Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.174
Filtrar
1.
Food Chem ; 462: 140847, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226647

RESUMO

Effects of varying degree of milling (DOM) (0-22%) on the bran layer structure, physicochemical properties, and cooking quality of brown rice were explored. As the DOM increased, bran degree, protein, lipid, dietary fiber, amylose, mineral elements, and color parameters (a* and b* values) of milled rice decreased while starch and L* value increased. Microscopic fluorescence images showed that the pericarp, combined seed coat-nucellus layer, and aleurone layer were removed in rice processed at DOM of 6.6%, 9.2%, and 15.4%, respectively. The pasting properties, thermal properties, and palatability of rice increased as the DOM increased. Principal component and correlation analysis indicated that excessive milling lead to a decline in nutritional value of rice with limited impact on enhancing palatability. Notably, when parts of aleurone cell wall were retained, rice samples exhibited high cooking and sensory properties. It serves as a potential guide to the production of moderately milled rice.


Assuntos
Culinária , Fibras na Dieta , Oryza , Sementes , Oryza/química , Fibras na Dieta/análise , Sementes/química , Valor Nutritivo , Paladar , Humanos , Manipulação de Alimentos , Amido/química , Amilose/química , Amilose/análise
2.
PLoS One ; 19(9): e0310990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39325801

RESUMO

Morphology, composition and molecular structure of starch directly affect the functional properties. This study investigated the morphological, compositional, and molecular structure properties of starch from starch branching enzyme gene (SBE) and granule-bound starch synthase gene (GBSS) mutated potato, and their associations with thermal, pasting, and film-making properties. SBE mutations were induced in native variety Desiree while GBSS mutations were herestacked to a selected SBE mutated parental line. Mutations in SBE resulted in smaller starch granules and higher amylose content, while GBSS mutations in the SBE background reduced amylose content. Mutations in SBE, particularly with GBSS mutations, significantly increased total phosphorus content. 31P NMR spectroscopy revealed higher proportions of C6-bound phosphate than of C3-bound phosphate in all studied lines. Amylopectin unit chain and internal chain distributions showed higher proportions of long chains in mutated lines compared with Desiree. These amylopectin long-chains were positively correlated with gelatinizationand, pasting temperatures, and temperature at peak viscosity. Short amylopectin chains showed positive correlations with breakdown viscosity, but negative correlations with the crystal melting temperature of retrograded starch. Total phosphorus content was positively correlated with the crystal melting temperature of retrograded starch. Starch from different lines was used to produce a series of potato starch films that differed in morphology and functional properties. A negative correlation was observed between Young's modulus of films and the long amylopectin-chain fraction. Thermal gravimetric analysis revealed highest thermal stability of Desiree starch films, followed by films from SBE-mutated high-amylose lines. Oxygen transmission rate and oxygen permeability analyses showed that films made with starch from selected GBSS and SBEs mutated line maintained comparable oxygen barrier properties to Desiree film. These insights on the impact of genetic mutations on starch properties indicate potential applications of in-planta starch modification for specific end-uses including packaging.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Mutação , Solanum tuberosum , Sintase do Amido , Amido , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Amido/química , Amido/metabolismo , Sintase do Amido/genética , Sintase do Amido/metabolismo , Sintase do Amido/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/química , Amilose/química , Amilose/metabolismo , Amilopectina/química , Amilopectina/metabolismo , Viscosidade
3.
Carbohydr Polym ; 345: 122561, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227100

RESUMO

The digestibility of starch is affected by amylose content, and increasing amylopectin chain length which can be manipulated by alterations to genes encoding starch-branching enzymes (SBEs). We investigated the impact of Cas9-mediated mutagenesis of SBEs in potato on starch structural properties and digestibility. Four potato starches with edited SBE genes were tested. One lacked SBE1 and SBE2, two lacked SBE2 and had reduced SBE1, and one had reduced SBE2 only. Starch structure and thermal properties were characterised by DSC and XRD. The impact of different thermal treatments on digestibility was studied using an in vitro digestion protocol. All native potato starches were resistant to digestion, and all gelatinised starches were highly digestible. SBE modified starches had higher gelatinisation temperatures than wild type potatoes and retrograded more rapidly. Gelatinisation and 18 h of retrogradation, increased gelatinisation enthalpy, but this did not translate to differences in digestion. Following 7 days of retrogradation, starch from three modified SBE starch lines was less digestible than starch from wild-type potatoes, likely due to the recrystallisation of the long amylopectin chains. Our results indicate that reductions in SBE in potato may be beneficial to health by increasing the amount of fibre reaching the colon after retrogradation.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Mutagênese , Solanum tuberosum , Amido , Solanum tuberosum/genética , Solanum tuberosum/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/química , Amido/química , Amido/metabolismo , Digestão , Sistemas CRISPR-Cas/genética , Amilopectina/química , Amilopectina/metabolismo , Amilose/química , Amilose/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
4.
Carbohydr Polym ; 345: 122589, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227113

RESUMO

Maturity and drying treatment are important factors affecting the processing characteristics of lotus seeds and its starch. This study aimed to investigate the effect of maturity (from low to high-M-1, M-2, M-3, M-4) on far-infrared drying kinetics of lotus seeds, and on the variation of structure, gelation and digestive properties of lotus seed starch (LSS) before and after drying. As the maturity increased, the drying time reduced from 5.8 to 1.0 h. The reduction of drying time was correlated with the decrease of initial moisture content, the increase of water freedom and the destruction of tissue structure during ripening. The increased maturity and drying process altered the multiscale structure of LSS, including an increase in amylose content, disruption of the short-range structure, and a decrease in relative crystallinity and molecular weight. The viscosity, pasting temperature and enthalpy of LSS decreased during ripening, and drying treatment caused the further decrease. The digestibility of LSS increased during ripening and drying. Lotus seeds at M-4 would be optimal for obtaining shorter drying time, lower pasting temperature and enthalpy, and higher digestibility. This study provided theoretical guidance for achieving effective drying process and screening LSS with suitable processing properties through maturity sorting.


Assuntos
Lotus , Sementes , Amido , Sementes/química , Lotus/química , Amido/química , Dessecação/métodos , Viscosidade , Amilose/química , Peso Molecular , Digestão , Géis/química , Água/química , Temperatura , Estrutura Molecular
5.
Carbohydr Polym ; 346: 122592, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245484

RESUMO

Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.


Assuntos
Engenharia Metabólica , Solanum tuberosum , Amido , Solanum tuberosum/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/química , Amido/química , Amido/metabolismo , Amido/biossíntese , Engenharia Metabólica/métodos , Tubérculos/metabolismo , Tubérculos/química , Amilose/biossíntese , Amilose/metabolismo , Amilose/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
6.
Carbohydr Polym ; 346: 122618, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245527

RESUMO

Starch is one of the natural encapsulant materials widely used in food, pharmaceutical and cosmetic industries. Starch with high amylose content (above 40 %, w/w) is prone to form single helices V-type allomorph with a hydrophilic outer surface and a hydrophobic inner cavity making them suitable for encapsulation of hydrophobic compounds such as essential oils, fatty acids, and vitamins. Pea starch obtained from pea protein processing industries have a high amylose content (40 %, w/w) rendering them unsuitable for direct food applications as ingredients. Therefore, in this study, an in-house spraying procedure was used to synthesize nanoparticles using pea starch, to encapsulate neem oil, a natural antimicrobial compound obtained from neem plant (Azadirachta indica) seed. The synthesis of the oil-encapsulated starch nanoparticles (OESNP) was optimized using a Box-Behnken experimental design to study the influence of the processing parameters such as the initial starch concentration, homogenization speed, duration of homogenization, sample injection rate, and quantity of antisolvent (ethanol). The optimized sample showed an 80-90 % encapsulation efficiency and particle size of <500 nm. The spherical OESNPs also demonstrated sustained release of the oil compared to free oil when dispersed in water. X-ray diffraction analysis revealed the coexistence of C-type and V-type polymorphs in the loaded and unloaded nanoparticles. It is concluded that the synthesized OESNPs with controlled release hold the potential to utilize industrial pea starch waste for the delivery of natural pesticides in agriculture.


Assuntos
Glicerídeos , Nanopartículas , Pisum sativum , Amido , Pisum sativum/química , Nanopartículas/química , Amido/química , Glicerídeos/química , Tamanho da Partícula , Terpenos/química , Óleos de Plantas/química , Agricultura/métodos , Azadirachta/química , Amilose/química
7.
Food Res Int ; 194: 114887, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232521

RESUMO

White rice consumption has been regarded as a potential risk factor for non-communicable diseases including obesity and type 2 diabetes. Thus, increasing attention has been paid to develop slowly digested rices with acceptable palatability. As the most abundant component of rice kernels, the fine molecular structure of starch controls not only the texture & aroma, but also the digestion properties of cooked rice. A large number of studies have been conducted to see what molecular structural features control the digestibility and palatability of cooked rice, which further could be connected to starch biosynthesis to enable rices with targeted functionalities to be chosen in non-empirical ways. Nonetheless, little progress has been made because of improper experimental designs. For example, the effects of starch fine molecular structure on cooked rice digestibility and palatability has been rarely studied within one study, resulting to various digestion results. Even for the same sample, it is hard to obtain consistent conclusions and sometimes, the results/coclusions are even controversy. In this review paper, starch fine molecular structural effects on the texture, aroma and starch digestion properties of cooked white rice were summarized followed by a detailed discussion of the relations between the fine molecular structures of amylopectin and amylose to deduce a more general conclusion of starch molecular structure-cooked rice property relations. It is expected that this review paper could provide useful information in terms of how to develop slowly digested rices with acceptable palatability.


Assuntos
Culinária , Digestão , Oryza , Amido , Oryza/química , Amido/química , Amido/metabolismo , Amilopectina/química , Humanos , Amilose/química , Relação Estrutura-Atividade , Estrutura Molecular , Paladar
8.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273191

RESUMO

Starch is the main component that determines the yield and quality of Tartary buckwheat. As a quantitative trait, using quantitative trait locus (QTL) mapping to excavate genes associated with starch-related traits is crucial for understanding the genetic mechanisms involved in starch synthesis and molecular breeding of Tartary buckwheat varieties with high-quality starch. Employing a recombinant inbred line population as research material, this study used QTL mapping to investigate the amylose, amylopectin, and total starch contents across four distinct environments. The results identified a total of 20 QTLs spanning six chromosomes, which explained 4.07% to 14.41% of the phenotypic variation. One major QTL cluster containing three stable QTLs governing both amylose and amylopectin content, qClu-4-1, was identified and located in the physical interval of 39.85-43.34 Mbp on chromosome Ft4. Within this cluster, we predicted 239 candidate genes and analyzed their SNP/InDel mutations, expression patterns, and enriched KEGG pathways. Ultimately, five key candidate genes, namely FtPinG0004897100.01, FtPinG0002636200.01, FtPinG0009329200.01, FtPinG0007371600.01, and FtPinG0005109900.01, were highlighted, which are potentially involved in starch synthesis and regulation, paving the way for further investigative studies. This study, for the first time, utilized QTL mapping to detect major QTLs controlling amylose, amylopectin, and total starch contents in Tartary buckwheat. The QTLs and candidate genes would provide valuable insights into the genetic mechanisms underlying starch synthesis and improving starch-related traits of Tartary buckwheat.


Assuntos
Mapeamento Cromossômico , Fagopyrum , Locos de Características Quantitativas , Amido , Fagopyrum/genética , Fagopyrum/metabolismo , Amido/genética , Amido/metabolismo , Polimorfismo de Nucleotídeo Único , Fenótipo , Amilose/metabolismo , Amilose/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Amilopectina/metabolismo , Amilopectina/genética , Genes de Plantas
9.
Int J Biol Macromol ; 277(Pt 3): 134332, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089563

RESUMO

It is becoming increasingly important to have starch sources with different physicochemical properties to meet the needs of new applications in food, packaging, bioplastic, and pharmaceutical industries. The first part of this study dealt with the isolation of starch from culturally, geographically, nutritionally esteemed, and high-yielding Assam Joha rice. Fine and uniform particle size (6.3 ± 0.09 µm), high amylose content (28 ± 1.03 %), swelling behavior, viscoelastic rheological behavior, moderate gelatinization temperature (66 ± 1.7 °C), thermostable nature, type A crystallographic pattern with high (45 ± 3.3 %) crystallinity, and suitable microbial quality make the Joha rice derived starch physico-chemically and functionally suitable for potential applications in diverse domains. The latter part of the study focuses on one of the applications of derived starch as a suitable matrix for intelligent packaging films with the incorporation of betanin-enriched beetroot extract (BRE) as a bio-based pH sensor. The addition of 1.0 % w/v BRE to the starch film (starch-BRE III) significantly increased its functionality by reducing UV-visible light transmittance and water vapor permeability, along with enhancing flexibility and hydrophobicity due to intermolecular bonding between BRE and the starch film matrix. Moreover, starch-BRE films with different BRE concentrations were successfully used to monitor the real-time freshness of white meat (chicken and fish) and Indian cottage cheese samples. Overall, the results indicated that starch-BRE III has great potential as an intelligent packaging material for monitoring food freshness.


Assuntos
Beta vulgaris , Embalagem de Alimentos , Oryza , Extratos Vegetais , Amido , Amido/química , Embalagem de Alimentos/métodos , Beta vulgaris/química , Oryza/química , Extratos Vegetais/química , Amilose/química , Amilose/análise , Permeabilidade , Reologia , Concentração de Íons de Hidrogênio , Temperatura
10.
Int J Biol Macromol ; 277(Pt 4): 134508, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106932

RESUMO

The aim of this work was to investigate the effects of ultrasonic treatment during soaking of potatoes on the physicochemical properties of starches obtained after 16 weeks of germination. The ultrasonic treatment showed a direct correlation between sprout length and ultrasonic time. The protein content decreased from 0.63 to 0.38 % and the fat content decreased significantly from 0.31 to 0.01 % after germination. The amylose content changed depending on the ultrasonic treatment, and increased from 36.27 to 40.92 % after 16 weeks of germination, which was related to the amylopectin debranching and the duration of the ultrasonic treatment. X-ray diffraction showed that the nanocrystals with hexagonal structure were not affected by the germination and the duration of ultrasonic treatment. Scanning electron microscopy showed that the surface of the starch granules was not affected by the enzymatic treatment. The sprouted potato starch resulted in films with better tensile strength and lower water vapor permeability (WVP) compared to the native potato starch films. In addition, the films produced with ultrasound stimulated potato starch exhibited better properties (high strength and low permeability), which is desirable when it comes to controlling moisture exchange between a food product and the surrounding atmosphere.


Assuntos
Fenômenos Químicos , Filmes Comestíveis , Germinação , Solanum tuberosum , Amido , Solanum tuberosum/química , Amido/química , Permeabilidade , Ondas Ultrassônicas , Amilose/química , Vapor , Resistência à Tração , Difração de Raios X
11.
Food Chem ; 460(Pt 3): 140804, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39137578

RESUMO

Here, we investigated the complexation of short chain amylose (SCAs) and palmitic acid (PA), serving as polymeric building blocks that alter the selectivity and directionality of particle growth. This alteration affects the shape anisotropy of the particles, broadening their applications due to the increased surface area. By modifying the concentration of PA, we were able to make spherical, macaron, and disc-shaped particles, demonstrating that PA acts as a structure-directing agent. We further illustrated the lateral and longitudinal stacking kinetics between PA-SCA inclusion complexes during self-assembly, leading to anisotropy. Transmission electron microscope (TEM) and scanning electron microscope (SEM) revealed the structural difference between the initial and final morphologies of palmitic acid-short chain amylose particles (PA-SCAPs) compared to those of short-chain amylose particle (SCAPs). The presence of PA-SCA inclusion complex in the anisotropic particles was confirmed using nuclear magnetic resonance (NMR) and powder x-ray diffraction (XRD) analysis.


Assuntos
Amilose , Cristalização , Ácido Palmítico , Tamanho da Partícula , Amilose/química , Ácido Palmítico/química , Cinética , Difração de Raios X
12.
Food Chem ; 461: 140825, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151352

RESUMO

The research compared the combined effect of ultrasound (160 W, 2 min), oleic acid (15%, 11 h), and moist-heat treatment (HMT, 25% moisture content, 110 °C, 2 h) with their individual treatment on rice grains. The results showed that ultrasound treatment created pores and cracks in the rice grains, facilitating an easier penetration for oleic acid to develop amylose-oleic acid complex during HMT. Compared to native raw rice (NR), both single and combined treatments significantly altered the morphology, reduced swelling power and solubility, enhanced hydrophilicity, thus changing the moisture distribution, thermal and pasting characteristics. Notably, the combined treatment of three techniques significantly increased the relative crystallinity, accompanied by the highest digestive resistance, and the content of resistant starch was increased from 20.53% in NR to 31.75%, much higher than the other treatments. These findings provide potential for the manufacturers to rationally and flexibly employ this low digestible rice in health food products.


Assuntos
Digestão , Temperatura Alta , Ácido Oleico , Oryza , Oryza/química , Oryza/metabolismo , Ácido Oleico/química , Manipulação de Alimentos , Solubilidade , Amido/química , Amido/metabolismo , Amilose/química , Amilose/metabolismo , Amilose/análise
13.
Int J Biol Macromol ; 278(Pt 3): 134804, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154677

RESUMO

The substitution of margarine with candelilla wax (CW)-based oleogel is currently a prominent focus of research in the bakery industry. However, the use of CW-based oleogel in cookies increased starch digestibility, potentially posing a risk to human health. Thus, the anti-enzymatic mechanism of lipid-amylose complexes was used to evaluate the influence of olive diacylglycerol stearin (ODS) on starch digestibility in CW-based oleogel cookies. The in vitro digestibility analysis demonstrated that the DCW/ODS-35 cookie exhibited a increase of 27.72 % in slowly digestible starch (SDS) and resistant starch (RS) contents, compared to cookie formulated with margarine. The in-vivo glycemic index analysis revealed that the DCW/ODS-35 cookie had a medium glycemic index of 68. XRD pattern suggested that the presence of ODS in oleogels facilitated the formation of lipid-amylose complexes. The DSC analysis revealed that the addition of ODS resulted in the gelatinization enthalpy of DCW-based cookies increased from 389.9 to 3314.9 J/g. The FTIR spectra indicated that the combination of ODS could promote a short-range ordered structure in DCW-based cookies. Overall, these findings demonstrated that the utilization of DCW-based oleogel presented a viable alternative to commercial margarine in the development of CW-based cookies with reduced starch digestibility.


Assuntos
Amilose , Compostos Orgânicos , Ceras , Ceras/química , Amilose/química , Amilose/análise , Compostos Orgânicos/química , Amido/química , Lipídeos/química , Digestão , Amido Resistente
14.
Int J Biol Macromol ; 278(Pt 2): 134869, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163964

RESUMO

This study investigated the physicochemical structural changes in different types of rice (japonica rice [JR], indica rice [IR], and waxy rice [WR]) during oral digestion and explored the reasons for differences in oral digestion between the three different types. The results showed that, compared with JR (42.41 ± 3.06 mg/g) and WR (26.82 ± 0.67 mg/g), IR had the highest amylose content (49.95 ± 3.33 mg/g) and, related to this, hydrolysis rate. A correlation analysis showed that, the higher the amylose content, the harder the texture of rice, leading to longer chewing times and, as a result, a greater degree of hydrolysis. In addition, the higher the amylose content, the lower the exudate content and viscosity of rice, which affects chewing time and frequency, thereby affecting the degree of hydrolysis. Both X-ray computed tomography and scanning electron microscopy indicated that cooked IR had the loosest structure and the most pores, that were conducive to chewing and crushing and therefore contributed to the high hydrolysis rate. Analysis of the exudate structure showed that the amount of exudate affected rice pores. More exudates lead to pore coverage and a tight structure.


Assuntos
Amilose , Mastigação , Oryza , Oryza/química , Amilose/análise , Amilose/química , Hidrólise , Viscosidade , Humanos
15.
Int J Biol Macromol ; 278(Pt 3): 134895, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168202

RESUMO

The high starch content and cost-effectiveness of cassava make it an attractive adjunct in beer brewing, with the fine structure of starch playing a crucial role in determining the composition of fermentable sugars (FS) and overall beer quality. This study investigated the effect of extrusion-induced changes in the starch structure of cassava flour on the FS profile of the wort and, consequently, on the quality attributes of cassava beer. The findings revealed that the shear stress during extrusion significantly reduced the molecular weight to 1.20 × 105g/mol and the branching degree of amylopectin. Simultaneously, there was an increase in the concentrations of short- and intermediate- chain amylose by 5.61% and 42.72%, respectively. These structural changes enhanced the enzymatic hydrolysis of extruded cassava flour (ECF), resulting in a higher total fermentable sugars content (22.00g/100 mL) in the ECF wort, predominantly composed of maltose and glucose. Furthermore, the altered FS profile led to an increased production of higher alcohols and esters in extruded cassava beer (ECB), particularly noted for the elevation of 2-phenylethyl alcohol levels, which imparted a distinctive rose aroma to the ECB. Consequently, the sensory profile of ECB showed significant improvement. This study offers critical insight into optimizing cassava beer quality and broadens the potential applications of cassava flour in the brewing industry.


Assuntos
Cerveja , Fermentação , Manihot , Amido , Manihot/química , Cerveja/análise , Amido/química , Açúcares/análise , Farinha/análise , Amilose/análise , Amilose/química , Hidrólise , Amilopectina/química
16.
Int J Biol Macromol ; 278(Pt 4): 135032, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182880

RESUMO

Native lotus (Nelumbo nucifera G.) seed starch (LSS) was single- and dual-modified by heat-moisture treatment (HMT), ultrasonication (US), HMT followed by the US (HMT-US), and the US followed by HMT (US-HMT). The modified lotus seed starch (LSS) was evaluated for its physicochemical, pasting, thermal, and rheological properties and in vitro digestibility. All treatments decreased the swelling power (10.52-14.0 g/g), solubility (12.20-15.95 %), and amylose content (23.71-25.67 %) except for ultrasonication (17.67 g/g, 17.90 %, 29.09 %, respectively) when compared with native LSS (15.05 g/g, 16.12 %, 27.12 %, respectively). According to the rheological study, G' (1665-4004 Pa) was greater than G″ (119-308 Pa) for all LSS gel samples demonstrating their elastic character. Moreover, gelatinization enthalpy (17.56-16.05 J/g) increased in all treatments compared to native LSS (15.38 J/g). Ultrasonication treatment improved the thermal stability of LSS. The digestibility results showed that dual modification using HMT and US significantly enhanced resistant starch (RS) and reduced slowly digestible starch (SDS) in LSS. Cracks were observed on the surface of the modified LSS granules. Peak viscosity decreased in all modified starches except for ultrasonication, suggesting their resistance to shear-thinning during cooking, making them ideal weaning food components. The results obtained after different modifications in this study could be a useful ready reference to select appropriate modification treatments to produce modified LSS with desired properties depending on their end-use.


Assuntos
Reologia , Sementes , Amido , Amido/química , Sementes/química , Nelumbo/química , Solubilidade , Digestão , Amilose/química , Temperatura Alta , Viscosidade
17.
Carbohydr Polym ; 343: 122440, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174085

RESUMO

Starch is the main source of dietary energy for humans. In order to understand the mechanisms governing native starch in vitro digestion, digestion data for six starches [wheat, maize, (waxy) maize, rice, potato and pea] of different botanical sources were fitted with the most common first-order kinetic models, i.e. the single, sequential, parallel and combined models. Parallel and combined models provided the most accurate fits and showed that all starches studied except potato starch followed a biphasic in vitro digestion pattern. The biological relevance of the kinetic parameters was explored by determining changes in crystallinity and molecular structure of the undigested starch residues during in vitro digestion. While the crystallinity of the undigested potato starch residues did not change substantially, a respectively small and large decrease in their amylose content and chain length during in vitro digestion was observed, indicating that amylose was digested slightly preferentially over amylopectin in native starch. However, the molecular structure of the starch residues changed too slowly and/or only to an insufficient extent to relate it to the kinetic parameters of the digested fractions predicted by the models. Such parameters thus need to be interpreted with caution, as their biological relevance still needs to be proven.


Assuntos
Digestão , Amido , Cinética , Amido/química , Amido/metabolismo , Amilose/química , Amilose/metabolismo , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Oryza/química , Oryza/metabolismo , Zea mays/química , Zea mays/metabolismo , Humanos , Amilopectina/química , Cristalização , Hidrólise
18.
Carbohydr Polym ; 343: 122450, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174127

RESUMO

Gelatinizing high-amylose maize starch (HAMSt) requires high temperatures to allow complexation with lipids, making it a challenging process. An octenylsuccinylation method was examined as a part of a strategy to decrease the gelatinization temperature of HAMSt, thereby promoting the complexation between HAMSt and myristic acid (MAc). Octenyl succinic anhydride (OSA) modification of HAMSt reduces the onset gelatinization temperature of HAMSt from 71.63 °C to 66.97 °C. Moreover, as the OSA concentration increased from 2 % to 11 %, the degree of substitution and molecular weights of the esterified HAMSt gradually increased from 0.0069 to 0.0184 and from 0.97 × 106 to 1.17 × 106 g/mol, respectively. Fourier transform infrared analysis indicated that the octenyl-succinate groups were grafted onto the HAMSt chains. The formation of HAMSt-MAc complexes improved the thermal stability of OSA-treated HAMSt (peak temperature increased by 0.11 °C-13.95 °C). Moreover, the diffraction intensity of the V-type peak of the 11 % sample was greater than that of other samples. Finally, the anti-retrogradation ability was in the order of OSA-HAMSt-MAc complexes > HAMSt-MAc complexes > HAMSt. Overall, our results indicate that octenylsuccinylation can be an effective strategy to promote the formation of OSA-HAMSt-MAc complexes and delay starch retrogradation.


Assuntos
Amilose , Ácido Mirístico , Amido , Succinatos , Zea mays , Zea mays/química , Amilose/química , Amido/química , Amido/análogos & derivados , Succinatos/química , Ácido Mirístico/química , Temperatura , Anidridos Succínicos/química
19.
Int J Biol Macromol ; 278(Pt 1): 134403, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094882

RESUMO

This study evaluated the influence of the amylose and amylopectin on the physicochemical properties and printing performance of corn starch gels. Amylose in starch-based gels enhances their storage modulus and the support performance of printed products by promoting the formation of cross-linked gel structures and crystalline structures. However, the higher amylose content in starch gels makes extrusion difficult, resulting in intermittent extrusion in 3D printing. Despite the increased shear-thinning ability of high-amylose starch, its low water retention capacity leads to water loss and rough printed morphology. Additionally, starch with 72 % amylose content exhibits insufficient adhesive properties for effective layer bonding, negatively impacting structural integrity. While gels with 72 % and 56 % amylose content demonstrate higher viscosity and enhanced mechanical properties, their poor adhesion limits the quality of printed layers. Conversely, waxy starch gel demonstrates continuous extrusion and adhesion but lacks adequate support. The 27 % corn starch gel achieves the highest 3D printing accuracy at 88.12 %, suggesting an optimal amylose-amylopectin ratio for desired ink material performance. These findings enhance our understanding of the relationship between amylose content in starch and 3D printing performance, providing a theoretical basis for the development of starch-based printing products.


Assuntos
Amilopectina , Amilose , Impressão Tridimensional , Reologia , Amido , Zea mays , Amilose/química , Amilopectina/química , Amido/química , Zea mays/química , Viscosidade , Géis/química
20.
Int J Biol Macromol ; 278(Pt 1): 134577, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122075

RESUMO

The effects of freeze-thaw cycles (FTC) on starch gel structure and quality characteristics of frozen extruded whole buckwheat noodles (FEWBN) were studied. The repeated FTC treatments induced the retrogradation of amylose which increased the compactness, crystallinity, hardness, and cooking time of FEWBN. However, with the increasing number of freeze-thaw cycles, the larger volume of ice crystals formed in the noodles destroyed the starch gel network structure to a certain extent, and led to the dehydration and syneresis of the noodles, and the quality deterioration. However, moderate amylose retrogradation occurred during the FTC treatment was found to be beneficial for the quality of FEWBN. After one time of FTC treatment, the cooking loss of 3.53 % was even lower compared with that without FTC treatment (4.61 %). After seven times of FTC treatment, the cooking loss of FEWBN was 6.53 %, and the breaking rate was still 0, indicating that FEWBN could resist the damage caused by temperature fluctuations on the internal structure of frozen food to a certain extent, and maintain good quality. This study establishes a fundamental basis for the development of buckwheat noodles with good freeze-thaw stability and high cooking quality.


Assuntos
Fagopyrum , Congelamento , Géis , Amido , Fagopyrum/química , Amido/química , Géis/química , Culinária/métodos , Amilose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA