Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 11(8): 3760-3780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664860

RESUMO

Rationale: Stroke is a leading cause of adult disability worldwide, but no drug provides functional recovery during the repair phase. Accumulating evidence demonstrates that environmental enrichment (EE) promotes stroke recovery by enhancing network excitability. However, the complexities of utilizing EE in a clinical setting limit its translation. Methods: We used multifaceted approaches combining electrophysiology, chemogenetics, optogenetics, and floxed mice in a mouse photothrombotic stroke model to reveal the key target of EE-mediated stroke recovery. Results: EE reduced tonic gamma-aminobutyric acid (GABA) inhibition and facilitated phasic GABA inhibition in the peri-infarct cortex, thereby promoting network excitability and stroke recovery. These beneficial effects depended on GAT-1, a GABA transporter regulating both tonic and phasic GABA signaling, as EE positively regulated GAT-1 expression, trafficking, and function. Furthermore, GAT-1 was necessary for EE-induced network plasticity, including structural neuroplasticity, input synaptic strengthening in the peri-infarct cortex, output synaptic strengthening in the corticospinal tract, and sprouting of uninjured corticospinal axons across the midline into the territory of denervated spinal cord, and functional recovery from stroke. Moreover, restoration of GAT-1 function in the peri-infarct cortex by its overexpression showed similar beneficial effects on stroke recovery as EE exposure. Conclusion: GAT-1 is a key molecular substrate of the effects of EE on network excitability and consequent stroke recovery and can serve as a novel therapeutic target for stroke treatment during the repair phase.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Acidente Vascular Cerebral/terapia , Animais , Modelos Animais de Doenças , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/deficiência , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Medicina de Precisão , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/fisiopatologia , Ácido gama-Aminobutírico/fisiologia
2.
Alcohol Clin Exp Res ; 44(10): 1965-1976, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32862443

RESUMO

Alcohol use disorder (AUD) is 1 of the most prevalent of all substance use disorders and contributes significantly to global disease burden. Despite its prevalence, <10% of individuals with AUD receive treatment. A significant barrier to receiving treatment is a lack of effective pharmacotherapies. While 3 medications have been approved by the FDA for AUD (disulfiram, acamprosate, naltrexone), their efficacy remains low. Furthermore, a number of undesirable side effects associated with these drugs further reduce patient compliance. Thus, research into new effective pharmacotherapies for AUD is warranted. Due to their involvement in regulating synaptic neurotransmitter levels, solute carrier (SLC) transporters could be targeted for developing effective treatment strategies for AUD. Indeed, a number of studies have shown beneficial reductions in alcohol consumption through the use of drugs that target transporters of dopamine, serotonin, glutamate, glycine, and GABA. The purpose of this narrative review is to summarize preclinical and clinical studies from the last 2 decades targeting SLC neurotransmitter transporters for the treatment of AUD. Limitations, as well as future directions for expanding this field, are also discussed.


Assuntos
Alcoolismo/tratamento farmacológico , Neurotransmissores/metabolismo , Proteínas Carreadoras de Solutos/efeitos dos fármacos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sistema X-AG de Transporte de Aminoácidos/fisiologia , Animais , Dopamina/metabolismo , Dopamina/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Proteínas da Membrana Plasmática de Transporte de Glicina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/fisiologia , Humanos , Neurotransmissores/fisiologia , Serotonina/metabolismo , Serotonina/fisiologia , Proteínas Carreadoras de Solutos/metabolismo , Proteínas Carreadoras de Solutos/fisiologia
3.
Plant Cell Environ ; 43(10): 2443-2459, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32666573

RESUMO

Malate exudation through wheat (Triticum aestivum L) aluminium-activated malate transporter 1 (TaALMT1) confers Al3+ tolerance at low pH, but is also activated by alkaline pH, and is regulated by and facilitates significant transport of gamma-aminobutyric acid (GABA, a zwitterionic buffer). Therefore, TaALMT1 may facilitate acidification of an alkaline rhizosphere by promoting exudation of both malate and GABA. Here, the performance of wheat near isogenic lines ET8 (Al+3 -tolerant, high TaALMT1 expression) and ES8 (Al+3 -sensitive, low TaALMT1 expression) are compared. Root growth (at 5 weeks) was higher for ET8 than ES8 at pH 9. ET8 roots exuded more malate and GABA at high pH and acidified the rhizosphere more rapidly. GABA and malate exudation was enhanced at high pH by the addition of aluminate in both ET8 and transgenic barley expressing TaALMT1. Xenopus laevis oocytes expressing TaALMT1 acidified an alkaline media more rapidly than controls corresponding to higher GABA efflux. TaALMT1 expression did not change under alkaline conditions but key genes involved in GABA turnover changed in accordance with a high rate of GABA synthesis. We propose that TaALMT1 plays a role in alkaline tolerance by exuding malate and GABA, possibly coupled to proton efflux.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Malatos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Geneticamente Modificados , Clorofila/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Hordeum , Concentração de Íons de Hidrogênio , Oócitos , Transportadores de Ânions Orgânicos/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Rizosfera , Plântula/metabolismo , Plântula/fisiologia , Estresse Fisiológico , Triticum/fisiologia , Xenopus
4.
Curr Pharm Des ; 25(45): 4820-4826, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692421

RESUMO

BACKGROUND: The current study was conducted to examine the specific activation of pro-inflammatory cytokines (PICs), namely IL-1ß, IL-6 and TNF-α in the cochlear spiral ganglion of rats after ototoxicity induced by cisplatin. Since γ-aminobutyric acid (GABA) and its receptors are involved in pathophysiological processes of ototoxicity, we further examined the role played by PICs in regulating expression of GABA transporter type 1 and 3 (GAT-1 and GAT-3), as two essential subtypes of GATs responsible for the regulation of extracellular GABA levels in the neuronal tissues. METHODS: ELISA and western blot analysis were employed to examine the levels of PICs and GATs; and auditory brainstem response was used to assess ototoxicity induced by cisplatin. RESULTS: IL-1ß, IL-6 and TNF-α as well as their receptors were significantly increased in the spiral ganglion of ototoxic rats as compared with sham control animals (P<0.05, ototoxic rats vs. control rats). Cisplatin-ototoxicity also induced upregulation of the protein levels of GAT-1 and GAT-3 in the spiral ganglion (P<0.05 vs. controls). In addition, administration of inhibitors to IL-1ß, IL-6 and TNF-α attenuated amplification of GAT-1 and GAT-3 and improved hearing impairment induced by cisplatin. CONCLUSION: Our data indicate that PIC signals are activated in the spiral ganglion during cisplatin-ototoxicity which thereby leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA system is enhanced in the cochlear spiral ganglion. This supports a role for PICs in engagement of the signal mechanisms associated with cisplatin-ototoxicity, and has pharmacological implications to target specific PICs for GABAergic dysfunction and vulnerability related to cisplatin-ototoxicity.


Assuntos
Cisplatino/toxicidade , Citocinas/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Ototoxicidade , Gânglio Espiral da Cóclea/efeitos dos fármacos , Animais , Cóclea/inervação , Ratos
5.
Neuropharmacology ; 161: 107644, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31108110

RESUMO

É£-aminobutyric-acid (GABA) functions as the principal inhibitory neurotransmitter in the central nervous system. Imbalances in GABAergic neurotransmission are involved in the pathophysiology of various neurological diseases such as epilepsy, Alzheimer's disease and stroke. GABA transporters (GATs) facilitate the termination of GABAergic signaling by transporting GABA together with sodium and chloride from the synaptic cleft into presynaptic neurons and surrounding glial cells. Four different GATs have been identified that all belong to the solute carrier 6 (SLC6) transporter family: GAT1-3 (SLC6A1, SLC6A13, SLC6A11) and betaine/GABA transporter 1 (BGT1, SLC6A12). BGT1 has emerged as an interesting target for treating epilepsy due to animal studies that reported anticonvulsant effects for the GAT1/BGT1 selective inhibitor EF1502 and the BGT1 selective inhibitor RPC-425. However, the precise involvement of BGT1 in epilepsy remains elusive because of its controversial expression levels in the brain and the lack of highly selective and potent tool compounds. This review gathers the current structural and functional knowledge on BGT1 with emphasis on brain relevance, discusses all available compounds, and tries to shed light on the molecular determinants driving BGT1 selectivity. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Assuntos
Encéfalo/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/química , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Animais , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Humanos
6.
J Physiol ; 596(10): 1919-1929, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29419884

RESUMO

KEY POINTS: GABA transporter (GAT) blockade recruits extrasynaptic GABAA receptors (GABAA Rs) and amplifies constitutive presynaptic GABAB R activity. Extrasynaptic GABAA Rs contribute to a tonic current. Corticosteroids increase the tonic current mediated by extrasynaptic GABAA Rs. ABSTRACT: Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) are integratory hubs that regulate the endocrine response to stress. GABA inputs provide a basal inhibitory tone that constrains this system and circulating glucocorticoids (CORT) are important feedback controllers of CRH output. Surprisingly little is known about the direct effects of CORT on GABA synapses in PVN. Here we used whole-cell patch clamp recordings from CRH neurons in mouse hypothalamic brain slices to examine the effects of CORT on synaptic and extrasynaptic GABA signalling. We show that GABA transporters (GATs) limit constitutive activation of presynaptic GABAB receptors and ensure high release probability at GABA synapses. GATs in combination with GABAB receptors also curtail extrasynaptic GABAA R signalling. CORT has no effect on synaptic GABA signalling, but increases extrasynaptic GABA tone through upregulation of postsynaptic GABAA receptors. These data show that efficient GABA clearance and autoinhibition control the balance between synaptic (phasic) and extrasynaptic (tonic) inhibition in PVN CRH neurons. This balance is shifted towards increased extrasynaptic inhibition by CORT.


Assuntos
Corticosterona/farmacologia , Hormônio Liberador da Corticotropina/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Potenciais Pós-Sinápticos Inibidores , Inibição Neural , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Sinapses/fisiologia
7.
Neurochem Int ; 113: 1-7, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175673

RESUMO

Guanidinoacetate (GAA) is a biosynthetic precursor of creatine, which plays a critical role in homeostasis of high-energy phosphates in the brain, but cerebral accumulation of GAA leads to neurological complications, such as epilepsy and seizures. The purpose of the present study was to clarify the contribution of the γ-aminobutyric acid (GABA) transport systems to GAA transport in astrocytes by means of uptake studies in rat brain slices, primary astrocyte cultures and Chinese hamster ovary (CHO) cells expressing human GABA transporters (GATs). GAA uptake by rat brain slices was Na+- and Cl--dependent, and GABA-sensitive. The inhibitory effect of GABA, a common substrate of GATs, on GAA uptake by the brain slices was similar to that of ß-alanine, a selective substrate of GAT2/Slc6a13, GAT3/Slc6a11, and taurine transporter (TauT)/Slc6a6. Taurine, a high-affinity substrate of TauT/Slc6a6, exhibited a lesser inhibitory effect. In contrast, betaine, a substrate of betaine-GABA transporter 1 (BGT1)/Slc6a12, and creatine, a substrate of creatine transporter (CRT)/Slc6a8, had little inhibitory effect. A similar inhibition profile was observed in primary-cultured astrocytes. CHO cells expressing human GAT2/SLC6A13, GAT3/SLC6A11 and BGT1/SLC6A12 exhibited GAA transport, whereas CHO cells expressing GAT1/SLC6A1 did not. The Michaelis-Menten values in CHO cells expressing GAT2/SLC6A13 and GAT3/SLC6A11 were similar to those in primary-cultured astrocytes. Overall, our results suggest that astrocytic GAT2/Slc6a13 and GAT3/Slc6a11 play major roles in GAA uptake as regulatory mechanisms of GAA in rat brain, while TauT/Slc6a6, BGT1/Slc6a12, and CRT/Slc6a8 make relatively small contributions.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Glicina/análogos & derivados , Animais , Astrócitos/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Encéfalo/efeitos dos fármacos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Glicina/metabolismo , Humanos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/farmacologia
8.
Neurochem Res ; 42(7): 2019-2023, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28190226

RESUMO

Studies of GABA transport in neurons and astrocytes have provided evidence that termination of GABA as neurotransmitter is brought about primarily by active transport into the presynaptic, GABAergic nerve endings. There is, however, a considerable transport capacity in the astrocytes surrounding the synaptic terminals, a transport which may limit the availability of transmitter GABA leading to a higher probability of seizure activity governed by the balance of excitatory and inhibitory neurotransmission. Based on this it was hypothesized that selective inhibition of astrocytic GABA transport might prevent such seizure activity. A series of GABA analogs of restricted conformation were synthesized and in a number of collaborative investigations between Prof. Steve White at the University of Utah and medicinal chemists and pharmacologists at the School of Pharmacy and the University of Copenhagen, Denmark, GABA analogs with exactly this pharmacological property were identified. The most important analogs identified were N-methyl-exo-THPO (N-methyl-3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole) and its lipophilic analog EF-1502 ((RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol) both of which turned out to be potent anticonvulsants in animal models of epilepsy.


Assuntos
Anticonvulsivantes/uso terapêutico , Astrócitos/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Inibidores da Captação de GABA/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Astrócitos/efeitos dos fármacos , Inibidores da Captação de GABA/química , Inibidores da Captação de GABA/farmacologia , Humanos , Isoxazóis/química , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Convulsões/fisiopatologia
9.
Nat Commun ; 7: 13572, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886179

RESUMO

Astrocytes are ideally placed to detect and respond to network activity. They express ionotropic and metabotropic receptors, and can release gliotransmitters. Astrocytes also express transporters that regulate the extracellular concentration of neurotransmitters. Here we report a previously unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na+ concentrations and a consequent increase in astrocytic Ca2+ through Na+/Ca2+ exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal glutamate release via activation of presynaptic adenosine receptors. Through this mechanism, increases in astrocytic GAT-3 activity due to GABA released from interneurons contribute to 'diffuse' heterosynaptic depression. This provides a mechanism for homeostatic regulation of excitatory transmission in the hippocampus.


Assuntos
Astrócitos/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Hipocampo/fisiologia , Transmissão Sináptica/fisiologia , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Interneurônios/metabolismo , Modelos Animais , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
Neuropsychopharmacology ; 41(6): 1467-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26499511

RESUMO

Cortical network hyper-excitability is a common phenotype in mouse models lacking the transcriptional regulator methyl-CPG-binding protein 2 (MeCP2). Here, we implicate enhanced GABAB receptor activity stemming from diminished cortical expression of the GABA transporter GAT-1 in the genesis of this network hyper-excitability. We found that administering the activity-dependent GABAB receptor allosteric modulator GS-39783 to female Mecp2(+/-) mice at doses producing no effect in wild-type mice strongly potentiated their basal rates of spontaneous cortical discharge activity. Consistently, administering the GABAB receptor antagonist CGP-35348 significantly decreased basal discharge activity in these mice. Expression analysis revealed that while GABAB or extra-synaptic GABAA receptor prevalence is preserved in the MeCP2-deficient cortex, the expression of GAT-1 is significantly reduced from wild-type levels. This decrease in GAT-1 expression is consequential, as low doses of the GAT-1 inhibitor NO-711 that had no effects in wild-type mice strongly exacerbated cortical discharge activity in female Mecp2(+/-) mice. Taken together, these data indicate that the absence of MeCP2 leads to decreased cortical levels of the GAT-1 GABA transporter, which facilitates cortical network hyper-excitability in MeCP2-deficient mice by increasing the activity of cortical GABAB receptors.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Ciclopentanos/farmacologia , Eletrodos Implantados , Eletroencefalografia , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/deficiência , Proteínas da Membrana Plasmática de Transporte de GABA/efeitos dos fármacos , Inibidores da Captação de GABA/farmacologia , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Compostos Organofosforados/farmacologia , Pirimidinas/farmacologia
11.
Vis Neurosci ; 33: E017, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359349

RESUMO

Amacrine cells are a diverse set of local circuit neurons of the inner retina, and they all release either GABA or glycine, amino acid neurotransmitters that are generally inhibitory. But some types of amacrine cells have another function besides inhibiting other neurons. One glycinergic amacrine cell, the Aii type, excites a subset of bipolar cells via extensive gap junctions while inhibiting others at chemical synapses. Many types of GABAergic amacrine cells also release monoamines, acetylcholine, or neuropeptides. There is now good evidence that another type of amacrine cell releases glycine at some of its synapses and releases the excitatory amino acid glutamate at others. The glutamatergic synapses are made onto a subset of retinal ganglion cells and amacrine cells and have the asymmetric postsynaptic densities characteristic of central excitatory synapses. The glycinergic synapses are made onto other types of ganglion cells and have the symmetric postsynaptic densities characteristic of central inhibitory synapses. These amacrine cells, which contain vesicular glutamate transporter 3, will be the focus of this brief review.


Assuntos
Células Amácrinas/metabolismo , Transportador de Glucose Tipo 3/fisiologia , Proteínas da Membrana Plasmática de Transporte de Glicina/fisiologia , Células Amácrinas/citologia , Animais , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Humanos
12.
Neurochem Int ; 82: 42-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25700791

RESUMO

GABA (γ-amino butyric acid) is the major inhibitory transmitter in the central nervous system and its action is terminated by specific transporters (GAT), found in neurons and glial cells. We have previously described that GAT-3 is responsible for GABA uptake activity in cultured avian Müller cells and that it operates in a Na(+) and Cl(-) dependent manner. Here we show that glutamate decreases [(3)H] GABA uptake in purified cultured glial cells up to 50%, without causing cell death. This effect is mediated by ionotropic glutamatergic receptors. Glutamate inhibition on GABA uptake is not reverted by inhibitors of protein kinase C or modified by agents that modulate cyclic AMP/PKA. Biotinylation experiments demonstrate that this reduction in GABA uptake correlates with a decrease in GAT-3 plasma membrane levels. Interestingly, both GAT-1 and GAT-3 mRNA levels are also decreased by glutamate. Conditioned media (CM) prepared from retinal neurons could also decrease GABA influx, and glutamate receptor antagonists (MK-801 + CNQX) were able to prevent this effect. However, glutamate levels in CM were not different from those found in fresh media, indicating that a glutamatergic co-agonist or modulator could be regulating GABA uptake by Müller cells in this scenario. In the whole avian retina, GAT-3 is present from embryonic day 5 (E5) increasing up to the end of embryonic development and post-hatch period exclusively in neuronal layers. However, this pattern may change in pathological conditions, which drive GAT-3 expression in Müller cells. Our data suggest that in purified cultures and upon extensive neuronal lesion in vivo, shown as a Brn3a reduced neuronal cells and an GFAP increased gliosis, Müller glia may change its capacity to take up GABA due to GAT-3 up regulation and suggests a regulatory interplay mediated by glutamate between neurons and glial cells in this process.


Assuntos
Células Ependimogliais/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Ácido Glutâmico/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Transporte Biológico Ativo , Biotinilação , Cálcio/análise , Membrana Celular/metabolismo , Células Cultivadas , Embrião de Galinha , Galinhas , Meios de Cultivo Condicionados , Células Ependimogliais/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Perfilação da Expressão Gênica , Ácido Glutâmico/farmacologia , Ácido Caínico/farmacologia , N-Metilaspartato/administração & dosagem , N-Metilaspartato/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/fisiologia , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Retina/crescimento & desenvolvimento , Acetato de Tetradecanoilforbol/farmacologia
13.
Br J Pharmacol ; 172(2): 492-500, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24597632

RESUMO

BACKGROUND AND PURPOSE: Tolerance to the behavioural effects of morphine is blunted in ß-arrestin-2 knockout mice, but opioid withdrawal is largely unaffected. The cellular mechanisms of tolerance have been studied in some neurons from ß-arrestin-2 knockouts, but tolerance and withdrawal mechanisms have not been examined at the cellular level in periaqueductal grey (PAG) neurons, which are crucial for central tolerance and withdrawal phenomena. EXPERIMENTAL APPROACH: µ-Opioid receptor (MOPr) inhibition of voltage-gated calcium channel currents (ICa ) was examined by patch-clamp recordings from acutely dissociated PAG neurons from wild-type and ß-arrestin-2 knockout mice treated chronically with morphine (CMT) or vehicle. Opioid withdrawal-induced activation of GABA transporter type 1 (GAT-1) currents was determined using perforated patch recordings from PAG neurons in brain slices. KEY RESULTS: MOPr inhibition of ICa in PAG neurons was unaffected by ß-arrestin-2 deletion. CMT impaired coupling of MOPrs to ICa in PAG neurons from wild-type mice, but this cellular tolerance was not observed in neurons from CMT ß-arrestin-2 knockouts. However, ß-arrestin-2 knockouts displayed similar opioid-withdrawal-induced activation of GAT-1 currents as wild-type PAG neurons. CONCLUSIONS AND IMPLICATIONS: In ß-arrestin-2 knockout mice, the central neurons involved in the anti-nociceptive actions of opioids also fail to develop cellular tolerance to opioids following chronic morphine. The results also provide the first cellular physiological evidence that opioid withdrawal is not disrupted by ß-arrestin-2 deletion. However, the unaffected basal sensitivity to opioids in PAG neurons provides further evidence that changes in basal MOPr sensitivity cannot account for the enhanced acute nociceptive response to morphine reported in ß-arrestin-2 knockouts. LINKED ARTICLES: This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.


Assuntos
Arrestinas/fisiologia , Tolerância a Medicamentos/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Receptores Opioides mu/fisiologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Analgésicos Opioides/farmacologia , Animais , Arrestinas/genética , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfina/farmacologia , Neurônios/fisiologia , beta-Arrestina 2 , beta-Arrestinas
14.
J Pharmacol Sci ; 125(2): 217-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24881960

RESUMO

The GABAergic system in the spinal cord has been shown to participate in neuropathic pain in various animal models. GABA transporters (GATs) play a role in controlling the synaptic clearance of GABA; however, their role in neuropathic pain remains unclear. In the present study, we compared the betaine/GABA transporter (BGT-1) with other GAT subtypes to determine its participation in neuropathic pain using a mouse model of sciatic nerve ligation. 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), an inhibitor that displays moderate selectivity for BGT-1, had an antiallodynic action on model mice treated through both intrathecally and intravenous administration routes. On the other hand, SKF89976A, a selective GAT-1 inhibitor, had a weak antiallodynic action, and (S)-SNAP5114, an inhibitor that displays selectivity for GAT-3, had no antiallodynic action. Systemic analysis of these compounds on GABA uptake in CHO cells stably expressing BGT-1 revealed that NNC05-2090 not only inhibited BGT-1, but also serotonin, noradrenaline, and dopamine transporters, using a substrate uptake assay in CHO cells stably expressing each transporter, with IC50: 5.29, 7.91, and 4.08 µM, respectively. These values were similar to the IC50 value at BGT-1 (10.6 µM). These results suggest that the antiallodynic action of NNC05-2090 is due to the inhibition of both BGT-1 and monoamine transporters.


Assuntos
Betaína/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de GABA/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Neuralgia/tratamento farmacológico , Neuralgia/genética , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos Endogâmicos , Piperidinas/administração & dosagem , Ácido gama-Aminobutírico/metabolismo
15.
Dev Biol ; 393(1): 171-82, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24929237

RESUMO

Motility of sperm is crucial for their directed migration to the egg. The acquisition and modulation of motility are regulated to ensure that sperm move when and where needed, thereby promoting reproductive success. One specific example of this phenomenon occurs during differentiation of the ameboid sperm of Caenorhabditis elegans as they activate from a round spermatid to a mature, crawling spermatozoon. Sperm activation is regulated by redundant pathways to occur at a specific time and place for each sex. Here, we report the identification of the solute carrier 6 (SLC6) transporter protein SNF-10 as a key regulator of C. elegans sperm activation in response to male protease activation signals. We find that SNF-10 is present in sperm and is required for activation by the male but not by the hermaphrodite. Loss of both snf-10 and a hermaphrodite activation factor render sperm completely insensitive to activation. Using in vitro assays, we find that snf-10 mutant sperm show a specific deficit in response to protease treatment but not to other activators. Prior to activation, SNF-10 is present in the plasma membrane, where it represents a strong candidate to receive signals that lead to subcellular morphogenesis. After activation, it shows polarized localization to the cell body region that is dependent on membrane fusions mediated by the dysferlin FER-1. Our discovery of snf-10 offers insight into the mechanisms differentially employed by the two sexes to accomplish the common goal of producing functional sperm, as well as how the physiology of nematode sperm may be regulated to control motility as it is in mammals.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/citologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/biossíntese , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Organismos Hermafroditas , Masculino , Proteínas de Membrana/metabolismo , Morfogênese , Mutação , Motilidade dos Espermatozoides/genética , Espermatogênese
17.
Epilepsy Res ; 108(2): 182-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24359690

RESUMO

GABA transporters (GATs) are an essential element of the GABAergic system, which regulate excitability in the central nervous system and are thus used as targets for anticonvulsive therapy. However, in the immature nervous system the functions of the GABAergic system and the expression profile of GATs are distinct from the adult situation, obscuring to predict how different GAT isoforms influence epileptiform activity. Therefore we analyzed the effects of subtype specific GAT inhibitors on repetitive epileptiform discharges using field potential and whole-cell patch-clamp recordings in the CA3 region of hippocampal slices of immature (postnatal days 4-7) rats. These experiments revealed that inhibition of GAT-1 with either tiagabine (30 µM) or NO-711 (10 µM) exhibited only a minor anticonvulsive effect on repetitive epileptiform discharges. Blockade of GAT-2/3 with SNAP-5114 (40 µM) had no anticonvulsive effect, but significantly prolonged the decay of spontaneous GABAergic postsynaptic currents. In contrast, the combined application of 10 µM NO-711 and 40 µM SNAP-5114 blocked epileptiform activity in 33% of all slices and reduced the occurrence of epileptiform discharges by 54% in the remaining slices. In addition, the input resistance decreased by 10.5 ± 1.0% under this condition. These results indicate that both GAT-1 and GAT-2/3 are functional in the immature hippocampus and that only the combined inhibition of GAT 1-3 is sufficient to promote a considerable anticonvulsive effect. We conclude from these results that both GAT-1 and GAT-2/3 act synergistically to regulate the excitability in the immature hippocampus.


Assuntos
4-Aminopiridina/toxicidade , Região CA3 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/fisiopatologia , Antagonistas GABAérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Inibidores da Captação de GABA/farmacologia , Inibição Neural/fisiologia , 4-Aminopiridina/administração & dosagem , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Região CA3 Hipocampal/efeitos dos fármacos , Antagonistas GABAérgicos/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Masculino , Inibição Neural/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia
18.
J Nat Prod ; 76(10): 1889-95, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24112084

RESUMO

The neurotransmitter transporters of the SLC6 family play critical roles in the regulation of neurotransmission and are the primary targets of therapeutic agents used to treat clinical disorders involving compromised neurotransmitter signaling. The dopamine and norepinephrine transporters have been implicated in clinical disorders such as attention deficit hyperactivity disorder (ADHD) and substance abuse. The GABA transporters (GATs) serve as a target for anxiolytic, antidepressant, and antiepileptic therapies. In this work, the interaction with neurotransmitter transporters was characterized for a derivative of the lignan (-)-cubebin (1), namely, (-)-hinokinin (2). Using in vitro pharmacological assays, 2 selectively inhibited the human dopamine and norepinephrine transporters, in a noncompetitive manner possibly mediated by binding to a novel site within the transporters, and displayed low affinity for the serotonin transporter. Compound 2 also specifically inhibited the GAT-1 GABA transporter subtype. Compound 2 is not a substrate of the carriers as it had no effect on the efflux of either of the neurotransmitters investigated. This compound is inactive toward glutamate and glycine transporters. These results suggest that 2 may serve as a tool to develop new therapeutic drugs for ADHD and anxiety that target the DAT, NET, and GAT-1 transporters.


Assuntos
4-Butirolactona/análogos & derivados , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Dioxóis/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Lignanas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/fisiologia , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Benzodioxóis , Dioxóis/química , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Lignanas/química , Lignanas/isolamento & purificação , Estrutura Molecular , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estereoisomerismo
19.
Neurobiol Aging ; 34(10): 2341-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23643146

RESUMO

Amyloid-ß (Aß) plaque accumulation in Alzheimer's disease (AD) is associated with glutamatergic synapse loss, but less is known about its effect on inhibitory synapses. Here, we demonstrate that vesicular γ-aminobutyric acid (GABA) transporter (VGAT) presynaptic bouton density is unaffected in human preclinical and end-stage AD and in APP/PS1 transgenic (TG) mice. Conversely, excitatory vesicular glutamate transporter 1 (VGlut1) boutons are significantly reduced in end-stage AD cases and less reduced in preclinical AD cases and TGs. Aged TGs also show reduced protein levels of VGlut1 and synaptophysin but not VGAT or glutamate decarboxylase (GAD). These findings indicate that GABAergic synapses are preserved in human AD and mouse TGs. Synaptosomes isolated from plaque-rich TG cortex had significantly higher GAD activity than those from plaque-free cerebellum or the cortex of wild-type littermates. Using tissue fractionation, this increased activity was localized to glial synaptosomes, suggesting that Aß plaques stimulate increased astrocyte GABA synthesis.


Assuntos
Doença de Alzheimer/etiologia , Astrócitos/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Envelhecimento/genética , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/fisiologia , Animais , Astrócitos/metabolismo , Córtex Cerebral/citologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Glutamato Descarboxilase/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Sinaptofisina/metabolismo , Sinaptossomos/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/biossíntese
20.
J Physiol ; 591(10): 2429-41, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23381899

RESUMO

Tonic γ-aminobutyric acid (GABA)A receptor-mediated signalling controls neuronal network excitability in the hippocampus. Although the extracellular concentration of GABA (e[GABA]) is critical in determining tonic conductances, knowledge on how e[GABA] is regulated by different GABA transporters (GATs) in vivo is limited. Therefore, we studied the role of GATs in the regulation of hippocampal e[GABA] using in vivo microdialysis in freely moving rats. Here we show that GAT-1, which is predominantly presynaptically located, is the major GABA transporter under baseline, quiescent conditions. Furthermore, a significant contribution of GAT-3 in regulating e[GABA] was revealed by administration of the GAT-3 inhibitor SNAP-5114 during simultaneous blockade of GAT-1 by NNC-711. Thus, the GABA transporting activity of GAT-3 (the expression of which is confined to astrocytes) is apparent under conditions in which GAT-1 is blocked. However, sustained neuronal activation by K(+)-induced depolarization caused a profound spillover of GABA into the extrasynaptic space and this increase in e[GABA] was significantly potentiated by sole blockade of GAT-3 (i.e. even when uptake of GAT-1 is intact). Furthermore, experiments using tetrodotoxin to block action potentials revealed that GAT-3 regulates extrasynaptic GABA levels from action potential-independent sources when GAT-1 is blocked. Importantly, changes in e[GABA] resulting from both GAT-1 and GAT-3 inhibition directly precipitate changes in tonic conductances in dentate granule cells as measured by whole-cell patch-clamp recording. Thus, astrocytic GAT-3 contributes to the regulation of e[GABA] in the hippocampus in vivo and may play an important role in controlling the excitability of hippocampal cells when network activity is increased.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Hipocampo/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação , Animais , Astrócitos/fisiologia , Masculino , Potássio/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA