Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273240

RESUMO

Gene expression patterns are very sensitive to external influences and are reflected in phenotypic changes. It was previously described that transferring melanoma cells from a plastic surface to Matrigel led to formation of de novo vascular networks-vasculogenic mimicry-that are characteristic to a stemness phenotype in aggressive tumors. Up to now there was no detailed data about the gene signature accompanying this process. Here, we show that this transfer shortly led to extremely strong epigenetic changes in gene expression in the melanoma cells. We observed that on Matrigel numerous genes controlling ribosome biogenesis were upregulated. However, most of the activated genes were inhibitors of the differentiation genes (ID1, ID2, and ID3). At the same time, the genes that control differentiation were downregulated. Both the upregulated and the downregulated genes are simultaneously targeted by different transcription factors shaping sets of co-expressed genes. The specific group of downregulated genes shaping contacts with rDNA genes are also associated with the H3K27me3 mark and with numerous lincRNAs and miRNAs. We conclude that the stemness phenotype of melanoma cells is due to the downregulation of developmental genes and formation of dedifferentiated cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína 1 Inibidora de Diferenciação , Proteína 2 Inibidora de Diferenciação , Proteínas Inibidoras de Diferenciação , Melanoma , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Linhagem Celular Tumoral , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fenótipo , Diferenciação Celular/genética , Epigênese Genética , Combinação de Medicamentos , Colágeno , Proteoglicanas , Laminina , Proteínas de Neoplasias
2.
Mol Biol Rep ; 51(1): 806, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001993

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second most deathly worldwide and third most common cancer, CRC is a very heterogeneous disease where tumors can form by both environmental and genetic risk factors and includes epigenetic and genetic alternations. Inhibitors of DNA binding proteins (ID) are a class of helix-loop-helix transcription regulatory factors; these proteins are considered a family of four highly preserved transcriptional regulators (ID1-4), shown to play significant roles in many processes that are associated with tumor development. ID family plays as negatively dominant antagonists of other essential HLH proteins, concluding the creation of non-functional heterodimers and regulation of the transcription process. MATERIALS AND METHODS: 120 Fresh tissue and blood samples Forty (40) samples of fresh tissue and blood were collected from patients diagnosed with CRC, twenty (20) samples were collected from a patient diagnosed as healthy. The (qRT-PCR) method is a sensitive technique for the quantifying of steady-state mRNA levels that used to evaluation the expression levels of ID (1-4) gene. RESULTS: The findings indicate downregulation in ID1 in tissue with a highly significant change between patients and control groups, where upregulation in the ID1 gene is shown in blood samples.ID2 gene also demonstrated high significant change where show upregulation in tissue and downregulation in blood sample. ID3 and ID4 genes show downregulation in tissue and blood samples with a significant change in ID3 blood samples between patient and blood groups. CONCLUSION: Because of the regulation function of the ID family in many processes, the up or down regulation of IDs genes in tumors Proves how important its tumor development, and therefore those proteins can be used as an indicator for CRC.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas Inibidoras de Diferenciação , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Iraque , Masculino , Regulação Neoplásica da Expressão Gênica/genética , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo
3.
Nat Commun ; 15(1): 5078, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871720

RESUMO

T cell receptor (TCR) signaling regulates important developmental transitions, partly through induction of the E protein antagonist, Id3. Although normal γδ T cell development depends on Id3, Id3 deficiency produces different phenotypes in distinct γδ T cell subsets. Here, we show that Id3 deficiency impairs development of the Vγ3+ subset, while markedly enhancing development of NKγδT cells expressing the invariant Vγ1Vδ6.3 TCR. These effects result from Id3 regulating both the generation of the Vγ1Vδ6.3 TCR and its capacity to support development. Indeed, the Trav15 segment, which encodes the Vδ6.3 TCR subunit, is directly bound by E proteins that control its expression. Once expressed, the Vγ1Vδ6.3 TCR specifies the innate-like NKγδT cell fate, even in progenitors beyond the normally permissive perinatal window, and this is enhanced by Id3-deficiency. These data indicate that the paradoxical behavior of NKγδT cells in Id3-deficient mice is determined by its stereotypic Vγ1Vδ6.3 TCR complex.


Assuntos
Proteínas Inibidoras de Diferenciação , Receptores de Antígenos de Linfócitos T gama-delta , Animais , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Camundongos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Diferenciação Celular , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transdução de Sinais
4.
Breast Cancer Res Treat ; 207(1): 91-101, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702584

RESUMO

PURPOSE: Inhibitor of differentiation 4 (ID4) is a dominant-negative regulator of basic helix-loop-helix (bHLH) transcription factors. The expression of ID4 is dysregulated in various breast cancer subtypes, indicating a potential role for ID4 in subtype-specific breast cancer development. This study aims to elucidate the epigenetic regulation of ID4 within breast cancer subtypes, with a particular focus on DNA methylation and chromatin accessibility. METHODS: Bioinformatic analyses were conducted to assess DNA methylation and chromatin accessibility in ID4 regulatory regions across breast cancer subtypes. Gene Set Enrichment Analysis (GSEA) was conducted to identify related gene sets. Transcription factor binding within ID4 enhancer and promoter regions was explored. In vitro experiments involved ER+ breast cancer cell lines treated with estradiol (E2) and Tamoxifen. RESULTS: Distinct epigenetic profiles of ID4 were observed, revealing increased methylation and reduced chromatin accessibility in luminal subtypes compared to the basal subtype. Gene Set Enrichment Analysis (GSEA) implicated estrogen-related pathways, suggesting a potential link between estrogen signaling and the regulation of ID4 expression. Transcription factor analysis identified ER and FOXA1 as regulators of ID4 enhancer regions. In vitro experiments confirmed the role of ER, demonstrating reduced ID4 expression and increased methylation with estradiol treatment. Conversely, Tamoxifen treatment increased ID4 expression, indicating the potential involvement of ER signaling through ERα in the epigenetic regulation of ID4 in breast cancer cells. CONCLUSION: This study shows the intricate epigenetic regulation of ID4 in breast cancer, highlighting subtype-specific differences in DNA methylation and chromatin accessibility.


Assuntos
Neoplasias da Mama , Cromatina , Biologia Computacional , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito , Proteínas Inibidoras de Diferenciação , Regiões Promotoras Genéticas , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Biologia Computacional/métodos , Cromatina/metabolismo , Cromatina/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Linhagem Celular Tumoral , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Elementos Facilitadores Genéticos , Estradiol/farmacologia
5.
Blood ; 144(2): 187-200, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38620074

RESUMO

ABSTRACT: SRY-related HMG-box gene 11 (SOX11) is a transcription factor overexpressed in mantle cell lymphoma (MCL), a subset of Burkitt lymphomas (BL) and precursor lymphoid cell neoplasms but is absent in normal B cells and other B-cell lymphomas. SOX11 has an oncogenic role in MCL but its contribution to BL pathogenesis remains uncertain. Here, we observed that the presence of Epstein-Barr virus (EBV) and SOX11 expression were mutually exclusive in BL. SOX11 expression in EBV-negative (EVB-) BL was associated with an IG∷MYC translocation generated by aberrant class switch recombination, whereas in EBV-negative (EBV-)/SOX11-negative (SOX11-) tumors the IG∷MYC translocation was mediated by mistaken somatic hypermutations. Interestingly, EBV- SOX11-expressing BL showed higher frequency of SMARCA4 and ID3 mutations than EBV-/SOX11- cases. By RNA sequencing, we identified a SOX11-associated gene expression profile, with functional annotations showing partial overlap with the SOX11 transcriptional program of MCL. Contrary to MCL, no differences on cell migration or B-cell receptor signaling were found between SOX11- and SOX11-positive (SOX11+) BL cells. However, SOX11+ BL showed higher adhesion to vascular cell adhesion molecule 1 (VCAM-1) than SOX11- BL cell lines. Here, we demonstrate that EBV- BL comprises 2 subsets of cases based on SOX11 expression. The mutual exclusion of SOX11 and EBV, and the association of SOX11 with a specific genetic landscape suggest a role of SOX11 in the early pathogenesis of BL.


Assuntos
Linfoma de Burkitt , Herpesvirus Humano 4 , Fatores de Transcrição SOXC , Humanos , Linfoma de Burkitt/genética , Linfoma de Burkitt/virologia , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Herpesvirus Humano 4/genética , Regulação Neoplásica da Expressão Gênica , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Mutação , DNA Helicases/genética , DNA Helicases/metabolismo , Translocação Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Masculino , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Nucleares
6.
Arterioscler Thromb Vasc Biol ; 44(6): 1265-1282, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602102

RESUMO

BACKGROUND: Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. METHODS: Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time-to-cell cycle reentry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA-seq (single-cell RNA sequencing) analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. RESULTS: Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous flow-exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. CONCLUSIONS: Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence misregulation that leads to vascular dysfunction and disease.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27 , Células Endoteliais , Peixe-Zebra , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Animais , Humanos , Células Endoteliais/metabolismo , Mecanotransdução Celular , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Ciclo Celular , Camundongos , Células Cultivadas , Fatores de Tempo , Fluxo Sanguíneo Regional , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proliferação de Células , Proteínas de Neoplasias
7.
Biochem Biophys Res Commun ; 708: 149789, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38513475

RESUMO

The tumor suppressor p53 prevents cancer development by regulating dozens of target genes with diverse biological functions. Although numerous p53 target genes have been identified to date, the dynamics and function of the regulatory network centered on p53 have not yet been fully elucidated. We herein identified inhibitor of DNA-binding/differentiation-3 (ID3) as a direct p53 target gene. p53 bound the distal promoter of ID3 and positively regulated its transcription. ID3 expression was significantly decreased in clinical lung cancer tissues, and was closely associated with overall survival outcomes in these patients. Functionally, ID3 deficiency promoted the metastatic ability of lung cancer cells through its effects on the transcriptional regulation of CDH1. Furthermore, the ectopic expression of ID3 in p53-knockdown cells restored E-cadherin expression. Collectively, the present results demonstrate that ID3 plays a tumor-suppressive role as a downstream effector of p53 and impedes lung cancer cell metastasis by regulating E-cadherin expression.


Assuntos
Neoplasias Pulmonares , Humanos , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Glia ; 72(7): 1236-1258, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38515287

RESUMO

The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs. By contrast, ID1, ID2, and ID3 were low in resting MG and then upregulated in MGPCs. Inhibition of ID factors following retinal damage decreased numbers of proliferating MGPCs. Inhibition of IDs, after MGPC proliferation, significantly increased numbers of progeny that differentiated as neurons. In damaged or undamaged retinas inhibition of IDs increased levels of p21Cip1 in MG. In response to damage or insulin+FGF2 levels of CDKN1A message and p21Cip1 protein were decreased, absent in proliferating MGPCs, and elevated in MG returning to a resting phenotype. Inhibition of notch- or gp130/Jak/Stat-signaling in damaged retinas increased levels of ID4 but not p21Cip1 in MG. Although ID4 is the predominant isoform expressed by MG in the chick retina, id1 and id2a are predominantly expressed by resting MG and downregulated in activated MG and MGPCs in zebrafish retinas. We conclude that ID factors have a significant impact on regulating the responses of MG to retinal damage, controlling the ability of MG to proliferate by regulating levels of p21Cip1, and suppressing the neurogenic potential of MGPCs.


Assuntos
Proliferação de Células , Células Ependimogliais , Proteínas Inibidoras de Diferenciação , Retina , Animais , Proliferação de Células/fisiologia , Proliferação de Células/efeitos dos fármacos , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Retina/metabolismo , Retina/citologia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Neurogênese/fisiologia , Neurogênese/efeitos dos fármacos , Embrião de Galinha , Células-Tronco Neurais/metabolismo , Galinhas , Neuroglia/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia
9.
Phytomedicine ; 128: 155493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484626

RESUMO

BACKGROUND: ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE: We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS: Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS: Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS: ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas Inibidoras de Diferenciação , Neoplasias Pulmonares , Proteínas de Neoplasias , Silibina , Silibina/farmacologia , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/genética , Silimarina/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Morfogenética Óssea 6 , Silybum marianum/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Feminino
10.
Nature ; 626(8000): 864-873, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326607

RESUMO

Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.


Assuntos
Proteínas Inibidoras de Diferenciação , Células de Kupffer , Neoplasias , Animais , Humanos , Camundongos , Células da Medula Óssea/citologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Inibidoras de Diferenciação/deficiência , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células de Kupffer/citologia , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/imunologia , Fígado/patologia , Ativação de Macrófagos , Proteínas de Neoplasias , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fagocitose
11.
Aging (Albany NY) ; 15(24): 14803-14829, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38112574

RESUMO

BACKGROUND: Ischemic stroke (IS) is a fearful disease that can cause a variety of immune events. Nevertheless, precise immune-related mechanisms have yet to be systematically elucidated. This study aimed to identify immune-related signatures using machine learning and to validate them with animal experiments and single cell analysis. METHODS: In this study, we screened 24 differentially expressed genes (DEGs) while identifying immune-related signatures that may play a key role in IS development through a comprehensive strategy between least absolute shrinkage and selection operation (LASSO) regression, support vector machine (SVM) and immune-related genes. In addition, we explored immune infiltration using the CIBERSORT algorithm. Finally, we performed validation in mouse brain tissue and single cell analysis. RESULTS: We identified 24 DEGs for follow-up analysis. ID3 and SLC22A4 were finally identified as the better immune-related signatures through a comprehensive strategy among DEGs, LASSO, SVM and immune-related genes. RT-qPCR, western blot, and immunofluorescence revealed a significant decrease in ID3 and a significant increase in SLC22A4 in the middle cerebral artery occlusion group. Single cell analysis revealed that ID3 was mainly concentrated in endothelial_2 cells and SLC22A4 in astrocytes in the MCAO group. A CIBERSORT finds significantly altered levels of immune infiltration in IS patients. CONCLUSIONS: This study focused on immune-related signatures after stroke and ID3 and SLC22A4 may be new therapeutic targets to promote functional recovery after stroke. Furthermore, the association of ID3 and SLC22A4 with immune cells may be a new direction for post-stroke immunotherapy.


Assuntos
Proteínas Inibidoras de Diferenciação , AVC Isquêmico , Proteínas de Transporte de Cátions Orgânicos , Acidente Vascular Cerebral , Simportadores , Animais , Humanos , Camundongos , Algoritmos , Astrócitos , Western Blotting , Proteínas Inibidoras de Diferenciação/imunologia , Proteínas Inibidoras de Diferenciação/metabolismo , AVC Isquêmico/genética , Proteínas de Neoplasias , Proteínas de Transporte de Cátions Orgânicos/imunologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/metabolismo , Simportadores/imunologia , Simportadores/metabolismo
12.
Theriogenology ; 209: 141-150, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393744

RESUMO

DNA binding inhibitory factor 3 (ID3) has been shown to have a key role in maintaining proliferation and differentiation. It has been suggested that ID3 may also affect mammalian ovarian function. However, the specific roles and mechanisms are unclear. In this study, the expression level of ID3 in cumulus cells (CCs) was inhibited by siRNA, and the downstream regulatory network of ID3 was uncovered by high-throughput sequencing. The effects of ID3 inhibition on mitochondrial function, progesterone synthesis, and oocyte maturation were further explored. The GO and KEGG analysis results showed that after ID3 inhibition, differentially expressed genes, including StAR, CYP11A1, and HSD3B1, were involved in cholesterol-related processes and progesterone-mediated oocyte maturation. Apoptosis in CC was increased, while the phosphorylation level of ERK1/2 was inhibited. During this process, mitochondrial dynamics and function were disrupted. In addition, the first polar body extrusion rate, ATP production and antioxidation capacity were reduced, which suggested that ID3 inhibition led to poor oocyte maturation and quality. The results will provide a new basis for understanding the biological roles of ID3 as well as cumulus cells.


Assuntos
Células do Cúmulo , Oócitos , Oogênese , Progesterona , Animais , Bovinos , Feminino , Células do Cúmulo/metabolismo , Mamíferos , Mitocôndrias , Oócitos/fisiologia , Oogênese/genética , Progesterona/farmacologia , Progesterona/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo
13.
Gene ; 853: 147092, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464175

RESUMO

A family of inhibitors of cell differentiation or DNA-binding proteins, known as ID proteins (ID1-4), function as mighty transcription factors in various cellular processes, such as inhibiting differentiation, promoting cell-cycle progression, senescence, angiogenesis, tumorigenesis, and metastasis in cancer. Pancreatic cancer represents the deadliest cancer with the lowest survival rate of 10% due to the diagnosis at an advanced fatal stage and therapeutic resistance. Modestly, the only curative option for this lethal cancer is surgery but is done in less than 15-20% of patients because of the locally aggressive and early metastatic nature. Finding the earliest biomarkers and targeting the various hallmarks of pancreatic cancer can improve the treatment and survival of pancreatic cancer patients. Therefore, herein in this review, we explore in depth the potential roles of ID proteins function in hallmarks of pancreatic cancer, signaling pathways, and its oncogenic and tumor-suppressive effects. Hence, understanding the roles of dysregulated ID proteins would provide new insights into its function in pancreatic cancer tumorigenesis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas de Ligação a DNA , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias Pancreáticas/genética , Diferenciação Celular , Carcinogênese , Transformação Celular Neoplásica , DNA , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas
14.
Front Immunol ; 13: 982278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263050

RESUMO

Excessive subchondral angiogenesis is a key pathological feature of osteoarthritis (OA), as it alters the balance of subchondral bone remodeling and causes progressive cartilage degradation. We previously found that miR-210-3p correlates negatively with angiogenesis, though the specific mechanism of miR-210-3p-related angiogenesis in subchondral bone during OA progression remains unclear. This study was conducted to identify the miR-210-3p-modulating subchondral angiogenesis mechanism in OA and investigate its therapeutic effect. We found that miR-210-3p expression correlated negatively with subchondral endomucin positive (Emcn+) vasculature in the knee joints of OA mice. miR-210-3p overexpression regulated the angiogenic ability of endothelial cells (ECs) under hypoxic conditions in vitro. Mechanistically, miR-210-3p inhibited ECs angiogenesis by suppressing transforming growth factor beta receptor 1 (TGFBR1) mRNA translation and degrading DNA-binding inhibitor 4 (ID4) mRNA. In addition, TGFBR1 downregulated the expression of ID4. Reduced ID4 levels led to a negative feedback regulation of TGFBR1, enhancing the inhibitory effect of miR-210-3p on angiogenesis. In OA mice, miR-210-3p overexpression in ECs via adeno-associated virus (AAV) alleviated cartilage degradation, suppressed the type 17 immune response and relieved symptoms by attenuating subchondral Emcn+ vasculature and subchondral bone remodeling. In conclusion, we identified a miR-210-3p/TGFBR1/ID4 axis in subchondral ECs that modulates OA progression via subchondral angiogenesis, representing a potential OA therapy target.


Assuntos
Proteínas Inibidoras de Diferenciação , MicroRNAs , Osteoartrite , Receptor do Fator de Crescimento Transformador beta Tipo I , Animais , Camundongos , DNA , Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , RNA Mensageiro/uso terapêutico , Sialomucinas , Proteínas Inibidoras de Diferenciação/metabolismo
15.
Front Immunol ; 13: 956156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983064

RESUMO

Shifting levels of E proteins and Id factors are pivotal in T cell commitment and differentiation, both in the thymus and in the periphery. Id2 and Id3 are two different factors that prevent E proteins from binding to their target gene cis-regulatory sequences and inducing gene expression. Although they use the same mechanism to suppress E protein activity, Id2 and Id3 play very different roles in T cell development and CD4 T cell differentiation. Id2 imposes an irreversible choice in early T cell precursors between innate and adaptive lineages, which can be thought of as a railway switch that directs T cells down one path or another. By contrast, Id3 acts in a transient fashion downstream of extracellular signals such as T cell receptor (TCR) signaling. TCR-dependent Id3 upregulation results in the dislodging of E proteins from their target sites while chromatin remodeling occurs. After the cessation of Id3 expression, E proteins can reassemble in the context of a new genomic landscape and molecular context that allows induction of different E protein target genes. To describe this mode of action, we have developed the "Clutch" model of differentiation. In this model, Id3 upregulation in response to TCR signaling acts as a clutch that stops E protein activity ("clutch in") long enough to allow shifting of the genomic landscape into a different "gear", resulting in accessibility to different E protein target genes once Id3 decreases ("clutch out") and E proteins can form new complexes on the DNA. While TCR signal strength and cytokine signaling play a role in both peripheral and thymic lineage decisions, the remodeling of chromatin and E protein target genes appears to be more heavily influenced by the cytokine milieu in the periphery, whereas the outcome of Id3 activity during T cell development in the thymus appears to depend more on the TCR signal strength. Thus, while the Clutch model applies to both CD4 T cell differentiation and T cell developmental transitions within the thymus, changes in chromatin accessibility are modulated by biased inputs in these different environments. New emerging technologies should enable a better understanding of the molecular events that happen during these transitions, and how they fit into the gene regulatory networks that drive T cell development and differentiation.


Assuntos
Proteína 2 Inibidora de Diferenciação , Proteínas Inibidoras de Diferenciação , Diferenciação Celular/genética , Cromatina , Citocinas/genética , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Linfócitos T/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(29): e2204254119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858332

RESUMO

Memory CD4+ T cells play a pivotal role in mediating long-term protective immunity, positioning them as an important target in vaccine development. However, multiple functionally distinct helper CD4+ T-cell subsets can arise in response to a single invading pathogen, complicating the identification of rare populations of memory precursor cells during the effector phase of infection and memory CD4+ T cells following pathogen clearance and the contraction phase of infection. Furthermore, current literature remains unclear regarding whether a single CD4+ memory T-cell lineage gives rise to secondary CD4+ T helper subsets or if there are unique memory precursor cells within each helper lineage. A majority of T follicular helper (Tfh) cells, which have established memory potential, express Id3, an inhibitor of E protein transcription factors, following acute viral infection. We show that expression of Id3 definitively identified a subset of cells within both the CD4+ Tfh and T helper 1 (Th1) lineages at memory time points that exhibited memory potential, with the capacity for significant re-expansion in response to secondary infection. Notably, we demonstrate that a subset of Th1 cells that survive into the memory phase were marked by Id3 expression and possessed the potential for enhanced expansion and generation of both Th1 and Tfh secondary effector cell populations in a secondary response to pathogen. Additionally, these cells exhibited enrichment of key molecules associated with memory potential when compared with Id3lo Th1 cells. Therefore, we propose that Id3 expression serves as an important marker to indicate multipotent potential in memory CD4+ T cells.


Assuntos
Linfócitos T CD4-Positivos , Memória Imunológica , Proteínas Inibidoras de Diferenciação , Subpopulações de Linfócitos T , Células Th1 , Animais , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia
17.
Bioengineered ; 13(5): 12350-12364, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35599595

RESUMO

In this study, we employed multiple laboratory techniques to acknowledge the biological activities and processes of Per2 and Id3 in glioma. We analyzed TCGA and CGGA databases for seeking association among Per2, Id3, and clinical features in glioma. Immunohistochemistry and Western blot were used to detect protein expression levels. CCK-8 assay, colony formation assay, Transwell assay, the wound healing assay, flow cytometric, and Xenograft nude mice were used to acknowledge the impact of Per2 and Id3 on biological behavior of glioma. The results showed that the Per2 mRNA expression was negatively correlated with the WHO grade, while the Id3 mRNA expression was positively correlated with the WHO grade in patients with glioma in TCGA and CGGA databases. Per2 and Id3 maintained separate prognostic abilities and had a negative connection in human glioma. In the clinical sample study, Per2 and Id3 were validated at the protein level with the same results compared to the mRNA expression level in TCGA and CGGA. By using a wide range of functional examples, overexpression of Per2 restrains malignant biological behaviors in glioma cells by many ways, while Id3 promotes malignant biological behaviors in glioma cells. Furthermore, overexpression of Per2 can inhibit Id3 expression via regulating PTEN/AKT/Smad5 signaling pathway and thereby abolish malignant biological behaviors that are caused by Id3 overexpression. These results suggested that Per2 inhibits glioma cell proliferation through regulating PTEN/AKT/Smad5/Id3 signaling pathway, which may be a viable therapeutic target for glioma.


Assuntos
Glioma , Proteínas Inibidoras de Diferenciação , Proteínas Circadianas Period , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Glioma/metabolismo , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Proteína Smad5/genética , Proteína Smad5/metabolismo
18.
Cell Mol Life Sci ; 79(3): 170, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35238991

RESUMO

Numerous studies have established the critical roles of microRNAs in regulating post-transcriptional gene expression in diverse biological processes. Here, we report on the role and mechanism of miR-24-3p in skeletal muscle differentiation and regeneration. miR-24-3p promotes myoblast differentiation and skeletal muscle regeneration by directly targeting high mobility group AT-hook 1 (HMGA1) and regulating it and its direct downstream target, the inhibitor of differentiation 3 (ID3). miR-24-3p knockdown in neonatal mice increases PAX7-positive proliferating muscle stem cells (MuSCs) by derepressing Hmga1 and Id3. Similarly, inhibition of miR-24-3p in the tibialis anterior muscle prevents Hmga1 and Id3 downregulation and impairs regeneration. These findings provide evidence that the miR-24-3p/HMGA1/ID3 axis is required for MuSC differentiation and skeletal muscle regeneration in vivo.


Assuntos
Proteína HMGA1a/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/citologia , Mioblastos
19.
Mol Immunol ; 144: 117-126, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219016

RESUMO

Id3, an inhibitor of DNA binding protein, plays important roles in the function and homeostasis of effector and memory T cells. Recent evidence has shown that Id3 is also implicated in CD8 T cell exhaustion. However, whether and how Id3 might regulate effector function or exhaustion of CD8 T cells, especially in the tumor setting, is still unknown. Here, we first showed that Id3 expression was impaired in tumor-infiltrating CD8 T cells as liver cancer progressed, especially in PD-1 +Tim-3 + exhausted CD8 T cells. Enforced expression of Id3 in CD8 T cells resulted in repressed development of anti-tumor CTLs exhaustion, which offered better tumor control. And partially depletion of Id3 in CD8 T cells promoted the development of exhausted CD8 T cells. Furthermore, Id3hi CD8 T cells could respond to PD-1 blockade. Collectively, Id3 exerts protective functions in CD8 T cells for liver cancer.


Assuntos
Neoplasias Hepáticas , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos/metabolismo , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
20.
Breast Cancer ; 29(3): 562-573, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35094293

RESUMO

BACKGROUND: Triple-negative (TN) breast cancer represents a subtype of breast cancer that does not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER-2). Clinically, it is characterized by high invasiveness, high metastatic potential, and poor prognosis. Inhibitor of DNA binding 4 (ID4) has been shown to be overexpressed in these tumors acting as an oncogene responsible for many of its aggressive features. CDC42, a plasma membrane-associated small GTPase, can downregulate ID4 gene expression through hypermethylation of its promoter in colorectal adenocarcinomas. Since ID4 acts as an oncogene and is hypomethylated in TN breast tumors, here we asked whether CDC42 could also epigenetically silence ID4 and in doing so revert aggressive features of this tumor type. METHODS: Gene expression was retrieved from TCGA database using UCSC Xena. Association between overall survival (OS) and gene expression was assessed using Kaplan-Meier plotter. In vitro experiments involved ectopic expression of CDC42 in MDA-MB231and in MDA-MB468 breast cancer cell lines. Gene expression was analyzed by qPCR, western blot and inmunofluorescence assays and methylation by MSP, MS-MLPA, or ddMSP. RESULTS: Data mining analysis revealed that CDC42 expression varies among breast cancer subtypes that in the basal-like subtype there is an inverse correlation between CDC42 and ID4 expression and a positive correlation between CDC42 expression and ID4 methylation. In vitro experiments revealed that CDC42 overexpression induced ID4 methylation through the activation of the EZH2 pathway. ID4 silencing produced an increase in BRCA1 expression and a less aggressive phenotype in the tested cell line. CONCLUSION: We show that CDC42 silences ID4 through methylation in TN breast cancer. Given that ID4 acts as an oncogene in these tumors, we think that finding an epigenetic regulator of ID4 contributes to the research and clinical management of TN breast tumors.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/patologia , Metilação de DNA , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Regiões Promotoras Genéticas , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína cdc42 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA