Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2400486121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976731

RESUMO

Reptilian skin coloration is spectacular and diverse, yet little is known about the ontogenetic processes that govern its establishment and the molecular signaling pathways that determine it. Here, we focus on the development of the banded pattern of leopard gecko hatchlings and the transition to black spots in the adult. With our histological analyses, we show that iridophores are present in the white and yellow bands of the hatchling and they gradually perish in the adult skin. Furthermore, we demonstrate that melanophores can autonomously form spots in the absence of the other chromatophores both on the regenerated skin of the tail and on the dorsal skin of the Mack Super Snow (MSS) leopard geckos. This color morph is characterized by uniform black coloration in hatchlings and black spots in adulthood; we establish that their skin is devoid of xanthophores and iridophores at both stages. Our genetic analyses identified a 13-nucleotide deletion in the PAX7 transcription factor of MSS geckos, affecting its protein coding sequence. With our single-cell transcriptomics analysis of embryonic skin, we confirm that PAX7 is expressed in iridophores and xanthophores, suggesting that it plays a key role in the differentiation of both chromatophores. Our in situ hybridizations on whole-mount embryos document the dynamics of the skin pattern formation and how it is impacted in the PAX7 mutants. We hypothesize that the melanophores-iridophores interactions give rise to the banded pattern of the hatchlings and black spot formation is an intrinsic capacity of melanophores in the postembryonic skin.


Assuntos
Cromatóforos , Lagartos , Pigmentação da Pele , Animais , Lagartos/genética , Lagartos/metabolismo , Lagartos/fisiologia , Cromatóforos/metabolismo , Pigmentação da Pele/genética , Pigmentação da Pele/fisiologia , Pele/metabolismo , Melanóforos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
2.
Genes (Basel) ; 14(4)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37107662

RESUMO

The great diversity of color patterns observed among amphibians is largely explained by the differentiation of relatively few pigment cell types during development. Mexican axolotls present a variety of color phenotypes that span the continuum from leucistic to highly melanistic. The melanoid axolotl is a Mendelian variant characterized by large numbers of melanophores, proportionally fewer xanthophores, and no iridophores. Early studies of melanoid were influential in developing the single-origin hypothesis of pigment cell development, wherein it has been proposed that all three pigment cell types derive from a common progenitor cell, with pigment metabolites playing potential roles in directing the development of organelles that define different pigment cell types. Specifically, these studies identified xanthine dehydrogenase (XDH) activity as a mechanism for the permissive differentiation of melanophores at the expense of xanthophores and iridophores. We used bulked segregant RNA-Seq to screen the axolotl genome for melanoid candidate genes and identify the associated locus. Dissimilar frequencies of single-nucleotide polymorphisms were identified between pooled RNA samples of wild-type and melanoid siblings for a region on chromosome 14q. This region contains gephyrin (Gphn), an enzyme that catalyzes the synthesis of the molybdenum cofactor that is required for XDH activity, and leukocyte tyrosine kinase (Ltk), a cell surface signaling receptor that is required for iridophore differentiation in zebrafish. Wild-type Ltk crispants present similar pigment phenotypes to melanoid, strongly implicating Ltk as the melanoid locus. In concert with recent findings in zebrafish, our results support the idea of direct fate specification of pigment cells and, more generally, the single-origin hypothesis of pigment cell development.


Assuntos
Ambystoma mexicanum , Peixe-Zebra , Animais , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Peixe-Zebra/genética , Melanóforos/metabolismo , Diferenciação Celular/genética , Leucócitos
3.
Pigment Cell Melanoma Res ; 35(5): 495-505, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35816398

RESUMO

Zebrafish are an emerging model organism to study the syndromic albinism disorder, Hermansky-Pudlak syndrome (HPS), due to visible pigment development at 24 hours postfertilization, and conserved melanogenesis mechanisms. We describe crasher, a novel HPS type 10 (HPS10) zebrafish model, with a mutation in AP-3 complex subunit delta gene, ap3d1. Exon 14 of ap3d1 is overexpressed in crasher mutants, while the expression of ap3d1 as a whole is reduced. ap3d1 knockout in *AB zebrafish recapitulates the mutant crasher phenotype. We show ap3d1 loss-of-function mutations cause significant expression changes in the melanogenesis genes, dopachrome tautomerase (dct) and tyrosinase-related protein 1b (tyrp1b), but not tyrosinase (tyr). Last, Generally Applicable Gene-set Enrichment (GAGE) analysis suggests autophagy pathway genes are upregulated together in crasher. Treatment with autophagy-inhibitor, bafilomycin A1, significantly decreases melanophore number in crasher, suggesting ap3d1 promotes melanophore survival by limiting excessive autophagy. crasher is a valuable model to explore the regulation of melanogenesis gene expression and pigmentation disease.


Assuntos
Síndrome de Hermanski-Pudlak , Peixe-Zebra , Animais , Autofagia/genética , Proteínas de Transporte/genética , Síndrome de Hermanski-Pudlak/genética , Melanóforos/metabolismo , Mutação , Pigmentação/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
J Hered ; 113(4): 398-413, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35385582

RESUMO

Premelanosome protein (pmel) is a key gene for melanogenesis. Mutations in this gene are responsible for white plumage in chicken, but its role in pigmentation of fish remains to be demonstrated. In this study, we found that most fishes have 2 pmel genes arising from the teleost-specific whole-genome duplication. Both pmela and pmelb were expressed at high levels in the eyes and skin of Nile tilapia. We mutated both genes in tilapia using CRISPR/Cas9. Homozygous mutation of pmela resulted in yellowish body color with weak vertical bars and a hypopigmented retinal pigment epithelium (RPE) due to significantly reduced number and size of melanophores. In contrast, we observed an increased number and size of xanthophores in mutants compared to wild-type fish. Homozygous mutation of pmelb resulted in a similar, but milder phenotype than pmela-/- mutants. Double mutation of pmela and pmelb resulted in loss of additional melanophores compared to the pmela-/- mutants, and also an increase in the number and size of xanthophores, producing a golden body color. The RPE pigmentation of pmela-/-;pmelb-/- was similar to pmela-/- mutants, with much less pigmentation than pmelb-/- mutants and wild-type fish. Taken together, our results indicate that, although both pmel genes are important for the formation of body color in tilapia, pmela plays a more important role than pmelb. To our knowledge, this is the first report on mutation of pmelb or both pmela;pmelb in fish. Studies on these mutants suggest new strategies for breeding golden tilapia, and also provide a new model for studies of pmel function in vertebrates.


Assuntos
Tilápia , Animais , Melanóforos/metabolismo , Mutação , Fenótipo , Pigmentação/genética , Tilápia/genética
5.
Front Endocrinol (Lausanne) ; 13: 994060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619537

RESUMO

Introduction: Koi carp, an ornamental fish derived from the common carp Cyprinus carpio (CC), is characterized by beautiful skin color patterns. However, the mechanism that gives rise to the characteristic vivid skin coloration of koi carp has not been clarified. The skin coloration of many teleosts changes in response to differences in the background color. This change in skin coloration is caused by diffusion or aggregation of pigment granules in chromatophores and is regulated mainly by sympathetic nerves and hormones. We hypothesized that there would be some abnormality in the mechanism of skin color regulation in koi carp, which impairs skin color fading in response to background color. Methods: We compared the function of melanin-concentrating hormone (MCH), noradrenaline, and adrenaline in CC and Taisho-Sanshoku (TS), a variety of tri-colored koi. Results and Discussion: In CC acclimated to a white background, the skin color became paler and pigment granules aggregated in melanophores in the scales compared to that in black-acclimated CC. There were no clear differences in skin color or pigment granule aggregation in white- or black-acclimated TS. The expression of mch1 mRNA in the brain was higher in the white-acclimated CC than that in the black-acclimated CC. However, the expression of mch1 mRNA in the brain in the TS did not change in response to the background color. Additionally, plasma MCH levels did not differ between white- and black-acclimated fish in either CC or TS. In vitro experiments showed that noradrenaline induced pigment aggregation in scale melanophores in both CC and TS, whereas adrenaline induced pigment aggregation in the CC but not in the TS. In vitro administration of MCH induced pigment granule aggregation in the CC but not in the TS. However, intraperitoneal injection of MCH resulted in pigment granule aggregation in both CC and TS. Collectively, these results suggest that the weak sensitivity of scale melanophores to MCH and adrenaline might be responsible for the lack of skin color change in response to background color in the TS.


Assuntos
Carpas , Epinefrina , Animais , Epinefrina/farmacologia , Melanóforos/metabolismo , Norepinefrina/farmacologia , Norepinefrina/metabolismo , RNA Mensageiro/metabolismo
6.
Genome Biol ; 22(1): 282, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607603

RESUMO

BACKGROUND: Zebrafish pigment cell differentiation provides an attractive model for studying cell fate progression as a neural crest progenitor engenders diverse cell types, including two morphologically distinct pigment cells: black melanophores and reflective iridophores. Nontrivial classical genetic and transcriptomic approaches have revealed essential molecular mechanisms and gene regulatory circuits that drive neural crest-derived cell fate decisions. However, how the epigenetic landscape contributes to pigment cell differentiation, especially in the context of iridophore cell fate, is poorly understood. RESULTS: We chart the global changes in the epigenetic landscape, including DNA methylation and chromatin accessibility, during neural crest differentiation into melanophores and iridophores to identify epigenetic determinants shaping cell type-specific gene expression. Motif enrichment in the epigenetically dynamic regions reveals putative transcription factors that might be responsible for driving pigment cell identity. Through this effort, in the relatively uncharacterized iridophores, we validate alx4a as a necessary and sufficient transcription factor for iridophore differentiation and present evidence on alx4a's potential regulatory role in guanine synthesis pathway. CONCLUSIONS: Pigment cell fate is marked by substantial DNA demethylation events coupled with dynamic chromatin accessibility to potentiate gene regulation through cis-regulatory control. Here, we provide a multi-omic resource for neural crest differentiation into melanophores and iridophores. This work led to the discovery and validation of iridophore-specific alx4a transcription factor.


Assuntos
Diferenciação Celular/genética , Cromatóforos/metabolismo , Epigênese Genética , Melanóforos/metabolismo , Peixe-Zebra/genética , Animais , Cromatina/metabolismo , Ilhas de CpG , Metilação de DNA , Redes Reguladoras de Genes , Crista Neural/citologia , Crista Neural/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia
7.
Dev Biol ; 476: 314-327, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33933422

RESUMO

Adhesive interactions are essential for tissue patterning and morphogenesis yet difficult to study owing to functional redundancies across genes and gene families. A useful system in which to dissect roles for cell adhesion and adhesion-dependent signaling is the pattern formed by pigment cells in skin of adult zebrafish, in which stripes represent the arrangement of neural crest derived melanophores, cells homologous to melanocytes. In a forward genetic screen for adult pattern defects, we isolated the pissarro (psr) mutant, having a variegated phenotype of spots, as well as defects in adult fin and lens. We show that psr corresponds to junctional adhesion protein 3b (jam3b) encoding a zebrafish orthologue of the two immunoglobulin-like domain receptor JAM3 (JAM-C), known for roles in adhesion and signaling in other developing tissues, and for promoting metastatic behavior of human and murine melanoma cells. We found that zebrafish jam3b is expressed post-embryonically in a variety of cells including melanophores, and that jam3b mutants have defects in melanophore survival. Jam3b supported aggregation of cells in vitro and was required autonomously by melanophores for an adherent phenotype in vivo. Genetic analyses further indicated both overlapping and non-overlapping functions with the related receptor, Immunoglobulin superfamily 11 (Igsf11) and Kit receptor tyrosine kinase. These findings suggest a model for Jam3b function in zebrafish melanophores and hint at the complexity of adhesive interactions underlying pattern formation.


Assuntos
Padronização Corporal/genética , Molécula C de Adesão Juncional/genética , Molécula C de Adesão Juncional/metabolismo , Animais , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Melanóforos/metabolismo , Metamorfose Biológica/genética , Morfogênese , Mutação/genética , Crista Neural/citologia , Fenótipo , Pigmentação/genética , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Genome Biol Evol ; 13(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33988681

RESUMO

Color and color pattern are critical for animal camouflage, reproduction, and defense. Few studies, however, have attempted to identify candidate genes for color and color pattern in squamate reptiles, a colorful group with over 10,000 species. We used comparative transcriptomic analyses between white, orange, and yellow skin in a color-polymorphic species of anole lizard to 1) identify candidate color and color-pattern genes in squamates and 2) assess if squamates share an underlying genetic basis for color and color pattern variation with other vertebrates. Squamates have three types of chromatophores that determine color pattern: guanine-filled iridophores, carotenoid- or pteridine-filled xanthophores/erythrophores, and melanin-filled melanophores. We identified 13 best candidate squamate color and color-pattern genes shared with other vertebrates: six genes linked to pigment synthesis pathways, and seven genes linked to chromatophore development and maintenance. In comparisons of expression profiles between pigment-rich and white skin, pigment-rich skin upregulated the pteridine pathway as well as xanthophore/erythrophore development and maintenance genes; in comparisons between orange and yellow skin, orange skin upregulated the pteridine and carotenoid pathways as well as melanophore maintenance genes. Our results corroborate the predictions that squamates can produce similar colors using distinct color-reflecting molecules, and that both color and color-pattern genes are likely conserved across vertebrates. Furthermore, this study provides a concise list of candidate genes for future functional verification, representing a first step in determining the genetic basis of color and color pattern in anoles.


Assuntos
Cromatóforos , Lagartos , Animais , Cromatóforos/metabolismo , Lagartos/genética , Melanóforos/metabolismo , Pele , Pigmentação da Pele/genética , Transcriptoma
9.
PLoS Genet ; 17(4): e1009364, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901178

RESUMO

Vertebrate pigmentation is a fundamentally important, multifaceted phenotype. Zebrafish, Danio rerio, has been a valuable model for understanding genetics and development of pigment pattern formation due to its genetic and experimental tractability, advantages that are shared across several Danio species having a striking array of pigment patterns. Here, we use the sister species D. quagga and D. kyathit, with stripes and spots, respectively, to understand how natural genetic variation impacts phenotypes at cellular and organismal levels. We first show that D. quagga and D. kyathit phenotypes resemble those of wild-type D. rerio and several single locus mutants of D. rerio, respectively, in a morphospace defined by pattern variation along dorsoventral and anteroposterior axes. We then identify differences in patterning at the cellular level between D. quagga and D. kyathit by repeated daily imaging during pattern development and quantitative comparisons of adult phenotypes, revealing that patterns are similar initially but diverge ontogenetically. To assess the genetic architecture of these differences, we employ reduced-representation sequencing of second-generation hybrids. Despite the similarity of D. quagga to D. rerio, and D. kyathit to some D. rerio mutants, our analyses reveal a complex genetic basis for differences between D. quagga and D. kyathit, with several quantitative trait loci contributing to variation in overall pattern and cellular phenotypes, epistatic interactions between loci, and abundant segregating variation within species. Our findings provide a window into the evolutionary genetics of pattern-forming mechanisms in Danio and highlight the complexity of differences that can arise even between sister species. Further studies of natural genetic diversity underlying pattern variation in D. quagga and D. kyathit should provide insights complementary to those from zebrafish mutant phenotypes and more distant species comparisons.


Assuntos
Cyprinidae/genética , Desenvolvimento Embrionário/genética , Pigmentação da Pele/genética , Peixe-Zebra/genética , Animais , Cyprinidae/fisiologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Melanóforos/metabolismo , Metamorfose Biológica/genética , Fenótipo , Filogenia , Especificidade da Espécie
10.
Cells ; 10(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804686

RESUMO

Zebrafish has emerged as a powerful model in studies dealing with pigment development and pathobiology of pigment diseases. Due to its conserved pigment pattern with established genetic background, the zebrafish is used for screening of active compounds influencing melanophore, iridophore, and xanthophore development and differentiation. In our study, zebrafish embryos and larvae were used to investigate the influence of third-generation noncompetitive P-glycoprotein inhibitor, tariquidar (TQR), on pigmentation, including phenotype effects and changes in gene expression of chosen chromatophore differentiation markers. Five-day exposure to increasing TQR concentrations (1 µM, 10 µM, and 50 µM) resulted in a dose-dependent augmentation of the area covered with melanophores but a reduction in the area covered by iridophores. The observations were performed in three distinct regions-the eye, dorsal head, and tail. Moreover, TQR enhanced melanophore renewal after depigmentation caused by 0.2 mM 1-phenyl-2-thiourea (PTU) treatment. qPCR analysis performed in 56-h post-fertilization (hpf) embryos demonstrated differential expression patterns of genes related to pigment development and differentiation. The most substantial findings include those indicating that TQR had no significant influence on leukocyte tyrosine kinase, GTP cyclohydrolase 2, tyrosinase-related protein 1, and forkhead box D3, however, markedly upregulated tyrosinase, dopachrome tautomerase and melanocyte inducing transcription factor, and downregulated purine nucleoside phosphorylase 4a. The present study suggests that TQR is an agent with multidirectional properties toward pigment cell formation and distribution in the zebrafish larvae and therefore points to the involvement of P-glycoprotein in this process.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Pigmentação , Quinolinas/farmacologia , Peixe-Zebra/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva/metabolismo , Melaninas/biossíntese , Melanóforos/efeitos dos fármacos , Melanóforos/metabolismo , Pigmentação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Dev Dyn ; 250(10): 1420-1431, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33760303

RESUMO

BACKGROUND: Amphibians possess three kinds of dermal chromatophore: melanophores, iridophores, and xanthophores. Knockout Xenopus tropicalis that lack the pigmentation of melanophores and iridophores have been reported. The identification of the causal genes for xanthophore pigmentation or differentiation could lead to the creation of a see-through frog without three chromatophores. The genes causing xanthophore differentiation mutants are slc2a11b and slc2a15b in Japanese medaka (Oryzias latipes). RESULTS: To obtain a heritable line of X tropicalis mutants without yellow pigment, we generated slc2a7 and slc2a15a knockout animals because they have the greatest similarity to the O latipes slc2a11b and slc2a15b genes. The slc2a7 knockout frog had a bluish skin and there were no visible yellow pigments in stereo microscope and skin section observations. Furthermore, no pterinosomes, which are characteristic of xanthophores, were observed via transmission electron microscopy in the skin of knockout animals. CONCLUSIONS: We report the successful generation of a heritable no-yellow-pigment X tropicalis mutant after knock out of the slc2a7 gene. This finding will enable the creation of a see-through frog with no chromatophores.


Assuntos
Cromatóforos/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Melanóforos/metabolismo , Pigmentação/genética , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Xenopus
12.
Mol Biol Cell ; 32(5): 435-445, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439670

RESUMO

Microtubules (MTs) often form a polarized array with minus ends anchored at the centrosome and plus ends extended toward the cell margins. Plus ends display behavior known as dynamic instability-transitions between rapid shortening and slow growth. It is known that dynamic instability is regulated locally to ensure entry of MTs into nascent areas of the cytoplasm, but details of this regulation remain largely unknown. Here, we test an alternative hypothesis for the local regulation of MT behavior. We used microsurgery to isolate a portion of peripheral cytoplasm from MTs growing from the centrosome, creating cytoplasmic areas locally depleted of MTs. We found that in sparsely populated areas MT plus ends persistently grew or paused but never shortened. In contrast, plus ends that entered regions of cytoplasm densely populated with MTs frequently transitioned to shortening. Persistent growth of MTs in sparsely populated areas could not be explained by a local increase in concentration of free tubulin subunits or elevation of Rac1 activity proposed to enhance MT growth at the cell leading edge during locomotion. These observations suggest the existence of a MT density-dependent mechanism regulating MT dynamics that determines dynamic instability of MTs in densely populated areas of the cytoplasm and persistent growth in sparsely populated areas.


Assuntos
Citoplasma/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Animais , Centrossomo/metabolismo , Centrossomo/fisiologia , Characidae/metabolismo , Citoplasma/fisiologia , Melanóforos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Células NIH 3T3 , Tubulina (Proteína)/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(42): 26307-26317, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020272

RESUMO

Reptiles exhibit a spectacular diversity of skin colors and patterns brought about by the interactions among three chromatophore types: black melanophores with melanin-packed melanosomes, red and yellow xanthophores with pteridine- and/or carotenoid-containing vesicles, and iridophores filled with light-reflecting platelets generating structural colors. Whereas the melanosome, the only color-producing endosome in mammals and birds, has been documented as a lysosome-related organelle, the maturation paths of xanthosomes and iridosomes are unknown. Here, we first use 10x Genomics linked-reads and optical mapping to assemble and annotate a nearly chromosome-quality genome of the corn snake Pantherophis guttatus The assembly is 1.71 Gb long, with an N50 of 16.8 Mb and L50 of 24. Second, we perform mapping-by-sequencing analyses and identify a 3.9-Mb genomic interval where the lavender variant resides. The lavender color morph in corn snakes is characterized by gray, rather than red, blotches on a pink, instead of orange, background. Third, our sequencing analyses reveal a single nucleotide polymorphism introducing a premature stop codon in the lysosomal trafficking regulator gene (LYST) that shortens the corresponding protein by 603 amino acids and removes evolutionary-conserved domains. Fourth, we use light and transmission electron microscopy comparative analyses of wild type versus lavender corn snakes and show that the color-producing endosomes of all chromatophores are substantially affected in the LYST mutant. Our work provides evidence characterizing xanthosomes in xanthophores and iridosomes in iridophores as lysosome-related organelles.


Assuntos
Colubridae/genética , Pigmentação da Pele/genética , Proteínas de Transporte Vesicular/genética , Animais , Evolução Biológica , Cromatóforos/metabolismo , Mapeamento Cromossômico , Cor , Colubridae/metabolismo , Genoma , Lisossomos/metabolismo , Melaninas/metabolismo , Melanóforos/metabolismo , Melanossomas/metabolismo , Mutação , Pele/metabolismo , Serpentes/genética , Vertebrados/metabolismo , Proteínas de Transporte Vesicular/metabolismo
14.
J Photochem Photobiol B ; 212: 112024, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32957069

RESUMO

Coupling skin colour with the light/dark cycle helps regulate body temperature in ectotherms. In X. laevis, nocturnal release of melatonin from the pineal complex induces pigment aggregation and skin lightening. This nocturnal blanching is initiated by a sensor (type II opsin) that triggers melatonin release when light intensity falls below a minimum threshold, and an effector (melatonin receptor) in the skin which induces pigment aggregation. The sensor/s and effector/s belong to two families of G-protein coupled receptors that originated from a common ancestor, but diverged with subsequent evolution. The aim of this work was to identify candidate sensor/s and effector/s that regulate melatonin-mediated skin colour variation. In X. laevis, we identified a developmental time (stage 43/44) when skin lightening depends on pineal complex photosensitivity alone. At this stage, the pineal complex comprises the frontal organ and pineal gland. A total of 37 type II opsin (14 duplicated) and 6 melatonin receptor (3 duplicated) genes were identified through a full genome analysis of the allotetraploid, X. laevis. These genes were grouped into subfamilies based on their predicted amino acid sequences and the presence of specific amino acids essential for their function. The pineal complex expresses mainly blue light sensitive opsins [pinopsin, parietopsin, opn3, and melanopsins (opn4 and opn4b)] and UV-light sensitive opsins (opn5 and parapinopsin), while visual opsins and va-ancient opsin are absent, as determined by RT-PCR and in situ hybridization. The photoisomerase retinal G-protein coupled receptor, and an uncharacterized opn6b opsin, are also expressed. The spectral sensitivity that triggers melatonin secretion, and therefore melanophore aggregation, falls in the visible spectrum (470-650 Î·m) and peaks in the blue/green range, pointing to the involvement of opsins with sensitivities therein. The effector-melatonin receptors expressed in skin melanophores are mtnr1a and mtnr1c. Our data point to candidate proteins required in the neuroendocrine circuit that underlies the circadian regulation of skin pigmentation, and suggest that multiple initiators and effectors likely participate.


Assuntos
Meio Ambiente , Luz , Melanóforos/metabolismo , Melanóforos/efeitos da radiação , Opsinas/metabolismo , Receptores de Melatonina/metabolismo , Pigmentação da Pele/efeitos da radiação , Sequência de Aminoácidos , Animais , Opsinas/química , Xenopus laevis
15.
Molecules ; 25(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825151

RESUMO

Aquaculture represents a major part of the world's food supply. This area of food production is developing rapidly, and as such the tools and analytical techniques used to monitor and assess the quality of fish need to also develop and improve. The use of spatially off-set Raman spectroscopy (SORS) is particularly well-suited for these applications, given the ability of this technique to take subsurface measurements as well as being rapid, non-destructive and label-free compared to classical chemical analysis techniques. To explore this technique for analysing fish, SORS measurements were taken on commercially significant whole fish through the skin in different locations. The resulting spectra were of high quality with subsurface components such as lipids, carotenoids, proteins and guanine from iridophore cells clearly visible in the spectra. These spectral features were characterised and major bands identified. Chemometric analysis additionally showed that clear differences are present in spectra not only from different sections of a fish but also between different species. These results highlight the potential application for SORS analysis for rapid quality assessment and species identification in the aquaculture industry by taking through-skin measurements.


Assuntos
Biomarcadores/análise , Peixes/metabolismo , Contaminação de Alimentos/análise , Melanóforos/metabolismo , Pele/química , Análise Espectral Raman/métodos , Animais , Carotenoides/análise , Guanina/análise , Lipídeos/análise , Proteínas/análise
16.
Phys Rev E ; 101(6-1): 062416, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688554

RESUMO

Molecular motors are fascinating proteins that use the energy of ATP hydrolysis to drive vesicles and organelles along cytoskeleton filaments toward their final destination within the cell. Several copies of these proteins bind to the cargo and take turns transporting the cargo attaching to and detaching from the track stochastically. Despite the relevance of molecular motors to cell physiology, key aspects of their collective functioning are still unknown. In this work we propose a one-dimensional model for the transport of extensive and smooth organelles driven by molecular motors. We ran numerical simulations to study the behavior of the cargo for different motor configurations, focusing on the transport properties observable in the experiments, e.g., average speed of the organelle and variations in length. We found that active motors drive the cargo using two different mechanisms: Either they locate in front of the cargo and pull the organelle or they situate at the cargo lagging edge and push. Variations in the organelle length is in close relation with the fraction of motors in each configuration, which depends on the resisting load. The results of this model were contrasted with experimental data obtained from the tracking of rodlike mitochondria during active transport in Xenopus laevis melanophores.


Assuntos
Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Motores Moleculares/metabolismo , Organelas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Melanóforos/metabolismo , Xenopus laevis
17.
Aquat Toxicol ; 225: 105525, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32629302

RESUMO

Halogenated dipeptides, 3, 5-di-I-tyrosylalanine (DIYA), have been identified as novel disinfection byproducts (DBPs), following chloramination of authentic water. However, little is known about their toxicity. Zebrafish embryos were used to assess the toxicity of novel iodinated DBPs (I-DBPs). Although DIYA did not exhibit high acute toxicity to embryonic zebrafish (LC50 > 2 mM), it significantly inhibited pigmentation of melanophores and xanthophores on head, trunk and tail at 500 µM as determined by photographic analysis. Whereas N-phenylthiourea (PTU) as a pigment inhibitor did not inhibit development of yellow pigments. Colorimetric detection of melanin further confirmed these results. Quantitative real time polymerase chain reaction (qRT-PCR) measurements indicated that genes (dct, slc24a5, tyr, tyrp1a, tyrp1b, silva) associated with the melanogenesis pathway were dramatically down-regulated following exposure to 500 µM DIYA. In addition, enzymatic activity of tyrosinase (TYR) decreased, also demonstrating that the underlying mechanism of hypopigmentation was attributed to the disruption of melanogenesis pathway. Transcription levels of xanthophore genes (gch2, bnc2, csf1a, csf1b, pax7a and pax7b) were also monitored by qRT-PCR assay. DIYA exposure up-regulated expression of gch2 and bnc2, but not csf1 and pax7. Tested DIYA analogues, brominated tyrosine was unlikely to inhibit pigmentation, indicating that the iodine substitution and dipeptides structure are of important structural feature for the inhibition of pigmentation. In this study, we observed that DIYA inhibited melanogenesis related genes, which might contribute to pigmentation defects. Moreover, as an emerging I-DBPs, the developmental toxicity of aromatic dipeptides should be further studied.


Assuntos
Dipeptídeos/toxicidade , Desinfetantes/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Hipopigmentação/induzido quimicamente , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/metabolismo , Expressão Gênica/efeitos dos fármacos , Halogenação , Hipopigmentação/genética , Melanóforos/efeitos dos fármacos , Melanóforos/metabolismo , Purificação da Água , Proteínas de Peixe-Zebra/genética
18.
PLoS One ; 15(1): e0214034, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31986190

RESUMO

Albinism is the most common color variation described in fish and is characterized by a white or yellow phenotype according to the species. In rainbow trout Oncorhynchus mykiss, aside from yellow-albino phenotypes, cobalt blue variants with autosomal, recessive inheritance have also been reported. In this study, we investigated the inheritance pattern and chromatophores distribution/abundance of cobalt blue trouts obtained from a local fish farm. Based on crosses with wild-type and dominant yellow-albino lines, we could infer that cobalt blue are dominant over wild-type and co-dominant in relation to yellow-albino phenotype, resulting in a fourth phenotype: the white-albino. Analysis of chromatophores revealed that cobalt blue trouts present melanophores, as the wild-type, and a reduced number of xanthophores. As regards to the white-albino phenotype, they were not only devoid of melanophores but also presented a reduced number of xanthophores. Cobalt blue and white-albino trouts also presented reduced body weight and a smaller pituitary gland compared to wild-type and yellow-albino phenotypes. The transcription levels of tshb and trh were up regulated in cobalt blue compared to wild type, suggesting the involvement of thyroid hormone in the expression of blue color. These phenotypes represent useful models for research on body pigmentation in salmonids and on the mechanisms behind endocrine control of color patterning.


Assuntos
Albinismo/genética , Padrões de Herança/genética , Oncorhynchus mykiss/genética , Pigmentação/genética , Animais , Cromatóforos/metabolismo , Cor , Melanóforos/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Fenótipo
19.
Environ Toxicol Chem ; 39(2): 381-395, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31721268

RESUMO

Melanophores are pigmented cells that change the distribution of melanosomes, enabling animals to appear lighter or darker for camouflage, thermoregulation, and protection from ultraviolet radiation. A complex series of hormonal and neural mechanisms regulates melanophore pigment distribution, making these dynamic cells a valuable tool to screen toxicants as they rapidly respond to changes in the environment. We found that maltol, a naturally occurring flavor enhancer and fragrance agent, induces melanophore pigment aggregation in a dose-dependent manner in Xenopus laevis tadpoles. To determine if maltol affects camouflage adaptation, we placed tadpoles into maltol baths situated over either a white or a black background. Maltol induced pigment aggregation in a similar dose-dependent pattern regardless of background color. We also tested how maltol treatment compares to melatonin treatment and found that the degree of pigment aggregation induced by maltol is similar to treatment with melatonin but that maltol induces over a much longer time course. Last, maltol had no effect on mRNA expression in the brain of genes that regulate camouflage-related pigment aggregation. The present results suggest that maltol does not exert its effects via the camouflage adaptation mechanism or via melatonin-related mechanisms. These results are the first to identify a putative toxicological effect of maltol exposure in vivo and rule out several mechanisms by which maltol may exert its effects on pigment aggregation. Environ Toxicol Chem 2020;39:381-395. © 2019 SETAC.


Assuntos
Dura-Máter/efeitos dos fármacos , Aromatizantes/toxicidade , Larva/efeitos dos fármacos , Melanóforos/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Pironas/toxicidade , Pele/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Dura-Máter/citologia , Dura-Máter/metabolismo , Aromatizantes/metabolismo , Expressão Gênica/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Larva/efeitos da radiação , Melanóforos/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Pigmentação/efeitos dos fármacos , Pironas/metabolismo , Pele/citologia , Pele/metabolismo , Testes de Toxicidade , Raios Ultravioleta , Xenopus laevis
20.
G3 (Bethesda) ; 10(1): 311-319, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31757930

RESUMO

The body coloration of animals is due to pigment cells derived from neural crest cells, which are multipotent and differentiate into diverse cell types. Medaka (Oryzias latipes) possesses four distinct types of pigment cells known as melanophores, xanthophores, iridophores, and leucophores. The few melanophore (fm) mutant of medaka is characterized by reduced numbers of melanophores and leucophores. We here identify kit-ligand a (kitlga) as the gene whose mutation gives rise to the fm phenotype. This identification was confirmed by generation of kitlga knockout medaka and the findings that these fish also manifest reduced numbers of melanophores and leucophores and fail to rescue the fm mutant phenotype. We also found that expression of sox5, pax7a, pax3a, and mitfa genes is down-regulated in both fm and kitlga knockout medaka, implicating c-Kit signaling in regulation of the expression of these genes as well as the encoded transcription factors in pigment cell specification. Our results may provide insight into the pathogenesis of c-Kit-related pigmentation disorders such as piebaldism in humans, and our kitlga knockout medaka may prove useful as a tool for drug screening.


Assuntos
Proteínas de Peixes/genética , Melanóforos/metabolismo , Oryzias/genética , Pigmentação da Pele/genética , Animais , Proteínas de Peixes/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA