Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(4): e1010740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099597

RESUMO

Oxidative stress response is a fundamental biological process mediated by conserved mechanisms. The identities and functions of some key regulators remain unknown. Here, we report a novel role of C. elegans casein kinase 1 gamma CSNK-1 (also known as CK1γ or CSNK1G) in regulating oxidative stress response and ROS levels. csnk-1 interacted with the bli-3/tsp-15/doxa-1 NADPH dual oxidase genes via genetic nonallelic noncomplementation to affect C. elegans survival in oxidative stress. The genetic interaction was supported by specific biochemical interactions between DOXA-1 and CSNK-1 and potentially between their human orthologs DUOXA2 and CSNK1G2. Consistently, CSNK-1 was required for normal ROS levels in C. elegans. CSNK1G2 and DUOXA2 each can promote ROS levels in human cells, effects that were suppressed by a small molecule casein kinase 1 inhibitor. We also detected genetic interactions between csnk-1 and skn-1 Nrf2 in oxidative stress response. Together, we propose that CSNK-1 CSNK1G defines a novel conserved regulatory mechanism for ROS homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Oxidases Duais/farmacologia , NADP , Espécies Reativas de Oxigênio , Caseína Quinase I/genética , Estresse Oxidativo/genética , NADPH Oxidases , Tetraspaninas/genética
2.
United European Gastroenterol J ; 11(1): 31-41, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36314901

RESUMO

BACKGROUND: Psychological stress and increased permeability are implicated as contributing factors in the initiation and worsening of gastrointestinal diseases. A link between stress and intestinal permeability has been shown in animal models as well as in human small intestine, but stress effects on the human colorectal mucosal barrier has not been reported. OBJECTIVE: To investigate the potential effects of acute psychological stress on colorectal mucosal barrier function and to explore stress-induced molecular events in the rectal mucosa under healthy conditions. METHODS: Endoscopic biopsies were taken from the rectosigmoid region of healthy volunteers, who had been subjected to dichotomous listening stress and after a control session, respectively. Paracellular and transcellular permeability were assessed in modified Ussing chambers. RNA expression (microarray technology confirmed by quantitative real-time polymerase chain reaction) and biological pathway analysis were used to investigate the local mucosal response to acute stress. RESULTS: Dichotomous listening stress induced a subjective and objective stress response, and significantly increased paracellular but not transcellular permeability. We also identified a stress-induced reduction in RNA expression of genes related to immune cell activation and maturation (CR2, CD20, TCLA1, BANK1, CD22, FDCSP), signaling molecules of homing of immune cells to the gut (chemokines: CCL21, CXCL13, and CCL19, and receptors: CCR7, CXCR5), and innate immunity (DUOX2). Eight of the 10 top down-regulated genes are directly involved in B cell activation, signaling and migration. The systemic stress response correlated positively with paracellular permeability and negatively with DUOX2 expression. CONCLUSION: Dichotomous listening stress increases paracellular permeability and modulates immune cell activity in the rectal mucosa. Further studies are warranted to identify the primary mechanisms of stress-mediated reduction of mucosal defensive activity and barrier dysfunction, and their potential implications for gastrointestinal disorders.


Assuntos
Neoplasias Colorretais , Gastroenteropatias , Animais , Humanos , Oxidases Duais/metabolismo , Oxidases Duais/farmacologia , Voluntários Saudáveis , Mucosa Intestinal/patologia , Permeabilidade , Neoplasias Colorretais/patologia , RNA/metabolismo , RNA/farmacologia
3.
J Microbiol ; 56(6): 373-386, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29858825

RESUMO

The NOX/DUOX family of NADPH oxidases are transmembrane proteins generating reactive oxygen species as their primary enzymatic products. NADPH oxidase (NOX) 1-5 and Dual oxidase (DUOX) 1 and 2 are members of this family. These enzymes have several biological functions including immune defense, hormone biosynthesis, fertilization, cell proliferation and differentiation, extracellular matrix formation and vascular regulation. They are found in a variety of tissues such as the airways, salivary glands, colon, thyroid gland and lymphoid organs. The discovery of NADPH oxidases has drastically transformed our view of the biology of reactive oxygen species and oxidative stress. Roles of several isoforms including DUOX1 and DUOX2 in host innate immune defense have been implicated and are still being uncovered. DUOX enzymes highly expressed in the respiratory and salivary gland epithelium have been proposed as the major sources of hydrogen peroxide supporting mucosal oxidative antimicrobial defenses. In this review, we shortly present data on DUOX discovery, structure and function, and provide a detailed, up-to-date summary of discoveries regarding antibacterial, antiviral, antifungal, and antiparasitic functions of DUOX enzymes. We also present all the literature describing the immune functions of lactoperoxidase, an enzyme working in partnership with DUOX to produce antimicrobial substances.


Assuntos
Anti-Infecciosos/farmacologia , Oxidases Duais/metabolismo , Oxidases Duais/farmacologia , Lactoperoxidase/metabolismo , Lactoperoxidase/farmacologia , Animais , Antifúngicos/farmacologia , Antiparasitários/farmacologia , Antivirais/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Imunidade Inata , Proteínas de Membrana/metabolismo , NADPH Oxidase 1/farmacologia , NADPH Oxidase 5/farmacologia , NADPH Oxidases/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/metabolismo , Glândulas Salivares/metabolismo , Tiocianatos , Glândula Tireoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA