Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4420-4426, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307778

RESUMO

Based on the differences in targeted energy metabolomics, intestinal barrier protein expression, and glucose transport,the synergistic mechanism of Coptidis Rhizoma(CR) processed with Euodiae Fructus(ECR) on ulcerative colitis(UC) was explored.Mice were administered 4% dextran sulfate sodium to induce UC model, and then randomly divided into a model group, a CR group,and an ECR group. After 14 days of treatment, the therapeutic effect of processing on UC was assessed through histopathology of colon tissue and inflammatory indexes. Targeted energy metabolomics analysis was performed to evaluate the effect of processing on colon tissue energy metabolism. Molecular docking was carried out to predict the binding affinity of energy metabolites with intestinal barrier tight junction protein Claudin and glucose transporter 2(GLUT2). In vivo unidirectional intestinal perfusion experiments in rats were conducted to evaluate the effect of processing on intestinal glucose transport. The results showed that both CR and ECR could repair colon tissue damage in UC mice, downregulate tissue inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α)levels, with the efficacy of ECR being superior to CR. Processed products significantly upregulated levels of multiple metabolites in colon tissue glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation, among which the upregulated levels of 1,6-diphosphate fructose and acetyl coenzyme A could bind well with Claudin and GLUT2. Additionally, the processed product also increased the expression of GLUT2 and enhanced glucose transport activity. This study suggests that ECR may enhance glucose transport to improve colon energy metabolism, promote barrier repair, and exert synergistic effects through processing.


Assuntos
Colite Ulcerativa , Coptis chinensis , Medicamentos de Ervas Chinesas , Metabolismo Energético , Evodia , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Metabolismo Energético/efeitos dos fármacos , Masculino , Ratos , Evodia/química , Ratos Sprague-Dawley , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Simulação de Acoplamento Molecular
2.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2953-2964, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041155

RESUMO

A sensitive and efficient ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) approach was established. Based on the self-developed information library, the chemical components from Euodiae Fructus were systematically characterized and identified. The chromatographic separation conditions(e. g., stationary phase,mobile phase, column temperature, and elution gradient) and MS detection conditions(nozzle voltage, capillary voltage, fragmentor,and collision energy) were optimized. Ultimately, an HSS T3 column(2. 1 mm×100 mm, 1. 8 µm) maintained at 35 ℃ was used,and 0. 1% formic acid water-acetonitrile at the flow rate of 0. 4 m L·min~(-1) was used as the mobile phase. Electrospray ionization was adopted to collect the positive and negative ion mass spectrometry data in Auto MS/MS mode. According to the reference compound comparison, fragment ion information interpretation, literature, and retrieval in the self-developed information library, 92 compounds were characterized or derived from the decoction of Euodiae Fructus, including 33 alkaloids, 23 flavonoids, 12 terpenoids, 12phenylpropanoids, and 12 others. Among them, 17 compounds were identified by comparison with the reference compounds, and 11compounds were unreported from Euodiae Fructus. This study realizes the rapid characterization and identification of multi-class chemical components in the decoction of Euodiae Fructus and provides a reference for the studies regarding its effective substances and quality control.


Assuntos
Medicamentos de Ervas Chinesas , Evodia , Frutas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Frutas/química , Evodia/química , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
Phytomedicine ; 132: 155851, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018943

RESUMO

BACKGROUND: Evodiamine (EVO) is one of the primary components of Evodia rutaecarpa and has been found to have a positive therapeutic effect on various digestive system diseases. However, no systematic review has been conducted on the research progress and mechanisms of EVO in relation to digestive system diseases, and its toxicity. PURPOSE: This study aimed to provide a reference for future research in this field. STUDY DESIGN: A systematic review and meta-analysis of the research progress, mechanisms, and toxicity of EVO in the treatment of digestive system diseases. METHODS: Five electronic databases were utilized to search for relevant experiments. We conducted a comprehensive review and meta-analysis of the pertinent literature following the guidelines of Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). RESULTS: EVO's animal experiments in digestive system diseases primarily focus on colorectal cancer, gastric ulcers, liver cancer, liver fibrosis, ulcerative colitis, colitis-associated cancer, and functional gastrointestinal disorders. EVO also has positive effects on pancreatic cancer, radiation enteritis, gastric cancer, tongue squamous cancer, hepatitis B, oral cancer, and esophageal cancer in vivo. EVO's in cellular experiments primarily focus on SGC7901, HT29, HCT-116, and HepG2 cells. EVO also exhibits positive effects on SW480, LoVo, BGC-823, AGS, COLO-205, MKN45, SMMC-7721, Bel-7402, QGY7-701, PANC-1, SW1990, BxPC-3, HSC4, MC3, HONE1, and CNE1 cells in vitro. The potential common pathways include TGF-ß, PI3K-AKT, Wnt, ErbB, mTOR, MAPK, HIF-1, NOD-like receptor, NF-κB, VEGF, JAK-STAT, AMPK, Toll-like receptor, EGFR, Ras, TNF, AGE-RAGE, Relaxin, FoxO, IL-17, Hippo, and cAMP. The mechanisms of EVO on ulcerative colitis, gastric cancer, and HCT116 cells are still controversial in vivo. EVO may have a bidirectional regulatory effect on functional gastrointestinal disorders through calcium signaling. The mechanisms of EVO on HCT116, HT29, SW480, AGS, COLO-205, and SW1990 cells are still controversial in vitro. The question of whether EVO has obvious toxicity is controversial. CONCLUSION: In both cellular and animal experiments, EVO has demonstrated positive impacts on digestive system diseases. Nevertheless, additional in vivo and in vitro research is required to confirm the beneficial effects and mechanisms of EVO on digestive system diseases, as well as its potential toxicity.


Assuntos
Doenças do Sistema Digestório , Evodia , Quinazolinas , Quinazolinas/farmacologia , Humanos , Animais , Doenças do Sistema Digestório/tratamento farmacológico , Evodia/química , Extratos Vegetais/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38941716

RESUMO

Pig bile- and Fructus Evodiae sauce-processed Rhizoma Coptidis (Danhuanglian, DHL; Yuhuanglian, YHL, respectively) are two types of processed Rhizoma Coptidis (Huanglian, HL) in traditional Chinese medicine (TCM). DHL and YHL are representative of HL generated from the subordinate and counter system processing methods, respectively, both noted for their anti-inflammatory effects. How these processing methods can affect the medicinal efficacy of HL remains a hot topic. Here, we discussed the influence of the two methods on the efficacy of final HL products (i.e., DHL and YHL) by comparing their components and anti-inflammatory mechanisms. Enzyme-linked immunosorbent assay was employed to measure inflammatory factors in RAW264.7 cells induced by lipopolysaccharide, and UPLC-Q-Exactive Orbitrap-MS was utilized to analyze the endogenous differential metabolites of RAW264.7 cells treated with HL, YHL, and DHL, and thus to identify the related metabolic pathways. Finally, using network pharmacology, we constructed a "disease-target-differential metabolites-active ingredients" network map. Compared with the control, all three products, HL, YHL, and DHL, significantly reduced IL-6, TNF-α, and IL-1ß levels. 12 differential metabolites related to inflammation were identified and 25 target proteins were overlapping among the three groups. Notably, the anti-inflammatory effects of DHL and YHL were mediated by metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Specifically, DHL significantly impacted free fatty acid levels, which was not observed with HL and YHL. On screening, DHL had 9 active ingredients, including three from pig bile, and YHL had 12 active ingredients, with six from the processing excipient Fructus Evodiae. The distinct anti-inflammatory mechanisms and material basis of YHL and DHL were characterized by consistency and distinctiveness. Thus, this study underscores the significant influence of processing methods on the medicinal efficacy of TCMs by revealing their regulatory mechanisms and material bases.


Assuntos
Anti-Inflamatórios , Bile , Medicamentos de Ervas Chinesas , Lipopolissacarídeos , Metabolômica , Farmacologia em Rede , Animais , Camundongos , Células RAW 264.7 , Lipopolissacarídeos/farmacologia , Suínos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Metabolômica/métodos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Bile/química , Bile/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Evodia/química , Metaboloma/efeitos dos fármacos , Coptis chinensis , Inflamação/metabolismo , Inflamação/tratamento farmacológico
5.
Ecotoxicol Environ Saf ; 281: 116563, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878560

RESUMO

Evodiamine (EVO), the main active alkaloid in Evodia rutaecarpa, was shown to exert various pharmacological activities, especially anti-tumor. Currently, it is considered a potential anti-cancer drug due to its excellent anti-tumor activity, which unfortunately has adverse reactions, such as the risk of liver and kidney injury, when Evodia rutaecarpa containing EVO is used clinically. In the present study, we aim to clarify the potential toxic target organs and toxicity mechanism of EVO, an active monomer in Evodia rutaecarpa, and to develop mitigation strategies for its toxicity mechanism. Transcriptome analysis and related experiments showed that the PI3K/Akt pathway induced by calcium overload was an important step in EVO-induced apoptosis of renal cells. Specifically, intracellular calcium ions were increased, and mitochondrial calcium ions were decreased. In addition, EVO-induced calcium overload was associated with TRPV1 receptor activation. In vivo TRPV1 antagonist and calcium chelator effects were observed to significantly reduce body weight loss and renal damage in mice due to EVO toxicity. The potential nephrotoxicity of EVO was further confirmed by an in vivo test. In conclusion, TRPV1-mediated calcium overload-induced apoptosis is one of the mechanisms contributing to the nephrotoxicity of EVO due to its toxicity, whereas maintaining body calcium homeostasis is an effective measure to reduce toxicity. These studies suggest that the clinical use of EVO-containing herbal medicines should pay due attention to the changes in renal function of patients as well as the off-target effects of the drugs.


Assuntos
Apoptose , Cálcio , Evodia , Homeostase , Rim , Quinazolinas , Quinazolinas/toxicidade , Quinazolinas/farmacologia , Animais , Homeostase/efeitos dos fármacos , Cálcio/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Evodia/química , Masculino , Canais de Cátion TRPV/metabolismo , Quelantes de Cálcio/farmacologia
6.
J Pharm Biomed Anal ; 248: 116284, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908234

RESUMO

Cell membrane coating strategies have been increasingly researched in new drug discovery from complex herb extracts. However, these systems failed to maintain the functionality of the coated cells because cell membranes, not whole cells were used. Original source cells can be used as a vector for active compound screening in a manner that mimics in vivo processes. In this study, we established a novel approach to fabricate high-density fibroblast growth factor receptor 4 (FGFR4)-HEK293 cells on microcarriers covered with collagen through cell culture and covalent immobilization between proteins. This method enables the efficient screening of active compounds from herbs. Two compounds, evodiamine and limonin, were obtained from Fructus evodiae, which were proven to inhibit the FGFR4 target. Enhanced immobilization effects and negligible damage to FGFR4-HEK293 cells treated with paraformaldehyde were successfully confirmed by immunofluorescence assays and transmission electron microscopy. A column was prepared and used to analyze different compounds. The results showed that the method was selective, specific, and reproducible. Overall, the high density of cells immobilized on microcarriers achieved through cell culture and covalent immobilization represents a promising strategy for affinity screening. This approach highlights the potential of the affinity screening method to identify active compounds from an herbal matrix against designed targets and its prospects for use in drug discovery from herbs.


Assuntos
Células Imobilizadas , Quinazolinas , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Humanos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Células HEK293 , Quinazolinas/farmacologia , Quinazolinas/química , Células Imobilizadas/metabolismo , Evodia/química , Limoninas/farmacologia , Limoninas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Biomimética/métodos , Frutas/química , Colágeno , Avaliação Pré-Clínica de Medicamentos/métodos
7.
J Ethnopharmacol ; 332: 118376, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38782310

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zingiberis rhizoma recens-/wine-/euodiae fructus-processed Coptidis Rhizoma (CR, zCR/wCR/eCR) are the commonly used processed products of CR in clinic. After being processed with different excipients, the efficacy of CR will change accordingly. I.e., wCR could resolve excessive heat of the upper energizer, zCR could eliminate gastric heat and harmonize the stomach, eCR could smooth the liver and harmonize the stomach. However, the underlying mechanisms were still unclear. AIM OF THE STUDY: To further verify the differential efficacy of the three processed CR products and compare the mechanisms on gastric ulcer. MATERIAL AND METHODS: First, a GU model, whose onset is closely related to the heat in stomach and the disharmony between liver and stomach, was established, and the therapeutic effects of zCR/wCR/eCR/CR were evaluated by pathologic observation and measurement of cytokine levels. Second, metabolomics analysis and network pharmacology were conducted to reveal the differential intervening mechanism of zCR/eCR on GU. Third, the predicted mechanisms from metabolomics analysis and network pharmacology were validated using western blotting, flow cytometry and immunofluorescence. RESULTS: zCR/wCR/eCR/CR could alleviate the pathologic damage to varying degrees. In metabolomics research, fewer metabolic pathways were enriched in serum samples, and most of them were also present in the results of gastric tissue samples. The gastroprotective, anti-inflammatory, antioxidant, and anti-apoptotic effects of zCR/wCR/eCR/CR might be due to their interference on histidine, arachidonic acid, and glycerophospholipids metabolism. Quantitative results indicated that zCR/eCR had a better therapeutic effect than wCR/CR in treating GU. A comprehensive analysis of metabolomics and network pharmacology revealed that zCR and eCR exerted anti-GU effects via intervening in five core targets, including AKT, TNF, IL6, IL1B and PPARG. In the validation experiment, zCR/eCR could significantly reverse the abnormal expression of proteins related to apoptosis, inflammation, oxidative stress, gastric function, as well as the PI3K/AKT signaling pathways. CONCLUSION: zCR and eCR could offer gastroprotective benefits by resisting inflammation and apoptosis, inhibiting gastric-acid secretion, as well as strengthening gastric mucosal defense and antioxidant capacity. Integrating network pharmacology and metabolomics analysis could reveal the acting mechanism of drugs and promote the development of medications to counteract GU.


Assuntos
Medicamentos de Ervas Chinesas , Metabolômica , Farmacologia em Rede , Ratos Sprague-Dawley , Úlcera Gástrica , Animais , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Úlcera Gástrica/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Ratos , Evodia/química , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Coptis chinensis , Modelos Animais de Doenças , Antiulcerosos/farmacologia , Antiulcerosos/isolamento & purificação , Citocinas/metabolismo , Citocinas/sangue
8.
Ecotoxicol Environ Saf ; 279: 116448, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754199

RESUMO

Evodiae Fructus (EF), an herbal medicine, possesses remarkable anti-inflammatory and analgesic properties. It exhibits insecticidal activity as a potent insecticide candidate. However, the toxic characteristics of EF and the underlying mechanisms have not been comprehensively elucidated comprehensively. Thus, we comprehensively explored the toxic components of EF and established the relationship between the therapeutic and toxic effects of EF, encouraging its therapeutic use. We found that evodiamine (EVO), one of the main ingredients of EF, can truly reflect its analgesic properties. In phenotype observation trials, low doses of EVO (< 35 ng/mL) exhibited distinct analgesic activity without any adverse effects in zebrafish. However, EVO dose-dependently led to gross morphological abnormalities in the liver, followed by pericardial edema, and increased myocardial concentrations. Furthermore, the toxic effects of EVO decreased after processing in liver microsomes but increased after administering CYP450 inhibitors in zebrafish, highlighting the prominent effect of CYP450s in EVO-mediated hepatotoxicity. EVO significantly changed the expression of genes enriched in multiple pathways and biological processes, including lipid metabolism, inflammatory response, tight junction damage, and cell apoptosis. Importantly, the PPAR/PI3K/AKT/NF-кB/tight junction-mediated apoptosis pathway was confirmed as a critical functional signaling pathway inducing EVO-mediated hepatotoxicity. This study provided a typical example of the overall systematic evaluation of traditional Chinese medicine (TCM) and its active ingredients with significant therapeutic effects and simultaneous toxicities, especially metabolic toxicities.


Assuntos
Apoptose , Evodia , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quinazolinas , Peixe-Zebra , Animais , Quinazolinas/toxicidade , Apoptose/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Evodia/química , Transdução de Sinais/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia
9.
Phytomedicine ; 128: 155377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503154

RESUMO

BACKGROUND: The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS: The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS: DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION: In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.


Assuntos
Proliferação de Células , Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Evodia/química , Gencitabina , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição CHOP/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Fitoterapia ; 174: 105843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301937

RESUMO

In this research, five new indolequinazoline alkaloids (1-5), along with six known indolequinazoline alkaloids (6-11) were obtained from the fruits of Tetradium ruticarpum. Their structures were elucidated through comprehensive spectroscopic data of 1D and 2D NMR, HRESIMS and ECD spectra. Additionally, all isolates were assayed for their SIRT1 inhibitory activities in vitro and compounds 2, 7, 10 and 11 exhibited activities with IC50 values ranged from 43.16 to 118.35 µM.


Assuntos
Alcaloides , Evodia , Evodia/química , Frutas/química , Estrutura Molecular , Alcaloides/análise , Espectroscopia de Ressonância Magnética
11.
Anal Bioanal Chem ; 416(6): 1457-1468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231254

RESUMO

Gastrointestinal mesenchymal tumors, as the most common mesenchymal tumors in the gastrointestinal tract, are adjuvantly treated with multi-targeted tyrosine kinase inhibitors, such as imatinib and sunitinib, but there are problems of drug resistance and complex methods of monitoring therapeutic agents. The pathogenesis of this disease is related to mutations in tyrosine kinase (KIT) or platelet-derived growth factor receptor α, an important target for drug therapy. In recent years, the screening of relevant tyrosine kinase inhibitors from traditional Chinese medicine has become a hotspot in antitumor drug research. In the current study, the KIT-SNAP-tag cell membrane chromatography (KIT-SNAP-tag/CMC) column was prepared with satisfying specificity, selectivity, and reproducibility by chemically bonding high KIT expression cell membranes to the silica gel surface using the SNAP-tag technology. The KIT-SNAP-tag/CMC-HPLC-MS two-dimensional coupling system was investigated using the positive drug imatinib, and the results showed that the system was a reliable model for screening potential antitumor compounds from complex systems. This system screened and identified three potential active compounds of evodiamine (EVO), rutaecarpin (RUT), and dehydroevodiamine (DEVO), which possibly target the KIT receptor, from the alcoholic extract of the traditional Chinese medicine Evodia rutaecarpa. Then, the KD values of the interaction of EVO, RUT, and DEVO with KIT receptors measured using nonlinear chromatography were 7.75 (±4.93) × 10-6, 1.42 (±0.71) × 10-6, and 2.34 (±1.86) × 10-6 mol/L, respectively. In addition, the methyl thiazolyl tetrazolium assay validated the active effects of EVO and RUT in inhibiting the proliferation of high KIT-expressing cells in the ranges of 0.1-10 µmol/L and 0.1-50 µmol/L, respectively. In conclusion, the KIT-SNAP-tag/CMC could be a reliable model for screening antitumor components from complex systems.


Assuntos
Evodia , Neoplasias Gastrointestinais , Humanos , Mesilato de Imatinib/farmacologia , Evodia/química , Espectrometria de Massa com Cromatografia Líquida , Reprodutibilidade dos Testes , Receptores Proteína Tirosina Quinases , Neoplasias Gastrointestinais/tratamento farmacológico , Membrana Celular
12.
J Sci Food Agric ; 104(4): 2038-2048, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909381

RESUMO

BACKGROUND: Aroma is one of the most important quality criterion of different honeys and even defines their merchant value. The composition of volatile compounds, especially the characteristic odor-active compounds, contributes significantly to the aroma of honey. Evodia rutaecarpa (Juss) Benth honey (ERBH) is a special honey in China with unique flavor characteristics. However, no work in the literature has investigated the volatile compounds and characteristic odor-active compounds of ERBHs. Therefore, it is imperative to conduct systematic investigation into the volatile profile, odor-active compounds and odor properties of ERBHs. RESULTS: The characteristic fingerprint of ERBHs was successfully constructed with 12 characteristic peaks and a similarity range of 0.785-0.975. In total, 297 volatile compounds were identified and relatively quantified by headspace solid-phase microextraction coupled with gas chromatography quadrupole time-of-flight mass spectrometry, of which 61 and 31 were identified as odor-active compounds by relative odor activity values and GC-olfactometry analysis, respectively, especially the common 22 odor-active compounds (E)-ß-damascenone, phenethyl acetate, linalool, cis-linalool oxide (furanoid), octanal, hotrienol, trans-linalool oxide (furanoid), 4-oxoisophorone and eugenol, etc., contributed significantly to the aroma of ERBHs. The primary odor properties of ERBHs were floral, followed by fruity, herbaceous and woody aromas. The partial least-squares regression results showed that the odor-active compounds had good correlations with the odor properties. CONCLUSION: Identifying the aroma differences of different honeys is of great importance. The present study provides a reliable theoretical basis for the quality and authenticity of ERBHs. © 2023 Society of Chemical Industry.


Assuntos
Monoterpenos Acíclicos , Cicloexanóis , Evodia , Mel , Compostos de Tritil , Compostos Orgânicos Voláteis , Odorantes/análise , Evodia/química , Mel/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/química
13.
Biomed Pharmacother ; 167: 115495, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741256

RESUMO

Evodia rutaecarpa, the near-ripe fruit of Euodia rutaecarpa (Juss.) Benth, Euodia rutaecarpa (Juss.) Benth. var. officinalis (Dode) Huang, or Euodia rutaecarpa (Juss.) Benth. var. bodinieri (Dode) Huang, is a famous herbal medicine with several biological activities and therapeutic values, which has been applied for abdominalgia, abdominal distension, vomiting, and diarrhea as a complementary and alternative therapy in clinic. Indole alkaloids, particularly evodiamine (EVO), rutaecarpine (RUT), and dedhydroevodiamine (DHE), are received rising attention as the major bioactivity compounds in Evodia rutaecarpa. Therefore, this review summarizes the physicochemical properties, pharmacological activities, pharmacokinetics, and therapeutic effects on gastrointestinal diseases of these three indole alkaloids with original literature collected by PubMed, Web of Science Core Collection, and CNKI up to June 2023. Despite sharing the same parent nucleus, EVO, RUT, and DHE have different structural and chemical properties, which result in different advantages of biological effects. In their wide range of pharmacological activities, the anti-migratory activity of RUT is less effective than that of EVO, and the neuroprotection of DHE is significant. Additionally, although DHE has a higher bioavailability, EVO and RUT display better permeabilities within blood-brain barrier. These three indole alkaloids can alleviate gastrointestinal inflammatory in particular, and EVO also has outstanding anti-cancer effect, although clinical trials are still required to further support their therapeutic potential.


Assuntos
Evodia , Gastroenteropatias , Plantas Medicinais , Humanos , Evodia/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Gastroenteropatias/tratamento farmacológico , Frutas/química
14.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570816

RESUMO

Alzheimer's disease (AD) is a brain disease with a peculiarity of multiformity and an insidious onset. Multiple-target drugs, especially Chinese traditional medicine, have achieved a measure of success in AD treatment. Evodia rutaecarpa (Juss.) Benth. (Wuzhuyu, WZY, i.e., E. rutaecarpa), a traditional Chinese herb, has been identified as an effective drug to cure migraines. To our surprise, our in silico study showed that rather than migraines, Alzheimer's disease was the primary disease to which the E. rutaecarpa active compounds were targeted. Correspondingly, a behavioral experiment showed that E. rutaecarpa extract could improve impairments in learning and memory in AD model mice. However, the mechanism underlying the way that E. rutaecarpa compounds target AD is still not clear. For this purpose, we employed methods of pharmacology networking and molecular docking to explore this mechanism. We found that E. rutaecarpa showed significant AD-targeting characteristics, and alkaloids of E. rutaecarpa played the main role in binding to the key nodes of AD. Our research detected that E. rutaecarpa affects the pathologic development of AD through the serotonergic synapse signaling pathway (SLC6A4), hormones (PTGS2, ESR1, AR), anti-neuroinflammation (SRC, TNF, NOS3), transcription regulation (NR3C1), and molecular chaperones (HSP90AA1), especially in the key nodes of PTGS2, AR, SLCA64, and SRC. Graveoline, 5-methoxy-N, N-dimethyltryptamine, dehydroevodiamine, and goshuyuamide II in E. rutaecarpa show stronger binding affinities to these key proteins than currently known preclinical and clinical drugs, showing a great potential to be developed as lead molecules for treating AD.


Assuntos
Alcaloides , Evodia , Animais , Camundongos , Evodia/química , Ciclo-Oxigenase 2 , Simulação de Acoplamento Molecular , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
15.
Phytochemistry ; 213: 113774, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400011

RESUMO

Two previously undescribed phloroglucinol derivatives [(±) evolephloroglucinols A and B], five unusual coumarins [evolecoumarins A and B and (±) evolecoumarins C-E], and one novel enantiomeric quinoline-type alkaloid [(±) evolealkaloid A], along with 20 known compounds, were isolated from the EtOH extract of the roots of Evodia lepta Merr. Their structures were elucidated by extensive spectroscopic analyses. The absolute configurations of the undescribed compounds were determined by X-ray diffraction or computational calculations. Their anti-neuroinflammatory effects were assayed. Among the identified compounds, compound 5a effectively reduced nitric oxide (NO) production with an EC50 value of 22.08 ± 0.46 µM. Hence, it could indeed inhibit the lipopolysaccharide (LPS)-induced Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome.


Assuntos
Alcaloides , Evodia , Rutaceae , Evodia/química , Cumarínicos/farmacologia , Cumarínicos/química , Floroglucinol/farmacologia , Floroglucinol/química , Alcaloides/farmacologia , Estrutura Molecular , Óxido Nítrico
16.
Drug Metab Rev ; 55(1-2): 75-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803497

RESUMO

Evodiae Fructus (EF) is a common herbal medicine with thousands of years of medicinal history in China, which has been demonstrated with many promising pharmacological effects on cancer, cardiovascular diseases and Alzheimer's disease. However, there have been increasing reports of hepatotoxicity associated with EF consumption. Unfortunately, in a long term, many implicit constituents of EF as well as their toxic mechanisms remain poorly understood. Recently, metabolic activation of hepatotoxic compounds of EF to generate reactive metabolites (RMs) has been implicated. Herein, we capture metabolic reactions relevant to hepatotoxicity of these compounds. Initially, catalyzed by the hepatic cytochrome P450 enzymes (CYP450s), the hepatotoxic compounds of EF are oxidized to generate RMs. Subsequently, the highly electrophilic RMs could react with nucleophilic groups contained in biomolecules, such as hepatic proteins, enzymes, and nucleic acids to form conjugates and/or adducts, leading to a sequence of toxicological consequences. In addition, currently proposed biological pathogenesis, including oxidative stress, mitochondrial damage and dysfunction, endoplasmic reticulum (ER) stress, hepatic metabolism disorder, and cell apoptosis are represented. In short, this review updates the knowledge on the pathways of metabolic activation of seven hepatotoxic compounds of EF and provides considerable insights into the relevance of proposed molecular hepatotoxicity mechanisms from a biochemical standpoint, for the purpose of providing a theoretical guideline for the rational application of EF in clinics.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Evodia , Humanos , Evodia/química
17.
Phytochem Anal ; 34(1): 5-29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442477

RESUMO

INTRODUCTION: Euodiae fructus, also known as Evodiae fructus, is a popular Chinese herbal medicine derived from the dried, nearly ripe fruits of Tetradium ruticarpum (A. Juss.) T. G. Hartley. The main bioactive constituents of Euodiae fructus are alkaloids, limonoids, flavonoids, and anthraquinones. The contents of these compounds vary greatly between different plant species, geographic locations, and harvest times, which thus affect the therapeutic effects. OBJECTIVES: We aimed to summarize the chromatographic and mass spectrometric technologies applied for chemical analysis and quality evaluation of Euodiae fructus. Moreover, we aimed to emphasize the diverse soft ionization techniques and mass analyzers of LC-MS methods for assessment of Euodiae fructus. METHODOLOGY: A literature study was carried out by retrieving articles published between January 1988 and December 2021 from well-known databases, including PubMed, ASC, Elsevier, ScienceDirect, J·STAGE, Thieme, Taylor & Francis, Springer Link, Wiley Online Library, and CNKI. The chemical analysis methods were described in several categories in accordance with the used analytical techniques, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), high-performance liquid chromatography-mass spectrometry (HPLC-MS), gas chromatography-mass spectrometry (GC-MS), capillary electrophoresis (CE), and counter-current chromatography (CCC). RESULTS: This review systematically summarizes the achievements in chemical analysis and quality evaluation of Euodiae fructus published in over three decades, covering the various chromatographic and mass spectrometric technologies applied for identification and quantification of phytochemical constituents. CONCLUSION: The summary serves as an important basis for future phytochemical research and implementation of quality control methods in order to ensure the efficacy and safety of Euodiae fructus.


Assuntos
Medicamentos de Ervas Chinesas , Evodia , Medicamentos de Ervas Chinesas/química , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Evodia/química
18.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232809

RESUMO

Evodiamine (EVO) and rutaecarpine (RUT) are the main active compounds of the traditional Chinese medicinal herb Evodia rutaecarpa. Here, we fully optimized the molecular geometries of EVO and RUT at the B3LYP/6-311++G (d, p) level of density functional theory. The natural population analysis (NPA) charges, frontier molecular orbitals, molecular electrostatic potentials, and the chemical reactivity descriptors for EVO and RUT were also investigated. Furthermore, molecular docking, molecular dynamics simulations, and the analysis of the binding free energies of EVO and RUT were carried out against the anticancer target topoisomerase 1 (TOP1) to clarify their anticancer mechanisms. The docking results indicated that they could inhibit TOP1 by intercalating into the cleaved DNA-binding site to form a TOP1−DNA−ligand ternary complex, suggesting that they may be potential TOP1 inhibitors. Molecular dynamics (MD) simulations evaluated the binding stability of the TOP1−DNA−ligand ternary complex. The calculation of binding free energy showed that the binding ability of EVO with TOP1 was stronger than that of RUT. These results elucidated the structure−activity relationship and the antitumor mechanism of EVO and RUT at the molecular level. It is suggested that EVO and RUT may be potential compounds for the development of new anticancer drugs.


Assuntos
Antineoplásicos , Evodia , Antineoplásicos/farmacologia , Evodia/química , Alcaloides Indólicos , Ligantes , Simulação de Acoplamento Molecular , Quinazolinas , Quinazolinonas
19.
Molecules ; 27(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889335

RESUMO

The fruit of Tetradium ruticarpum (TR) is commonly used in Chinese herbal medicine and it has known antiproliferative and antitumor activities, which can serve as a good source of functional ingredients. Although some antiproliferative compounds are reported to be present in TR fruit, most studies only focused on a limited range of metabolites. Therefore, in this study, the antiproliferative activity of different extracts of TR fruit was examined, and the potentially antiproliferative compounds were highlighted by applying an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based multi-informative molecular networking strategy. The results showed that among different extracts of TR fruit, the EtOAc fraction F2-3 possessed the most potent antiproliferative activity against HL-60, T24, and LX-2 human cell lines. Through computational tool-aided structure prediction and integrating various data (sample taxonomy, antiproliferative activity, and compound identity) into a molecular network, a total of 11 indole alkaloids and 47 types of quinolone alkaloids were successfully annotated and visualized into three targeted bioactive molecular families. Within these families, up to 25 types of quinolone alkaloids were found that were previously unreported in TR fruit. Four indole alkaloids and five types of quinolone alkaloids were targeted as potentially antiproliferative compounds in the EtOAc fraction F2-3, and three (evodiamine, dehydroevodiamine, and schinifoline) of these targeted alkaloids can serve as marker compounds of F2-3. Evodiamine was verified to be one of the major antiproliferative compounds, and its structural analogues discovered in the molecular network were found to be promising antitumor agents. These results exemplify the application of an LC-MS/MS-based multi-informative molecular networking strategy in the discovery and annotation of bioactive compounds from complex mixtures of potential functional food ingredients.


Assuntos
Alcaloides , Evodia , Quinolonas , Alcaloides/análise , Alcaloides/farmacologia , Cromatografia Líquida , Evodia/química , Frutas/química , Humanos , Alcaloides Indólicos/análise , Alcaloides Indólicos/farmacologia , Extratos Vegetais/química , Quinolonas/análise , Espectrometria de Massas em Tandem
20.
Molecules ; 27(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163988

RESUMO

The Zuojin Pill consists of Coptidis Rhizoma (CR) and Euodiae Fructus (EF). It has been a classic prescription for the treatment of gastrointestinal diseases in China since ancient times. Alkaloids are considered to be its main pharmacologically active substances. The authors of the present study investigated the feasibility of preparing high purity total alkaloids (TAs) from CR and EF extracts separately and evaluated the effect for the treatment of bile reflux gastritis (BRG). Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. were used in the study. An optimized method for the enrichment and purification of TAs with macroporous resin was established. Furthermore, qualitative analysis by using ultra-high performance liquid chromatography coupled with electrospray ionization and quadrupole-time of flight mass spectrometry (UHPLC-ESI-QTOF-MS) was explored to identify the components of purified TAs. Thirty-one compounds, thirty alkaloids and one phenolic compound, were identified or tentatively assigned by comparison with reference standards or literature data. A method of ultra-high performance liquid chromatography coupled with diode array detector (UHPLC-DAD) for quantitative analysis was also developed. The contents of nine alkaloids were determined. Moreover, a rat model of BRG was used to investigate the therapeutic effect of the combination of purified TAs from CR and EF. Gastric pathologic examination suggested that the alkaloids' combination could markedly attenuate the pathological changes of gastric mucosa.


Assuntos
Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Refluxo Biliar/tratamento farmacológico , Coptis/química , Evodia/química , Gastrite/tratamento farmacológico , Resinas Vegetais/química , Alcaloides/química , Animais , Refluxo Biliar/metabolismo , Refluxo Biliar/patologia , Gastrite/metabolismo , Gastrite/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA