Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
ACS Chem Neurosci ; 15(9): 1787-1812, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597712

RESUMO

ADB-HEXINACA has been recently reported as a synthetic cannabinoid receptor agonist (SCRA), one of the largest classes of new psychoactive substances (NPSs). This compound marks the entry of the n-hexyl tail group into the SCRA landscape, which has continued in the market with recent, newly detected SCRAs. As such, a proactive characterization campaign was undertaken, including the synthesis, characterization, and pharmacological evaluation of ADB-HEXINACA and a library of 41 closely related analogues. Two in vitro functional assays were employed to assess activity at CB1 and CB2 cannabinoid receptors, measuring Gßγ-coupled agonism through a fluorescence-based membrane potential assay (MPA) and ß-arrestin 2 (ßarr2) recruitment via a live cell-based nanoluciferase complementation reporter assay. ADB-HEXINACA was a potent and efficacious CB1 agonist (CB1 MPA pEC50 = 7.87 ± 0.12 M; Emax = 124 ± 5%; ßarr2 pEC50 = 8.27 ± 0.14 M; Emax = 793 ± 42.5), as were most compounds assessed. Isolation of the heterocyclic core and alkyl tails allowed for the comprehensive characterization of structure-activity relationships in this compound class, which were rationalized in silico via induced fit docking experiments. Overall, most compounds assessed are possibly emerging NPSs.


Assuntos
Agonistas de Receptores de Canabinoides , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/síntese química , Humanos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Células HEK293 , Relação Estrutura-Atividade , Animais
2.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209170

RESUMO

A series of novel cannabinoid-type derivatives were synthesized by the coupling of (1S,4R)-(+) and (1R,4S)-(-)-fenchones with various resorcinols/phenols. The fenchone-resorcinol derivatives were fluorinated using Selectfluor and demethylated using sodium ethanethiolate in dimethylformamide (DMF). The absolute configurations of four compounds were determined by X-ray single crystal diffraction. The fenchone-resorcinol analogs possessed high affinity and selectivity for the CB2 cannabinoid receptor. One of the analogues synthesized, 2-(2',6'-dimethoxy-4'-(2″-methyloctan-2″-yl)phenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (1d), had a high affinity (Ki = 3.51 nM) and selectivity for the human CB2 receptor (hCB2). In the [35S]GTPγS binding assay, our lead compound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 2.59 nM, E(max) = 89.6%). Two of the fenchone derivatives were found to possess anti-inflammatory and analgesic properties. Molecular-modeling studies elucidated the binding interactions of 1d within the CB2 binding site.


Assuntos
Canfanos/química , Canfanos/farmacologia , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Desenho de Fármacos , Norbornanos/química , Norbornanos/farmacologia , Receptor CB2 de Canabinoide/química , Canfanos/síntese química , Agonistas de Receptores de Canabinoides/síntese química , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Norbornanos/síntese química , Ligação Proteica , Receptor CB2 de Canabinoide/agonistas , Análise Espectral , Relação Estrutura-Atividade
3.
Pharmacol Res Perspect ; 10(1): e00901, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041297

RESUMO

Neutral antagonists of GPCRs remain relatively rare-indeed, a large majority of GPCR antagonists are actually inverse agonists. The synthetic cannabinoid receptor agonist (SCRA) EG-018 was recently reported as a low efficacy cannabinoid receptor agonist. Here we report a comparative characterization of EG-018 and 13 analogues along with extant putative neutral antagonists of CB1 . In HEK cells stably expressing human CB1 , assays for inhibition of cAMP were performed by real-time BRET biosensor (CAMYEL), G protein cycling was quantified by [35 S]GTPγS binding, and stimulation of pERK was characterized by AlphaLISA (PerkinElmer). Signaling outcomes for the EG-018 analogues were highly variable, ranging from moderate efficacy agonism with high potency, to marginal agonism at lower potency. As predicted by differing pathway sensitivities to differences in ligand efficacy, most EG-018-based compounds were completely inactive in pERK alone. The lowest efficacy analogue in cAMP assays, 157, had utility in antagonism assay paradigms. Developing neutral antagonists of the CB1 receptor has been a long-standing research goal, and such compounds would have utility both as research tools and in therapeutics. Although these results emphasize again the importance of system factors in determining signaling outcomes, some compounds characterized in this study appear among the lowest efficacy agonists described to date and therefore suggest that development of neutral antagonists is an achievable goal for CB1 .


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Carbazóis/farmacologia , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Carbazóis/síntese química , Carbazóis/química , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Naftalenos/síntese química , Naftalenos/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681877

RESUMO

The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.


Assuntos
Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Piridonas/química , Receptor CB2 de Canabinoide/agonistas , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Benzoxazinas/química , Benzoxazinas/farmacologia , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endocanabinoides/química , Endocanabinoides/farmacologia , Glicerídeos/química , Glicerídeos/farmacologia , Células HL-60 , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Morfolinas/química , Morfolinas/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Piridonas/farmacologia , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 50: 116421, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34634617

RESUMO

Allosteric modulators of cannabinoid 1 receptor (CB1R) show translational promise over orthosteric ligands due to their potential to elicit therapeutic benefit without cannabimimetic side effects. The prototypic 2-phenylindole CB1R allosteric modulator, GAT211 (1), demonstrates preclinical efficacy in various disease models. The limited systematic structure-activity relationship (SAR) data at the C2 position of the indole ring within GAT211 invites the opportunity for further modifications to improve GAT211's pharmacological profile while serving to amplify and variegate this library of therapeutically attractive agents. These considerations prompted this focused SAR study in which we substituted the GAT211 C2-phenyl ring with heteroaromatic substituents. The synthesized GAT211 analogs were then evaluated in vitro as CB1R allosteric modulators in cAMP and ß-arrestin2 assays with CP55,940 as the orthosteric ligand. Furan and thiophene rings (15c-f and 15m) were the best-tolerated substituents at the C2 position of GAT211 for engagement with human CB1R (hCB1R). The SAR around the novel ligands reported allowed direct experimental characterization of the interaction profile of that pharmacophore with its binding domain in functional, human CB1R, thus offering guidance for accessing subsequent-generation hCB1R allosteric modulators as potential therapeutics. The most potent analog, 15d, markedly promoted orthosteric ligand binding to hCB1R. Pharmacological profiling in the GTPγS and mouse vas deferens assays demonstrated that 15d behaves as a CB1R agonist-positive allosteric modulator (ago-PAM), as confirmed electrophysiologically in autoptic neurons. In vivo, 15d was efficacious as a topical agent that significantly reduced intraocular pressure (IOP) in the ocular normotensive murine model of glaucoma. Since elevated IOP is a decisive risk factor for glaucoma and attendant vision loss, our data support the proposition that the 2-phenylindole class of CB1R ago-PAMs has therapeutic potential for glaucoma and other diseases where potentiation of CB1R signaling may be therapeutic.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Desenho de Fármacos , Indóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Regulação Alostérica/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Pressão Intraocular/efeitos dos fármacos , Estrutura Molecular , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
6.
J Med Chem ; 64(13): 9354-9364, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34161090

RESUMO

Cannabidiol (CBD), the second most abundant of the active compounds found in the Cannabis sativa plant, is of increasing interest because it is approved for human use and is neither euphorizing nor addictive. Here, we design and synthesize novel compounds taking into account that CBD is both a partial agonist, when it binds to the orthosteric site, and a negative allosteric modulator, when it binds to the allosteric site of the cannabinoid CB2 receptor. Molecular dynamic simulations and site-directed mutagenesis studies have identified the allosteric site near the receptor entrance. This knowledge has permitted to perform structure-guided design of negative and positive allosteric modulators of the CB2 receptor with potential therapeutic utility.


Assuntos
Produtos Biológicos/farmacologia , Canabidiol/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Desenho de Fármacos , Receptor CB2 de Canabinoide/agonistas , Sítio Alostérico/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Canabidiol/síntese química , Canabidiol/química , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Cannabis/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
7.
Eur J Med Chem ; 220: 113354, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33915369

RESUMO

We report the development and extensive structure-activity relationship evaluation of a series of modified coumarins as cannabinoid receptor ligands. In radioligand, and [35S]GTPγS binding assays the CB receptor binding affinities and efficacies of the new ligands were determined. Furthermore, we used a ligand-based docking approach to validate the empirical observed results. In conclusion, several crucial structural requirements were identified. The most potent coumarins like 3-butyl-7-(1-butylcyclopentyl)-5-hydroxy-2H-chromen-2-one (36b, Ki CB2 13.7 nM, EC50 18 nM), 7-(1-butylcyclohexyl)-5-hydroxy-3-propyl-2H-chromen-2-one (39b, Ki CB2 6.5 nM, EC50 4.51 nM) showed a CB2 selective agonistic profile with low nanomolar affinities.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Cumarínicos/farmacologia , Receptores de Canabinoides/metabolismo , Animais , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Células Cultivadas , Cumarínicos/síntese química , Cumarínicos/química , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
8.
Drug Test Anal ; 13(7): 1412-1429, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33908179

RESUMO

The present work is the last of a three-part study investigating a panel of 30 systematically designed synthetic cannabinoid receptor agonists (SCRAs) including features such as the 4-pentenyl tail and varying head groups including amides and esters of l-valine (MMB, AB), l-tert-leucine (ADB), and l-phenylalanine (APP), as well as adamantyl (A) and cumyl moieties (CUMYL). Here, we evaluated these SCRAs for their capacity to activate the human cannabinoid receptor 1 (CB1 ) via indirect measurement of G protein recruitment. Furthermore, we comparatively evaluated the results obtained from three in vitro assays, based on the recruitment of ß-arrestin 2 (ßarr2 assay) or Gαi protein (mini-Gαi assay), or binding of [35 S]-GTPγS. The observed efficacies (Emax ) varied depending on the conducted assay. Statistical analysis suggests that the population means of the relative intrinsic activity (RAi ) significantly differ for the [35 S]-GTPγS assay and the other two assays, but the population means of the ßarr2 and mini-Gαi assays were not statistically different. Our data suggest that differences observed between the ßarr2 and mini-Gαi assays are the best predictor for 'biased agonism' towards ßarr or G protein recruitment in our study. SCRAs carrying an ADB or MPP moiety as a head group tended to produce elevated Emax values in the ßarr2 assay, which might result in a tendency of these compounds to cause pronounced tolerance in users-a hypothesis that should be evaluated further by future studies. In general, a comparison of efficacies derived from different assays is difficult and should only be conducted very cautiously.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Canabinoides/síntese química , Canabinoides/química , Humanos , Indazóis/síntese química , Indazóis/química , Indazóis/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Relação Estrutura-Atividade , beta-Arrestina 2/metabolismo
9.
J Med Chem ; 64(12): 8104-8126, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33826336

RESUMO

We apply the magic methyl effect to improve the potency/efficacy of GAT211, the prototypic 2-phenylindole-based cannabinoid type-1 receptor (CB1R) agonist-positive allosteric modulator (ago-PAM). Introducing a methyl group at the α-position of nitro group generated two diastereomers, the greater potency and efficacy of erythro, (±)-9 vs threo, (±)-10 constitutes the first demonstration of diastereoselective CB1R-allosteric modulator interaction. Of the (±)-9 enantiomers, (-)-(S,R)-13 evidenced improved potency over GAT211 as a CB1R ago-PAM, whereas (+)-(R,S)-14 was a CB1R allosteric agonist biased toward G protein- vs ß-arrestin1/2-dependent signaling. (-)-(S,R)-13 and (+)-(R,S)-14 were devoid of undesirable side effects (triad test), and (+)-(R,S)-14 reduced intraocular pressure with an unprecedentedly long duration of action in a murine glaucoma model. (-)-(S,R)-13 docked into both a CB1R extracellular PAM and intracellular allosteric-agonist site(s), whereas (+)-(R,S)-14 preferentially engaged only the latter. Exploiting G-protein biased CB1R-allosteric modulation can offer safer therapeutic candidates for glaucoma and, potentially, other diseases.


Assuntos
Agonistas de Receptores de Canabinoides/uso terapêutico , Glaucoma/tratamento farmacológico , Indóis/uso terapêutico , Receptor CB1 de Canabinoide/agonistas , Sítio Alostérico , Animais , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/metabolismo , Cricetulus , Células HEK293 , Hipocampo/citologia , Humanos , Indóis/síntese química , Indóis/metabolismo , Pressão Intraocular/efeitos dos fármacos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neurônios/efeitos dos fármacos , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
10.
Arch Pharm Res ; 44(4): 402-413, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33811300

RESUMO

Over the last decade, new psychoactive substances (NPS) have continuously been the focus of the international society since their emergence on the illicit drug market. NPS can be classified into six groups including; synthetic cannabinoid receptor agonists (SCRAs), stimulants, opioids, dissociatives, sedatives/hypnotics, and classic hallucinogens with psychoactive effects. These are sold as "herbal incense," "bath salts," "legal highs," and "research chemicals". They can be synthesized easily with slight changes in the chemical moieties of known psychoactive substances. NPS are sold worldwide via on- and off-line markets without proper scientific evaluation regarding their safety or harmfulness. Abuse of NPS poses a serious public health issue, and systematic studies on their adverse effects are lacking. Therefore, it would be meaningful to collect currently available data in order to understand NPS and to establish viable solutions to cope with the various health issues related to them. In this article, we reviewed the general pharmacological characteristics, recent findings, and adverse effects of representative NPS; SCRAs. SCRAs are known as the most commonly abused NPS. Most SCRAs, cannabinoid receptor 1 and cannabinoid receptor 2 agonists, are often associated with severe toxicities, including cardiotoxicity, immunotoxicity, and even death, unlike natural cannabinoid Δ9-Tetrahydrocannabinol.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Psicotrópicos/farmacologia , Receptores de Canabinoides/metabolismo , Agonistas de Receptores de Canabinoides/efeitos adversos , Agonistas de Receptores de Canabinoides/síntese química , Humanos , Estrutura Molecular , Psicotrópicos/efeitos adversos , Psicotrópicos/síntese química
11.
Drug Test Anal ; 13(7): 1402-1411, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33769699

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) are the second largest class of new psychoactive substances (NPS) and are associated with serious adverse effects and even death. Despite this, little pharmacological data are available for many of the most recent SCRAs. This study consists of three different parts, aiming to systematically evaluate a panel of 30 SCRAs using binding and different in vitro human cannabinoid 1 receptor (CB1 ) activation assays. The present Part II investigated the SCRA analogs for their CB1 activation via a ß-arrestin recruitment assay. The panel was systematically designed to include key structural sub-features of recent SCRAs. Thus, the 4-pentenyl tail of MMB-4en-PICA and MDMB-4en-PINACA was retained while incorporating varying head groups from other prevalent SCRAs, including amides and esters of L-valine, L-tert-leucine, and L-phenylalanine, and adamantyl and cumyl moieties. All 30 SCRAs activated CB1 , with indazoles generally showing the greatest potency (EC50 = 1.88-281 nM), followed by indoles (EC50 = 11.5-2293 nM), and the corresponding 7-azaindoles (EC50 = 62.4-9251 nM). Several subunit-linked structure-activity relationships were identified: (i) tert-leucine-functionalized SCRAs were more potent than the corresponding valine derivatives; (ii) no major difference in potency or efficacy was observed between tert-leucine/valine-derived amides and the corresponding methyl esters; however, phenylalanine analogs were affected by this change; and (iii) minor structural changes to the 4-pentenyl substituent had little influence on activity. These findings elucidate structural features that modulate the CB1 activation potential of currently prevalent SCRAs and a systematic panel of analogs, some of which may appear in NPS markets in future.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , beta-Arrestinas/metabolismo , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Canabinoides/síntese química , Canabinoides/química , Humanos , Indazóis/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Relação Estrutura-Atividade
12.
J Med Chem ; 64(7): 3870-3884, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33761251

RESUMO

We report the development of novel cannabinergic probes that can stabilize the cannabinoid receptors (CBRs) through tight binding interactions. Ligand design involves the introduction of select groups at a judiciously chosen position within the classical hexahydrocannabinol template (monofunctionalized probes). Such groups include the electrophilic isothiocyanato, the photoactivatable azido, and the polar cyano moieties. These groups can also be combined to produce bifunctionalized probes potentially capable of interacting at two distinct sites within the CBR-binding domains. These novel compounds display remarkably high binding affinities for CBRs and are exceptionally potent agonists. A key ligand (27a, AM11245) exhibits exceptionally high potency in both in vitro and in vivo assays and was designated as "megagonist," a property attributed to its tight binding profile. By acting both centrally and peripherally, 27a distinguishes itself from our previously reported "megagonist" AM841, whose functions are restricted to the periphery.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Analgésicos/síntese química , Analgésicos/metabolismo , Analgésicos/farmacologia , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/metabolismo , Canabinoides/síntese química , Canabinoides/metabolismo , Cricetulus , Humanos , Ligantes , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Ratos
13.
Artigo em Inglês | MEDLINE | ID: mdl-33741446

RESUMO

More than 500 molecules have been identified as components of Cannabis sativa (C. sativa), of which the most studied is Δ9-tetrahydrocannabinol (Δ9-THC). Several studies have suggested that Δ9-THC exerts diverse biological effects, ranging from fragmentation of DNA to behavioral disruptions. Currently, it is accepted that most of the pharmacological properties of Δ9-THC engage the activation of the cannabinoid receptors, named CB1 and CB2. Interestingly, multiple pieces of evidence have suggested that the cannabinoid receptors play an active role in the modulation of several diseases leading to the design of synthetic cannabinoid-like compounds. Advances in the development of synthetic CB1 cannabinoid receptor selective agonists as therapeutical approaches are, however, limited. This review focuses on available evidence searched in PubMed regarding the synthetic CB1 cannabinoid receptor selective agonists such as AM-1235, arachidonyl-2' chloroethylamide (ACEA), CP 50,556-1 (Levonantradol), CP-55,940, HU-210, JWH-007, JWH-018, JWH-200 (WIN 55,225), methanandamide, nabilone, O-1812, UR-144, WIN 55,212-2, nabiximols, and dronabinol. Indeed, it would be ambitious to describe all available evidence related to the synthetic CB1 cannabinoid receptor selective agonists. However, and despite the positive evidence on the positive results of using these compounds in experimental models of health disturbances and preclinical trials, we discuss evidence in regards some concerns due to side effects.


Assuntos
Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/uso terapêutico , Substâncias Controladas/síntese química , Receptor CB1 de Canabinoide/agonistas , Analgésicos/síntese química , Analgésicos/uso terapêutico , Animais , Ansiolíticos/síntese química , Ansiolíticos/uso terapêutico , Canabinoides/síntese química , Canabinoides/uso terapêutico , Substâncias Controladas/administração & dosagem , Cicloexanóis/síntese química , Cicloexanóis/uso terapêutico , Dronabinol/análogos & derivados , Dronabinol/síntese química , Dronabinol/uso terapêutico , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Fenantridinas/síntese química , Fenantridinas/uso terapêutico , Receptor CB1 de Canabinoide/metabolismo
14.
Drug Test Anal ; 13(7): 1383-1401, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33787091

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) are one of the largest and most structurally diverse classes of new psychoactive substances (NPS). Despite this, pharmacological data are often lacking following the identification of a new SCRA in drug markets. In this first of a three-part series, we describe the synthesis, analytical characterization, and binding affinity of a proactively generated, systematic library of 30 indole, indazole, and 7-azaindole SCRAs related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA featuring a 4-pentenyl (4en-P), butyl (B/BUT), or 4-cyanobutyl (4CN-B/BUT) tail and a methyl l-valinate (MMB), methyl l-tert-leucinate (MDMB), methyl l-phenylalaninate (MPP), l-valinamide (AB), l-tert-leucinamide (ADB), l-phenylalaninamide (APP), adamantyl (A), or cumyl head group. Competitive radioligand binding assays demonstrated that the indazole core conferred the highest CB1 binding affinity (Ki = 0.17-39 nM), followed by indole- (Ki = 0.95-160 nM) and then 7-azaindole-derived SCRAs (Ki = 5.4-271 nM). Variation of the head group had the greatest effect on binding, with tert-leucine amides and methyl esters (Ki = 0.17-14 nM) generally showing the greatest affinities, followed by valine derivatives (Ki = 0.72-180 nM), and then phenylalanine derivatives (Ki = 2.5-271 nM). Adamantyl head groups (Ki = 8.8-59 nM) were suboptimal for binding, whereas the cumyl analogues consistently conferred high affinity (Ki = 0.62-36 nM). Finally, both butyl (Ki = 3.1-163 nM) and 4-cyanobutyl (Ki = 5.5-44 nM) tail groups were less favorable for CB1 binding than their corresponding 4-pentenyl counterparts (Ki = 0.72-25 nM).


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Receptor CB1 de Canabinoide/agonistas , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Canabinoides/síntese química , Canabinoides/química , Humanos , Indazóis/síntese química , Indazóis/química , Indazóis/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Ensaio Radioligante , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
15.
J Am Chem Soc ; 143(2): 736-743, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33399457

RESUMO

Cannabinoid receptor 2 (CB2) is a promising target for the treatment of neuroinflammation and other diseases. However, a lack of understanding of its complex signaling in cells and tissues complicates the therapeutic exploitation of CB2 as a drug target. We show for the first time that benchmark CB2 agonist HU308 increases cytosolic Ca2+ levels in AtT-20(CB2) cells via CB2 and phospholipase C. The synthesis of photoswitchable derivatives of HU308 from the common building block 3-OTf-HU308 enables optical control over this pathway with spatiotemporal precision, as demonstrated in a real-time Ca2+ fluorescence assay. Our findings reveal a novel messenger pathway by which HU308 and its derivatives affect cellular excitability, and they demonstrate the utility of chemical photoswitches to control and monitor CB2 signaling in real-time.


Assuntos
Cálcio/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Receptor CB2 de Canabinoide/agonistas , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Canabinoides/síntese química , Canabinoides/química , Humanos , Estrutura Molecular , Processos Fotoquímicos
16.
ChemMedChem ; 16(1): 145-154, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369259

RESUMO

WOBE437 ((2E,4E)-N-(3,4-dimethoxyphenethyl)dodeca-2,4-dienamide, 1) is a natural product-derived, highly potent inhibitor of endocannabinoid reuptake. In this study, we synthesized almost 80 analogues of 1 with different types of modifications in the dodecadienoyl domain as well as the dimethoxyphenylethyl head group, and we investigated their effects on anandamide uptake into U937 cells. Intriguingly, none of these analogues was a more potent inhibitor of anandamide uptake than WOBE437 (1). At the same time, a number of WOBE437 variants exhibited potencies in the sub-100 nM range, with high selectivity over inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase; two compounds were virtually equipotent with 1. Interestingly, profound activity differences were observed between analogues in which either of the two methoxy substituents in the head group had been replaced by the same bulkier alkoxy group. Some of the compounds described here could be interesting departure points for the development of potent endocannabinoid uptake inhibitors with more drug-like properties.


Assuntos
Amidas/química , Agonistas de Receptores de Canabinoides/síntese química , Receptores de Canabinoides/química , Amidas/síntese química , Amidas/metabolismo , Amidoidrolases/química , Amidoidrolases/metabolismo , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/metabolismo , Humanos , Concentração Inibidora 50 , Receptores de Canabinoides/metabolismo , Relação Estrutura-Atividade , Células U937
17.
Cell Signal ; 78: 109865, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259937

RESUMO

The type 1 and type 2 cannabinoid receptors are G protein-coupled receptors implicated in a variety of physiological processes and diseases. Synthetic cannabinoid receptor agonists (SCRAs) were originally developed to explore the therapeutic benefits of cannabinoid receptor activation, although more recently, these compounds have been diverted to the recreational drug market and are increasingly associated with incidences of toxicity. A prominent concept in contemporary pharmacology is functional selectivity or biased agonism, which describes the ability of ligands to elicit differential activation of signalling pathways through stabilisation of distinct receptor conformations. Biased agonists may maximise drug effectiveness by reducing on-target adverse effects if they are mediated by signalling pathways distinct from those that drive the therapeutic effects. For the cannabinoid receptors, it remains unclear as to which signalling pathways mediate desirable and adverse effects. However, given their structural diversity and potential to induce a plethora of signalling effects, SCRAs provide the most promising prospect for detecting and studying bias at the cannabinoid receptors. This review summarises the emerging evidence of SCRA bias at the cannabinoid receptors.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Receptores de Canabinoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Humanos
18.
Eur J Med Chem ; 210: 113087, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321261

RESUMO

The development of selective CB2 receptor agonists is a promising therapeutic approach for the treatment of inflammatory diseases, without CB1 receptor mediated psychoactive side effects. Preliminary structure-activity relationship studies on pyrazoylidene benzamide agonists revealed the -ylidene benzamide moiety was crucial for functional activity at the CB2 receptor. A small library of compounds with varying linkage moieties between the pyrazole and substituted phenyl group has culminated in the discovery of a potent and selective pyrazolo-[2,3-e]-[1,2,4]-triazine agonist 19 (CB2R EC50 = 19 nM, CB1R EC50 > 10 µM). Docking studies have revealed key structural features of the linkage group that are important for potent functional activity.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Descoberta de Drogas , Receptor CB2 de Canabinoide/agonistas , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
19.
Drug Test Anal ; 13(3): 628-643, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33161649

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) elicit many of their psychoactive effects via type-1 human cannabinoid (CB1 ) receptors. Enantiomer pairs of eight tert-leucinate or valinate indole- and indazole-3-carboxamide SCRAs were synthesized and their CB1 potency and efficacy assessed using an in vitro ß-arrestin recruitment assay in a HEK239T stable cell system. A chiral high-performance liquid chromatography method with photodiode array and/or quadrupole time-of-flight-mass spectrometry detection (HPLC-PDA and HPLC-PDA-QToF-MS) was applied to 177 SCRA-infused paper samples seized in Scottish prisons between 2018 and 2020. In most samples, SCRAs were almost enantiopure (S)-enantiomer (>98% of total chromatographic peak area), although in some (n = 18), 2% to 16% of the (R)-enantiomer was detected. (S)-enantiomers are consistently more potent than (R)-enantiomers and often more efficacious. The importance of SCRA-CB1 receptor interactions in the "head" or "linked group" moiety is demonstrated, with the conformation of the "bulky" tert-leucinate group greatly affecting potency (by up to a factor of 374), significantly greater than the difference observed between valinate SCRA enantiomers. (S)-MDMB-4en-PINACA, (S)-4F-MDMB-BINACA, and (S)-5F-MDMB-PICA are currently the most prevalent SCRAs in Scottish prisons, and all have similar high potency (EC50 , 1-5 nM) and efficacy. Infused paper samples were compared using estimated intrinsic efficacy at the CB1 receptor (EIECB1 ) to evaluate samples with variable SCRA content. Given their similar potency and efficacy, any variation in CB1 receptor-mediated psychoactive effects are likely to derive from variation in dose, mode of use, pharmacokinetic differences, and individual factors affecting the user, rather than differences in the specific SCRA present.


Assuntos
Agonistas de Receptores de Canabinoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Drogas Ilícitas/análise , Espectrometria de Massas/métodos , Bioensaio/métodos , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Células HEK293 , Humanos , Drogas Ilícitas/síntese química , Drogas Ilícitas/química , Papel , Prisões , Escócia , Estereoisomerismo , beta-Arrestinas/metabolismo
20.
J Cardiovasc Pharmacol Ther ; 25(6): 508-522, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588641

RESUMO

Phytogenic cannabinoids from Cannabis sativa and synthetic cannabinoids are commonly used substances for their recreational and medicinal properties. There are increasing reports of cardiotoxicity in close temporal association with cannabinoid use in patients with structurally normal hearts and absence of coronary arterial disease. Associated adverse events include myocardial ischemia, conduction abnormalities, arrhythmias, and sudden death. This review details the effects of phytogenic and synthetic cannabinoids on diverse receptors based on evidence from in vitro, human, and animal studies to establish a molecular basis for these deleterious clinical effects. The synergism between endocannabinoid dysregulation, cannabinoid receptor, and noncannabinoid receptor binding, and impact on cellular ion flux and coronary microvascular circulation is delineated. Pharmacogenetic factors placing certain patients at higher risk for cardiotoxicity are also correlated with the diverse effects of cannabinoids.


Assuntos
Síndrome Coronariana Aguda/induzido quimicamente , Arritmias Cardíacas/induzido quimicamente , Agonistas de Receptores de Canabinoides/efeitos adversos , Canabinoides/efeitos adversos , Cannabis/efeitos adversos , Coração/efeitos dos fármacos , Abuso de Maconha/complicações , Fumar Maconha/efeitos adversos , Síndrome Coronariana Aguda/fisiopatologia , Animais , Arritmias Cardíacas/fisiopatologia , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/isolamento & purificação , Canabinoides/síntese química , Canabinoides/isolamento & purificação , Cannabis/química , Cardiotoxicidade , Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Receptores de Canabinoides/efeitos dos fármacos , Medição de Risco , Fatores de Risco , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...