Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 671
Filtrar
1.
Birth Defects Res ; 116(5): e2333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716581

RESUMO

OBJECTIVE: This study aims to determine if 5,10-methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and methionine synthase reductase (MTRR A66G) gene polymorphisms were associated with fatty acid (FA) levels in mothers of fetuses with neural tube defects (NTDs) and whether these associations were modified by environmental factors. METHODS: Plasma FA composition was assessed using capillary gas chromatography. Concentrations of studied FA were compared between 42 mothers of NTDs fetuses and 30 controls as a function of each polymorphism by the Kruskal-Wallis nonparametric test. RESULTS: In MTHFR gene C677T polymorphism, cases with (CT + TT) genotype had lower monounsaturated FAs (MUFA) and omega-3 polyunsaturated FA (n-3 PUFA) levels, but higher omega-6 polyunsaturated FAs (n-6 PUFA) and omega-6 polyunsaturated FAs: omega-3 polyunsaturated FAs (n-6:n-3) ratio levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype had lower MUFA levels, but higher PUFA and n-6 PUFA levels. Controls with (AG + GG) genotype had lower n-6 PUFA levels. In MTHFR gene C677T polymorphism, cases with smoking spouses and (CT + TT) genotype had lower MUFA and n-3 PUFA levels, but higher PUFA, n-6 PUFA, and n-6:n-3 ratio levels. Cases with (CT + TT) genotype and who used sauna during pregnancy had lower n-3 PUFA levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype and who used sauna during pregnancy had higher PUFA and n-6 PUFA levels. CONCLUSIONS: Further research is required to clarify the association of FA metabolism and (MTHFR, MTRR) polymorphisms with NTDs.


Assuntos
Ácidos Graxos , Ferredoxina-NADP Redutase , Predisposição Genética para Doença , Metilenotetra-Hidrofolato Redutase (NADPH2) , Defeitos do Tubo Neural , Polimorfismo de Nucleotídeo Único , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Feminino , Defeitos do Tubo Neural/genética , Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/metabolismo , Adulto , Ácidos Graxos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Genótipo , Estudos de Casos e Controles , Fatores de Risco , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/genética , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/sangue , Estudos de Associação Genética/métodos
2.
J Neuroendocrinol ; 35(9): e13320, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497857

RESUMO

Obesity is a key medical challenge of our time. The increasing number of children born to overweight or obese women is alarming. During pregnancy, the circulation of the mother and her fetus interact to maintain the uninterrupted availability of essential nutrients for fetal organ development. In doing so, the mother's dietary preference determines the amount and composition of nutrients reaching the fetus. In particular, the availability of polyunsaturated fatty acids (PUFAs), chiefly their ω-3 and ω-6 subclasses, can change when pregnant women choose a specific diet. Here, we provide a succinct overview of PUFA biochemistry, including exchange routes between ω-3 and ω-6 PUFAs, the phenotypes, and probable neurodevelopmental disease associations of offspring born to mothers consuming specific PUFAs, and their mechanistic study in experimental models to typify signaling pathways, transcriptional, and epigenetic mechanisms by which PUFAs can imprint long-lasting modifications to brain structure and function. We emphasize that the ratio, rather than the amount of individual ω-3 or ω-6 PUFAs, might underpin physiologically correct cellular differentiation programs, be these for neurons or glia, during pregnancy. Thereupon, the PUFA-driven programming of the brain is contextualized for childhood obesity, metabolic, and endocrine illnesses.


Assuntos
Ácidos Graxos Ômega-3 , Obesidade Infantil , Humanos , Criança , Feminino , Gravidez , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/farmacologia , Encéfalo/metabolismo , Feto/metabolismo
3.
J Anim Physiol Anim Nutr (Berl) ; 107(5): 1216-1240, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36971147

RESUMO

Total 288 Ross-308-day-old male broiler chicks were randomly distributed into six dietary treatment groups in a two-way ANOVA with 2 × 3 factorial arrangements (two factors, i.e., dietary protein and energy having two types of protein, e.g., plant, animal and three different sources of energy, e.g., soybean oil, rice bran oil and sunflower oil) to justify if animal protein-soybean oil based broiler diet optimizes net profit at the expense of desirable ω-6 fatty acids in the breast muscle of the broiler chicken. Average daily feed intake (ADFI), final live weight (FLW), average daily gain (ADG), feed efficiency (FE), carcass characteristics, cardio-pulmonary morphometry, fatty acid profile of the breast muscle and cost-benefit analysis were measured. Results indicated that animal protein significantly increased 4.27% FLW, 6.13% ADFI, 4.31% ADG and 2.93% wing weight. Accordingly, soybean oil increased 4.76% FLW, 3.80% ADG and 1.36% dressing percentage at the expense of 12.07% proventriculus weight compared with sunflower oil. The generalized linear model identified no interaction effects of the sources of protein and energy on overall performance of the birds. Replacement of vegetable protein by animal protein decreased 14.01% ∑ω-3, 12.16% ∑ω-6 and 12.21% sum of polyunsaturated fatty acids (∑PUFA) and concomitantly increased 10.82% sum of saturated fatty acids (∑SFAs) in the breast muscle (Pectoralis major). Accordingly, replacement of sunflower oil by soybean oil decreased 29.17% ∑ω-3, 6.71% ∑ω-6, 11.62% sum of monounsaturated fatty acids (∑MUFAs) and 7.33% ∑PUFAs and concurrently increased 18.36% ∑SFAs in the breast muscle of the broiler birds. It was concluded that animal protein-soybean oil-based broiler diet optimized net profit at the expense of desirable ω-3 and ω-6 fatty acids in the breast muscle of the broiler chicken.


Assuntos
Ácidos Graxos Ômega-3 , Óleo de Soja , Animais , Ração Animal/análise , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados , Músculos Peitorais/metabolismo , Óleo de Girassol/metabolismo
4.
Hepatology ; 77(4): 1303-1318, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35788956

RESUMO

BACKGROUND AND AIM: Injury to hepatocyte mitochondria is common in metabolic dysfunction-associated fatty liver disease. Here, we investigated whether changes in the content of essential fatty acid-derived lipid autacoids affect hepatocyte mitochondrial bioenergetics and metabolic efficiency. APPROACH AND RESULTS: The study was performed in transgenic mice for the fat-1 gene, which allows the endogenous replacement of the membrane omega-6-polyunsaturated fatty acid (PUFA) composition by omega-3-PUFA. Transmission electron microscopy revealed that hepatocyte mitochondria of fat-1 mice had more abundant intact cristae and higher mitochondrial aspect ratio. Fat-1 mice had increased expression of oxidative phosphorylation complexes I and II and translocases of both inner (translocase of inner mitochondrial membrane 44) and outer (translocase of the outer membrane 20) mitochondrial membranes. Fat-1 mice also showed increased mitofusin-2 and reduced dynamin-like protein 1 phosphorylation, which mediate mitochondrial fusion and fission, respectively. Mitochondria of fat-1 mice exhibited enhanced oxygen consumption rate, fatty acid ß-oxidation, and energy substrate utilization as determined by high-resolution respirometry, [1- 14 C]-oleate oxidation and nicotinamide adenine dinucleotide hydride/dihydroflavine-adenine dinucleotide production, respectively. Untargeted lipidomics identified a rich hepatic omega-3-PUFA composition and a specific docosahexaenoic acid (DHA)-enriched lipid fingerprint in fat-1 mice. Targeted lipidomics uncovered a higher content of DHA-derived lipid autacoids, namely resolvin D1 and maresin 1, which rescued hepatocytes from TNFα-induced mitochondrial dysfunction, and unblocked the tricarboxylic acid cycle flux and metabolic utilization of long-chain acyl-carnitines, amino acids, and carbohydrates. Importantly, fat-1 mice were protected against mitochondrial injury induced by obesogenic and fibrogenic insults. CONCLUSION: Our data uncover the importance of a lipid membrane composition rich in DHA and its lipid autacoid derivatives to have optimal hepatic mitochondrial and metabolic efficiency.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Conservação de Recursos Energéticos , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Ácidos Graxos Ômega-6/química , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/farmacologia , Camundongos Transgênicos , Ácidos Graxos/metabolismo
5.
Front Immunol ; 13: 897660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874736

RESUMO

Transition dairy cows experience sudden changes in both metabolic and immune functions, which lead to many diseases in postpartum cows. Therefore, it is crucial to monitor and guarantee the nutritional and healthy status of transition cows. The objective of this study was to determine the effect of diet enriched in n-3 or n-6 polyunsaturated fatty acid (PUFA) on colostrum composition and blood immune index of multiparous Holstein cows and neonatal calves during the transition period. Forty-five multiparous Holstein dairy cows at 240 days of pregnancy were randomly assigned to receive 1 of 3 isoenergetic and isoprotein diets: 1) CON, hydrogenated fatty acid (control), 1% of hydrogenated fatty acid [diet dry matter (DM) basis] during prepartum and postpartum, respectively; 2) HN3, 3.5% of extruding flaxseed (diet DM basis, n-3 PUFA source); 3) HN6, 8% of extruding soybeans (diet DM basis, C18:2n-6 PUFA source). Diets containing n-3 and n-6 PUFA sources decreased colostrum immunoglobulin G (IgG) concentration but did not significantly change the colostrum IgG yield compared with those with CON. The commercial milk yield (from 14 to 28 days after calving) was higher in the HN3 and HN6 than that in the CON. Furthermore, the n-3 PUFA source increased neutrophil cell counts in blood during the prepartum period and increased neutrophil percentage during the postpartum period when compared with those with control treatment. Diets containing supplemental n-3 PUFA decreased the serum concentration of interleukin (IL)-1ß in maternal cows compared with those in control and n-6 PUFA during prepartum and postpartum. In addition, the neonatal calf serum concentration of tumor necrosis factor (TNF) was decreased in HN3 compared with that in the HN6 treatment. The diet with the n-3 PUFA source could potentially increase the capacity of neutrophils to defend against pathogens in maternal cows by increasing the neutrophil numbers and percentage during the transition period. Meanwhile, the diet with n-3 PUFA source could decrease the pro-inflammatary cytokine IL-1ß of maternal cows during the transition period and decline the content of pro-inflammatary cytokine TNF of neonatal calves. It suggested that the highest milk production in n-3 PUFA treatment may partially be due to these beneficial alterations.


Assuntos
Ácidos Graxos Ômega-3 , Oligoelementos , Animais , Bovinos , Contagem de Células , Citocinas/metabolismo , Dieta/veterinária , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Imunoglobulina G/metabolismo , Lactação , Leite/metabolismo , Gravidez , Oligoelementos/metabolismo , Oligoelementos/farmacologia
6.
J Proteomics ; 264: 104632, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35644350

RESUMO

Milk is a nutrient-rich biofluid that contains several biocomponents with distinctive functions, including extracellular vesicles (EV). Milk EV have been associated with the regulation of the newborn's immune system and to influence essential cellular development. The EV proteome comprises the protein constituents and cargo; changes in these compartments could impact their role mediating communication. The ratio of dietary ω-6 to ω-3 polyunsaturated fatty acids (PUFA) is known to affect health and inflammation, and to induce changes in milk fatty acid composition, but no reports have included the milk EV fraction so far. We isolated EV from milk samples obtained on days 0, 7, and 14 after parturition from sows receiving either a standard diet or a test diet enriched in ω-3 (ω6:ω3 = 4:1). Small milk-derived EV were isolated using ultracentrifugation coupled with size exclusion chromatography, and characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. Using a TMT-based high-resolution quantitative approach, the proteomics analysis revealed variations in the milk EV proteome within the diet groups with differences in the abundance of spondin-2 and 78 kDa glucose-regulated protein. Future studies are encouraged to explore further dietary effects on milk EV composition and their relation to the offspring's development. SIGNIFICANCE: Milk EV are known as key players mediating the regulation of the infant's immune system and growth. The EV proteome comprises the protein constituents and protein cargo, and any changes in this system could impact their role in intercellular communication. This study aimed at evaluating how different ω-6:ω-3 ratios in the maternal diet could translate to the milk EV proteome. This is relevant for basic research, but also has applied aspects in animal nutrition and health and may provide new perspectives for feeding additives.


Assuntos
Vesículas Extracelulares , Ácidos Graxos Ômega-3 , Animais , Dieta , Vesículas Extracelulares/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/análise , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Leite/química , Proteoma/análise , Suínos
7.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682855

RESUMO

Lung cancer is currently the leading cause of cancer death worldwide; it is often diagnosed at an advanced stage and bears poor prognosis. It has been shown that diet is an important environmental factor that contributes to the risk and mortality of several types of cancers. Intake of ω-3 and ω-6 PUFAs plays an important role in cancer risk and progression. Current Western populations have high consumption of ω-6 PUFAs with a ratio of ω-6/ω-3 PUFAs at 15:1 to 16.7:1 This high consumption of ω-6 PUFAs is related to increased cancer risk and progression. However, whether a diet rich in ω-6 PUFAs can contribute to tumor aggressiveness has not been well investigated. We used a murine model of pulmonary squamous cell carcinoma to study the aggressiveness of tumors in mice fed with a diet rich in ω-6 PUFAs and its relationship with oxylipins. Our results shown that the mice fed a diet rich in ω-6 showed a marked increase in proliferation, angiogenesis and pro-inflammatory markers and decreased expression of pro-apoptotic proteins in their tumors. Oxylipin profiling revealed an upregulation of various pro-tumoral oxylipins including PGs, HETEs, DiHETrEs and HODEs. These results demonstrate for the first time that high intake of ω-6 PUFAs in the diet enhances the malignancy of tumor cells by histological changes on tumor dedifferentiation and increases cell proliferation, angiogenesis, pro-inflammatory oxylipins and molecular aggressiveness targets such as NF-κB p65, YY1, COX-2 and TGF-ß.


Assuntos
Ácidos Graxos Ômega-3 , Neoplasias Pulmonares , Animais , Dieta , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/farmacologia , Camundongos , Oxilipinas/metabolismo
8.
J Pain ; 23(10): 1724-1736, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35697285

RESUMO

Preclinical studies demonstrate opposing effects of long-chain polyunsaturated fatty acid (PUFA) metabolites on inflammation and nociception. Omega-6 (n-6) PUFAs amplify both processes while omega-3 (n-3) PUFAs inhibit them. This cross-sectional study examined relationships between PUFAs in circulating erythrocytes and 2 chronic idiopathic pain conditions: temporomandibular disorder (TMD) and low back pain in a community-based sample of 503 U.S. adults. Presence or absence of TMD and low back pain, respectively, were determined by clinical examination and by responses to established screening questions. Liquid chromatography-tandem mass spectrometry quantified PUFAs. In multivariable logistic regression models, a higher ratio of n-6/n-3 long-chain PUFAs was associated with greater odds of TMD (odds ratio ((OR) = 1.75, 95% confidence limits (CL): 1.16, 2.64) and low back pain (OR = 1.63, 95% CL: 1.07, 2.49). Higher levels of the pronociceptive n-6 long-chain arachidonic acid (AA) were associated with a greater probability of both pain conditions for women, but not men. Higher levels of the antinociceptive long-chain n-3 PUFAs eicosapentaenoic and docosahexaenoic acids were associated with a lower probability of both pain conditions for men, but not women. As systemic inflammation is not a hallmark of these conditions, PUFAs may influence idiopathic pain through other mechanisms. PERSPECTIVE: This cross-sectional clinical study found that a higher ratio of circulating n-6/n-3 long-chain PUFAs was associated with greater odds of 2 common chronic overlapping pain conditions. This suggests that the pro and antinociceptive properties of n-6 and n-3 PUFAs, respectively, influence pain independently of their well-established inflammatory pathways.


Assuntos
Dor Crônica , Ácidos Graxos Ômega-3 , Dor Lombar , Transtornos da Articulação Temporomandibular , Adulto , Analgésicos , Ácidos Araquidônicos , Dor Crônica/tratamento farmacológico , Estudos Transversais , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados , Humanos , Inflamação , Dor Lombar/tratamento farmacológico , Transtornos da Articulação Temporomandibular/tratamento farmacológico
9.
Artigo em Inglês | MEDLINE | ID: mdl-35537354

RESUMO

Polyunsaturated fatty acids (PUFA) play essential roles in cell membrane structure and physiological processes including signal transduction, cellular metabolism and tissue homeostasis to combat diseases. PUFA are either consumed from food or synthesized by enzymatic desaturation, elongation and peroxisomal ß-oxidation. The nutritionally essential precursors α-linolenic acid (C18:3n-3; ALA) and linoleic acid (C18:2n-6; LA) are subjected to desaturation by Δ6D/Δ5D desaturases and elongation by elongases 2/5, enzymes that are induced by insulin and repressed by PUFA. Maintaining an optimally low n-6/n-3 PUFA ratio is linked to prevention of the development of several diseases, including nonalcoholic fatty liver disease (NAFLD) that is characterized by depletion of PUFA promoting hepatic steatosis and inflammation. In this context, supplementation with n-3 PUFA revealed significant lowering of hepatic steatosis in obese patients, whereas prevention of fatty liver by high-fat diet in mice is observed in n-3 PUFA and hydroxytyrosol co-administration. The aim of this work is to review the role of nutritional status and nutrient availability on markers of PUFA biosynthesis. In addition, the impact of oxidative stress developed as a result of NAFLD, a redox imbalance that may alter the expression and activity of the enzymes involved, and diminished n-3 PUFA levels by free-radical dependent peroxidation processes will be discussed.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Ácido Linoleico/metabolismo , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estado Nutricional , Estresse Oxidativo
10.
J Agric Food Chem ; 70(21): 6418-6428, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588299

RESUMO

The present study aimed to investigate the effects of saturated fatty acids (SFA) and n-6 polyunsaturated fatty acids (PUFA) on alcoholic liver disease (ALD) and the underlying mechanisms. C57BL/6J male mice were randomly fed a corn oil or palm oil diet (rich in n-6 PUFA and SFA, respectively) with or without ethanol for four weeks (n = 10/group). A series of experiments in vitro with AML-12 hepatocyte were conducted to better elucidate the potential mechanisms underlying the phenomenon observed in animals. Compared with palm oil, corn oil aggravated alcohol-induced liver injury and hepatic steatosis, indicated by a histological analysis and significant elevations of plasma alanine aminotransferase and hepatic triacylglycerol (TG) level. Apoptosis-associated proteins in the ASK1-JNK pathway were significantly enhanced in the liver of mice from the corn oil + ethanol group than in the palm oil + ethanol group. The corn oil + ethanol diet also inhibited the activation of both AMPK and downstream protein acetyl-CoA carboxylase (ACC) and promoted the SREBP-1c expression, subsequently accelerating lipid synthesis. In addition, 4-hydroxynonenal (4-HNE) levels in plasma and liver were significantly upregulated in response to corn oil + ethanol feeding. Interestingly, the in vitro study showed that 4-HNE significantly attenuated cell viability, elevated the expression of cleaved-caspase 3 protein and TG level, and regulated key molecules in ASK1-JNK and AMPK pathways in a dose-dependent manner. In conclusion, the n-6 PUFA diet showed a negative effect on alcohol-induced liver injury and steatosis. It might be related to the upregulation of 4-HNE and subsequent changes of proteins, namely, ASK1, JNK, AMPK, ACC, and SREBP-1c.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fígado Gorduroso , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Aldeídos , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Óleo de Milho/metabolismo , Etanol/efeitos adversos , Etanol/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óleo de Palmeira/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima
11.
Drug Chem Toxicol ; 45(5): 2221-2232, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35260009

RESUMO

Flaxseed (FS) and sesame seed (SS) are traditional and functional foods in traditional Indian medicine for treating various disorders. The present study investigated the hepatoprotective effects of bioactive-fatty acids (FAs) from FS and SS against carbon tetrachloride (CCl4)-induced hepatic damage in rats. Pre and post-treatments for 28 consecutive days significantly increased the activities of in vivo antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POX), whereas, lipid peroxidation (LPO) activity was markedly decreased in a dose-dependent manner in liver and kidneys. A significant reduction was observed in the hematological parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin in the serum of post-treated animals compared to the negative control. The results were confirmed histopathologically. The results suggested that the ω-3 and ω-6 FAs from flaxseed oil (FSO) and sesame seed oil (SSO), respectively, showed potential synergistic hepatoprotective and antioxidant effects that were mediated mainly by ω-3 and ω-6 FAs present in the respective seed oils.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Linho , Sesamum , Alanina Transaminase , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Aspartato Aminotransferases , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/farmacologia , Linho/metabolismo , Peroxidação de Lipídeos , Fígado , Estresse Oxidativo , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Ratos , Sesamum/metabolismo
12.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216253

RESUMO

In recent years, several studies have demonstrated that polyunsaturated fatty acids have strong immunomodulatory properties, altering several functions of macrophages. In the present work, we sought to provide a multi-omic approach combining the analysis of the lipidome, the proteome, and the metabolome of RAW 264.7 macrophages supplemented with phospholipids containing omega-3 (PC 18:0/22:6; ω3-PC) or omega-6 (PC 18:0/20:4; ω6-PC) fatty acids, alone and in the presence of lipopolysaccharide (LPS). Supplementation of macrophages with ω3 and ω6 phospholipids plus LPS produced a significant reprogramming of the proteome of macrophages and amplified the immune response; it also promoted the expression of anti-inflammatory proteins (e.g., pleckstrin). Supplementation with the ω3-PC and ω6-PC induced significant changes in the lipidome, with a marked increase in lipid species linked to the inflammatory response, attributed to several pro-inflammatory signalling pathways (e.g., LPCs) but also to the pro-resolving effect of inflammation (e.g., PIs). Finally, the metabolomic analysis demonstrated that supplementation with ω3-PC and ω6-PC induced the expression of several metabolites with a pronounced inflammatory and anti-inflammatory effect (e.g., succinate). Overall, our data show that supplementation of macrophages with ω3-PC and ω6-PC effectively modulates the lipidome, proteome, and metabolome of these immune cells, affecting several metabolic pathways involved in the immune response that are triggered by inflammation.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fatores Imunológicos/metabolismo , Lipídeos/fisiologia , Macrófagos/metabolismo , Fosfolipídeos/metabolismo , Proteínas/metabolismo , Animais , Imunidade/fisiologia , Inflamação/metabolismo , Lipidômica/métodos , Metaboloma/fisiologia , Camundongos , Proteoma/metabolismo , Células RAW 264.7 , Transdução de Sinais/fisiologia
13.
PLoS One ; 17(1): e0262173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051193

RESUMO

The Modern Western Diet has been associated with the rise in metabolic and inflammatory diseases, including obesity, diabetes, and cardiovascular disease. This has been attributed, in part, to the increase in dietary omega-6 polyunsaturated fatty acid (PUFA) consumption, specifically linoleic acid (LA), arachidonic acid (ARA), and their subsequent metabolism to pro-inflammatory metabolites which may be driving human disease. Conversion of dietary LA to ARA is regulated by genetic variants near and within the fatty acid desaturase (FADS) haplotype block, most notably single nucleotide polymorphism rs174537 is strongly associated with FADS1 activity and expression. This variant and others within high linkage disequilibrium may potentially explain the diversity in both diet and inflammatory mediators that drive chronic inflammatory disease in human populations. Mechanistic exploration into this phenomenon using human hepatocytes is limited by current two-dimensional culture models that poorly replicate in vivo functionality. Therefore, we aimed to develop and characterize a three-dimensional hepatic construct for the study of human PUFA metabolism. Primary human hepatocytes cultured in 3D hydrogels were characterized for their capacity to represent basic lipid processing functions, including lipid esterification, de novo lipogenesis, and cholesterol efflux. They were then exposed to control and LA-enriched media and reproducibly displayed allele-specific metabolic activity of FADS1, based on genotype at rs174537. Hepatocytes derived from individuals homozygous with the minor allele at rs174537 (i.e., TT) displayed the slowest metabolic conversion of LA to ARA and significantly reduced FADS1 and FADS2 expression. These results support the feasibility of using 3D human hepatic cultures for the study of human PUFA and lipid metabolism and relevant gene-diet interactions, thereby enabling future nutrition targets in humans.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-6/metabolismo , Ácido Linoleico/metabolismo , Adulto , Alelos , Técnicas de Cultura de Células/métodos , Colesterol/metabolismo , Feminino , Genótipo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Hidrogéis/química , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
14.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054892

RESUMO

Omega-3 and omega-6 fatty acids are important for neonatal development and health. One mechanism by which omega-3 and omega-6 fatty acids exert their effects is through their metabolism into oxylipins and specialized pro-resolving mediators. However, the influence of oxylipins on fetal growth is not well understood. Therefore, the objective of this study was to identify oxylipins present in maternal and umbilical cord plasma and investigate their relationship with infant growth. Liquid chromatography-tandem mass spectrometry was used to quantify oxylipin levels in plasma collected at the time of delivery. Spearman's correlations highlighted significant correlations between metabolite levels and infant growth. They were then adjusted for maternal obesity (normal body mass index (BMI: ≤30 kg/m2) vs. obese BMI (>30 kg/m2) and smoking status (never vs. current/former smoker) using linear regression modeling. A p-value < 0.05 was considered statistically significant. Our study demonstrated a diverse panel of oxylipins from the lipoxygenase pathway present at the time of delivery. In addition, both omega-3 and omega-6 oxylipins demonstrated potential influences on the birth length and weight percentiles. The oxylipins present during pregnancy may influence fetal growth and development, suggesting potential metabolites to be used as biomarkers for infant outcomes.


Assuntos
Lipoxigenases/metabolismo , Obesidade/metabolismo , Oxilipinas/sangue , Cordão Umbilical/metabolismo , Adulto , Cromatografia Líquida , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Recém-Nascido , Obesidade/sangue , Oxilipinas/análise , Oxilipinas/metabolismo , Gravidez , Espectrometria de Massas em Tandem
15.
Artigo em Inglês | MEDLINE | ID: mdl-34740033

RESUMO

Fatty liver is a side effect of chemotherapy that limits the ability to treat colorectal cancer (CRC) patients in the most effective way. The aim of this study was to determine hepatic fatty acid composition and expression of genes involved in lipid metabolism at two time points following sequential chemotherapy treatment with Irinotecan (CPT-11)+5-fluorouracil (5-FU), agents commonly used to treat human colorectal cancer. Female Fischer 344 rats were provided a semi-purified AIN-76 basal diet with modified fat component. One cycle of chemotherapy consisted of CPT-11+5-FU and was initiated 2 weeks after tumor implantation (D0); a second cycle was given one week later. Two days after each cycle (Day 2 and Day 9), animals were euthanized, and livers collected. Triacylglycerol (TAG) and phospholipid (PL) fractions were isolated using thin layer chromatography and fatty acids (FAs) were quantified using gas chromatography. Expression of 44 lipid metabolism genes were analyzed by qPCR. Total liver TAG level was lowest after the second cycle D0 and D2 (P = 0.05) characterized by lower content of n-6 and n-3 polyunsaturated fatty acids (PUFAs). N-6 PUFAs significantly declined with subsequent treatments. Of 44 genes analyzed, 13 genes were altered with CPT-11+5-FU treatment. Expression of genes VLCAD and DGAT1, involved in fatty acid oxidation as well as DGAT1 in TAG synthesis, were significantly elevated after each cycle, whereas expression of genes ELOVL2 and FADS2, involved in fatty acid elongation and desaturation were significantly lower at D9 compared to D2 and D0 (P < 0.03). Hepatic total TAG PUFA was depleted, and genes involved in pathways of PUFA synthesis were down-regulated by chemotherapy treatment. This observation suggests impediments in lipid metabolism in the liver that could potentially impact peripheral availability of essential fatty acids.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fluoruracila/efeitos adversos , Irinotecano/efeitos adversos , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inibidores da Topoisomerase I/efeitos adversos , Animais , Modelos Animais de Doenças , Fígado Gorduroso/induzido quimicamente , Feminino , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Ratos , Ratos Endogâmicos F344 , Resultado do Tratamento , Triglicerídeos/metabolismo
16.
Cell Rep ; 37(4): 109898, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34706241

RESUMO

After demyelinating injury of the central nervous system, resolution of the mounting acute inflammation is crucial for the initiation of a regenerative response. Here, we aim to identify fatty acids and lipid mediators that govern the balance of inflammatory reactions within demyelinating lesions. Using lipidomics, we identify bioactive lipids in the resolution phase of inflammation with markedly elevated levels of n-3 polyunsaturated fatty acids. Using fat-1 transgenic mice, which convert n-6 fatty acids to n-3 fatty acids, we find that reduction of the n-6/n-3 ratio decreases the phagocytic infiltrate. In addition, we observe accelerated decline of microglia/macrophages and enhanced generation of oligodendrocytes in aged mice when n-3 fatty acids are shuttled to the brain. Thus, n-3 fatty acids enhance lesion recovery and may, therefore, provide the basis for pro-regenerative medicines of demyelinating diseases in the central nervous system.


Assuntos
Envelhecimento , Encéfalo/metabolismo , Doenças Desmielinizantes/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Oligodendroglia/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Doenças Desmielinizantes/genética , Ácidos Graxos Ômega-3/genética , Ácidos Graxos Ômega-6/genética , Lipidômica , Camundongos , Camundongos Knockout , Microglia/metabolismo
18.
Biochem Biophys Res Commun ; 582: 49-56, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34689105

RESUMO

The efficacy of n-3 polyunsaturated fatty acids (PUFAs) in improving outcomes in a renal ischemia-reperfusion injury (IRI) model has previously been reported. However, the underlying mechanisms remain poorly understood and few reports demonstrate how dietary n-3 PUFAs influence the composition of membrane phospholipids in the kidney. Additionally, it has not been elucidated whether perilla oil (PO), which is mainly composed of the n-3 alpha-linolenic acid, mitigates renal IRI. In this study, we investigated the effect of dietary n-3 PUFAs (PO), compared with an n-6 PUFA-rich soybean oil (SO) diet, on IRI-induced renal insufficiency in a rat model. Levels of membrane phospholipids containing n-3 PUFAs were higher in the kidney of PO-rich diet-fed rats than the SO-rich diet-fed rats. Levels of blood urea nitrogen and serum creatinine were significantly higher in the ischemia-reperfusion group than the sham group under both dietary conditions. However, no significant differences were observed in blood urea nitrogen, serum creatinine, or histological damage between PO-rich diet-fed rats and SO-rich diet-fed rats. In the kidney of PO-rich diet-fed rats, levels of arachidonic acid and arachidonic acid-derived pro-inflammatory lipid mediators were lower than SO-rich diet-fed rats. Eicosapentaenoic acid and eicosapentaenoic acid-derived lipid mediators were significantly higher in the kidney of PO-rich than SO-rich diet-fed rats. These results suggest that dietary n-3 PUFAs alter the fatty acid composition of membrane phospholipids and lipid mediators in the kidney; however, this does not attenuate renal insufficiency or histological damage in a renal IRI model.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Insuficiência Renal/dietoterapia , Traumatismo por Reperfusão/dietoterapia , Óleo de Soja/metabolismo , Animais , Ácido Araquidônico/metabolismo , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Fosfolipídeos/metabolismo , Óleos de Plantas/química , Ratos , Ratos Sprague-Dawley , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Óleo de Soja/administração & dosagem , Óleo de Soja/química , Falha de Tratamento , Ácido alfa-Linolênico/química
19.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638711

RESUMO

Chronic pain (CP) is a severe clinical entity with devastating physical and emotional consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment approaches appear to be insufficient for its management. Moreover, considering the adverse effects of traditional analgesic treatments, specialized pro-resolving lipid mediators (SPMs) have emerged as a promising alternative for CP. These include various bioactive molecules such as resolvins, maresins, and protectins, derived from ω-3 polyunsaturated fatty acids (PUFAs); and lipoxins, produced from ω-6 PUFAs. Indeed, SPMs have been demonstrated to play a central role in the regulation and resolution of the inflammation associated with CP. Furthermore, these molecules can modulate neuroinflammation and thus inhibit central and peripheral sensitizations, as well as long-term potentiation, via immunomodulation and regulation of nociceptor activity and neuronal pathways. In this context, preclinical and clinical studies have evidenced that the use of SPMs is beneficial in CP-related disorders, including rheumatic diseases, migraine, neuropathies, and others. This review integrates current preclinical and clinical knowledge on the role of SPMs as a potential therapeutic tool for the management of patients with CP.


Assuntos
Dor Crônica/metabolismo , Dor Crônica/terapia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Mediadores da Inflamação/metabolismo , Manejo da Dor , Animais , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-34500308

RESUMO

Chemosensory and physical complaints are common disorders in cancer patients under chemotherapy treatments that may affect the food intake, leading to a decreased quality of life. Lipid metabolism is a major pathway of cancer proliferation, where erythrocyte membrane phospholipids and their fatty acid composition are promising tools for monitoring metabolic pathways. Relationship between lipid profile in erythrocyte membrane phospholipids and chemosensory alterations in 44 newly diagnosed patients with breast cancer was here investigated. Smell changes and xerostomia were the most common complaints, with xerostomia as the main influencing factor on the development of other taste disorders. Lipid profiles revealed significant negative correlation between diminution of linoleic acid levels and xerostomia as well as positive correlation between increased arachidonic acid and salty taste. The involvement of these polyunsaturated lipids suggests the importance of oxidative and nutritional conditions of cancer patients, which can affect the molecular status for taste signals.


Assuntos
Ageusia/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Xerostomia/metabolismo , Adulto , Ageusia/induzido quimicamente , Ciclofosfamida/efeitos adversos , Doxorrubicina/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Taxoides/efeitos adversos , Xerostomia/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...