membrane microdomains.


Assuntos
Metais/metabolismo , Micronutrientes/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Oligoelementos/metabolismo , Cádmio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Cobre/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Micronutrientes/química , Mutação/genética , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Zinco/metabolismo
12.
Plant Direct ; 5(8): e338, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430793

RESUMO

In rice (Oryza sativa), the PLASMA MEMBRANE INTRINSIC PROTEIN (PIP) family of aquaporin has 11 members, OsPIP1;1 to OsPIP1;3, and OsPIP2;1 to OsPIP2;8, which are hypothesized to facilitate the transport of H2O and other small compounds across cell membranes. To date, however, only OsPIP1;2, OsPIP2;1, and OsPIP2;4 have been demonstrated for substrate selectivity in their source plant (rice). In this study, OsPIP2;2 was characterized as the most efficient facilitator of H2O transport across cell membranes in comparison with the other 10 OsPIPs. In concomitant tests of all OsPIPs, four genes (OsPIP1;3, OsPIP2;1, OsPIP2;2, and OsPIP2;4) were induced to express in leaves of rice plants following a physiological drought stress, while OsPIP2;2 was expressed to the highest level. After de novo expression in frog oocytes and yeast cells, the four OsPIP proteins were localized to the plasma membranes in trimer and tetramer and displayed the activity to increase the membrane permeability to H2O. In comparison, OsPIP2;2 was most supportive to H2O import to oocytes and yeast cells. After de novo expression in tobacco protoplasts, OsPIP2;2 exceeded OsPIP1;3, OsPIP2;1, and OsPIP2;4 to support H2O transport across the plasma membranes. OsPIP2;2-mediated H2O transport was accompanied by drought-tolerant responses, including increases in concentrations of proline and polyamines, both of which are physiological markers of drought tolerance. In rice protoplasts, H2O transport and drought-tolerant responses, which included expression of marker genes of drought tolerance pathway, were considerably enhanced by OsPIP2;2 overexpression but strongly inhibited by the gene silencing. Furthermore, OsPIP2;2 played a role in maintenance of the cell membrane integrity and effectively protected rice cells from electrolyte leakage caused by the physiological drought stress. These results suggest that OsPIP2;2 is a predominant facilitator of H2O transport in relevance to drought tolerance in the plant.

13.
Food Chem ; 340: 127950, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32896780

RESUMO

This study aimed to prepare anthocyanin-rich microcapsules by spray and freeze-drying complex coacervated double emulsion using gelatin-acacia gum (GE-AG) and chitosan-carboxymethylcellulose (CS-CMC) and to investigate their properties and in vitro release kinetics. Microencapsulation efficiency (MEE) of the microcapsules varied from 84.9% to 94.7%. CS-CMS microcapsules showed significantly higher MEEs than those of GE-AG microcapsules. A significant higher MEE and lower moisture content and hygroscopicity was observed in spray-dried double emulsion (SDE) microcapsules. Freeze-dried double emulsion (FDE) microcapsules possessed higher total anthocyanin and total phenolic contents. The best fit for release kinetics was achieved using first-order and Higuchi models for SDE and FDE microcapsules, respectively. Diffusion-controlled release in the simulated gastric fluid was found for SDE microcapsules, while erosion-controlled release in simulated gastric and intestinal fluids predominated for FDE microcapsules. These findings suggest that the microcapsules can be applied for loading anthocyanins as a nutraceutical with controllable release requirement.


Assuntos
Antocianinas/química , Cápsulas , Carboximetilcelulose Sódica/química , Quitosana/química , Liberação Controlada de Fármacos , Emulsões , Liofilização , Goma Arábica/química , Cinética , Fenóis/química
14.
Genes (Basel) ; 11(6)2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521717

RESUMO

Drought stress is a major environmental stress, which adversely affects the biological and molecular processes of plants, thereby impairing their growth and development. In the present study, we found that the expression level of OsTBP2.2 which encodes for a nucleus-localized protein member belonging to transcription factor IID (TFIID) family, was significantly induced by polyethylene glycol (PEG) treatment. Therefore, knockdown mutants of OsTBP2.2 gene were generated to investigate the role of OsTBP2.2 in rice response to drought stress. Under the condition of drought stress, the photosynthetic rate, transpiration rate, water use efficiency, and stomatal conductance were significantly reduced in ostbp2.2 lines compared with wild type, Dongjin (WT-DJ). Furthermore, the RNA-seq results showed that several main pathways involved in "MAPK (mitogen-activated protein kinase) signaling pathway", "phenylpropanoid biosynthesis", "defense response" and "ADP (adenosine diphosphate) binding" were altered significantly in ostbp2.2. We also found that OsPIP2;6, OsPAO and OsRCCR1 genes were down-regulated in ostbp2.2 compared with WT-DJ, which may be one of the reasons that inhibit photosynthesis. Our findings suggest that OsTBP2.2 may play a key role in rice growth and the regulation of photosynthesis under drought stress and it may possess high potential usefulness in molecular breeding of drought-tolerant rice.


Assuntos
Secas , Oryza/genética , Estresse Fisiológico/genética , Proteínas de Ligação a Telômeros/genética , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Silenciamento de Genes , Oryza/crescimento & desenvolvimento , Fotossíntese/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Estresse Fisiológico/fisiologia , Água/metabolismo
15.
J Agric Food Chem ; 68(18): 5093-5106, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32275827

RESUMO

Germinated brown rice (GBR) with unpolishing, soaking, and germinating processes can improve the texture, flavor, and nutritional value, including GABA and phenolic contents. The effect of GBR was first investigated in vascular cognitive impaired mice and glutamate-induced toxicity in HT22 cells with respect to standard pure GABA. Feeding mice with GBR for 5 weeks showed neuroprotection. In this study, the modified bilateral common carotid artery occlusion mice model was mild but a significant difference in cognitive impairment was still shown. Like pure GABA, GBR decreased cognitive deficits in memory behavioral tests and significantly attenuated hippocampal neuronal cell death at P < 0.001. Similarly to 0.125 µM of GABA, 100 µg/mL of GBR increased HT22 cell viability after glutamate toxicity. GBR affected less apoptotic cell death and less blocking by the GABAA antangonist bicuculline in comparison to GABA. When the results are taken together, the underlying mechanism of GBR protection may mediate though the GABAA receptor and its phenolic contents.


Assuntos
Demência Vascular/tratamento farmacológico , Ácido Glutâmico/toxicidade , Oryza/química , Extratos Vegetais/administração & dosagem , Sementes/crescimento & desenvolvimento , Animais , Apoptose/efeitos dos fármacos , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Demência Vascular/etiologia , Demência Vascular/fisiopatologia , Demência Vascular/psicologia , Germinação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oryza/crescimento & desenvolvimento , Sementes/química , Ácido gama-Aminobutírico/metabolismo
16.
Plant Physiol Biochem ; 149: 159-169, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32070909

RESUMO

Plants in soil faces great fluctuations of external mineral nutrient availability, and they have developed sophisticated nutrient sensing systems to regulate their physiological responses to prevent nutrient deficiency. However, complete knowledge of the regulatory system is required to maximize inorganic nitrogen (N) uptake and utilization. In this study, we report a partner protein for high-affinity nitrate transport, OsNAR2.2. OsNAR2.2 was involved in the root growth in a nitrate-dependent manner in rice, and this process was closely associated with auxin. Expression analysis showed that OsNAR2.2 responded to nitrate and various plant hormone signals. Knockdown of OsNAR2.2 by T-DNA insertion not only significantly repressed the primary root elongation, but also severely reduced the number of lateral root and adventitious root. Further research indicated that the size of meristematic zone and epidermal cell length of mature zone in the primary root tip were remarkably reduced, and the formation of lateral root primordial was constrained in osnar2.2 mutant. Interestingly, the repression of root growth in osnar2.2 mutant was observed when NO3- but not NH4+ was used as N source in the medium. The NO3- content in osnar2.2 root was significantly reduced under NO3- conditions, in comparison with that of wild type. Meanwhile, the free IAA accumulation as well as the expression of auxin biosynthesis and transport genes was altered in osnar2.2 root, suggesting there might be a crosslink between the nitrate and auxin signaling. Together, OsNAR2.2 plays a vital role in rice root growth and development in a nitrate-dependent manner, which might be associated with auxin signaling.


Assuntos
Proteínas de Transporte de Ânions , Regulação da Expressão Gênica de Plantas , Nitratos , Oryza , Raízes de Plantas , Transdução de Sinais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Crescimento e Desenvolvimento/genética , Ácidos Indolacéticos/metabolismo , Mutação , Nitratos/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais/genética
17.
Int J Mol Sci ; 21(3)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991936

RESUMO

The FW2.2-like (FWL) genes encode cysteine-rich proteins with a placenta-specific 8 domain. They play roles in cell division and organ size control, response to rhizobium infection, and metal ion homeostasis in plants. Here, we target eight rice FWL genes using the CRISPR/Cas9 system delivered by Agrobacterium-mediated transformation. We successfully generate transgenic T0 lines for 15 of the 16 targets. The targeted mutations are detected in the T0 lines of all 15 targets and the average mutation rate is found to be 81.6%. Transfer DNA (T-DNA) truncation is a major reason for the failure of mutagenesis in T0 plants. T-DNA segregation analysis reveals that the T-DNA inserts in transgenic plants can be easily eliminated in the T1 generation. Of the 30 putative off-target sites examined, unintended mutations are detected in 13 sites. Phenotypic analysis reveals that tiller number and plant yield of OsFWL4 gene mutants are significantly greater than those of the wild type. Flag leaves of OsFWL4 gene mutants are wider than those of the wild type. The increase in leaf width of the mutants is caused by an increase in cell number. Additionally, grain length of OsFWL1 gene mutants is higher than that of the wild type. Our results suggest that transgene-free rice plants with targeted mutations can be produced in the T1 generation using the Agrobacterium-mediated CRISPR/Cas9 system and that the OsFWL4 gene is a negative regulator of tiller number and plant yield.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Família Multigênica , Mutagênese , Oryza , Proteínas de Plantas , Plantas Geneticamente Modificadas , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
18.
Funct Integr Genomics ; 20(4): 509-522, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31925598

RESUMO

MicroRNAs lie at the core of biological regulatory networks in plants. The recent discovery of isomiRs that are length variants of the annotated mature miRNAs has further unveiled the complexity of miRNome. Delineation of their functional relevance is critical to understand the complete functional spectrum of the miRNome. To apprehend the role of 5' isomiRs in rice, we performed a comprehensive analysis of the annotated miRNA pool using 8 deep-sequencing datasets from flag leaf and spikelet tissues from two cultivars of rice viz. N22 and PB1 grown under control and drought conditions. The products of the 5' start site variability termed as "5' isomiRs" were found to be widespread in all the datasets. It was possible to identify several 5' isomiRs that were highly distinct and abundant and supported by more than 90% of the tags that map in the region. Majority of miRNA/5' isomiR pair share similar tissue and drought-mediated expression dynamics. Analysis of the degradome data identified targets for several of these 5' isomiRs, thereby confirming their biological activity. Since the isomiRs are length variants at the 5' end, the target sites were found to be accordingly shifted as compared to the target site of the annotated miRNA. Further we also observed that drought affects the processing accuracy of several miRNAs across all tissues of both the cultivars leading to differential accumulation of 5' isomiR/miRNA pair.


Assuntos
Secas , MicroRNAs/genética , Oryza/genética , Processamento Pós-Transcricional do RNA , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Oryza/metabolismo , Estresse Fisiológico
19.
Plants (Basel) ; 8(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561513

RESUMO

Three Ethyl methansulphonate (EMS)-induced stay-green mutants (SGM-1, SGM-2 and SGM-3) and their wild-type (WT), were tested for their Stay-Green (SG) and drought tolerance nature as the relation between these two attributes is not yet established in rice. In the dark induced senescence assay, SGM-3 showed delayed senescence while SGM-1 and SGM-2 showed complete lack of senescence. Mutants showed stable transcript abundance over time, for 15 candidate genes (CGs) associated with senescence, compared to the WT. SGM-3 however showed moderately increasing transcript abundance over time for ATG6a, ATG4a, NYC1, NOL and NYC3. Only SGM-3 performed better than the WT for yield and harvest index under well irrigated as well as drought conditions, though all the mutants showed better performance for other agronomic traits under both the conditions and ascorbate peroxidase activity under drought. Thus, SG trait showed positive correlation with drought tolerance though only SGM-3 could convert this into higher harvest index. Sequence analysis of 80 senescence-associated genes including the 15 CGs showed non-synonymous mutations in four and six genes in SGM-1 and SGM-2 respectively, while no SNPs were found in SGM-3. Analysis of the earlier reported Quantitative Trait Loci (QTL) regions in SGM-3 revealed negligible variations from WT, suggesting it to be a novel SG mutant.

20.
Front Plant Sci ; 10: 848, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316541

RESUMO

Glutaredoxins (Grxs) are a ubiquitous group of oxidoreductase enzymes that are important in plant growth and development; however, the functions of rice Grxs have not been fully elucidated. In this paper, we showed that one of the Grxs, encoded by OsGrxC2.2, exhibited Grx activity. Furthermore, we demonstrated that OsGrxC2.2 was able to regulate embryo development during embryogenesis. Transgenic rice lines overexpressing OsGrxC2.2 unexpectedly exhibited degenerate embryos as well as embryoless seeds. Our data indicated that the embryonic abnormalities occurred at an early stage during embryogenesis. We found that the expression of several endodermal layer marker genes for embryo development, such as OSH1 (apical region marker), OsSCR (L2 ground tissue marker), and OsPNH1 (L3 vascular tissue marker), were significantly decreased in the OsGrxC2.2-overexpressed transgenic rice lines. In contrast, the transcript levels of the majority of protodermal layer markers, including HAZ1, ROC2, ROC3, and RAmy1A, and the shoot apical meristem marker HB, showed little change between the wild-type (WT) and OsGrxC2.2-overexpressing embryos. Surprisingly, the seed weight of the overexpressed transgenic rice was remarkably increased in comparison to that of the WT. These results indicate that the overexpression of OsGrxC2.2 interferes with the normal embryogenesis of rice embryos and leads to increased grain weight. To the best of our knowledge, this is the first report that OsGrxC2.2 is a rice embryo development-associated gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...