Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39201767

RESUMO

The main objective of this study was to monitor apricot development and ripening through gene expression analysis of key candidate genes using the RT-qPCR technique. Eight apricot cultivars were selected to analyze phenological and genetic patterns from pre-ripening stages through to postharvest. In addition, 19 selected genes were analyzed in the contrasting cultivars 'Cebas Red' and 'Rojo Pasión' in different stages (two preharvest stages S1 and S2, one harvest stage S3, and two postharvest stages S4 and S5). This pool of genes included genes related to fruit growth and ripening, genes associated with fruit color, and genes linked to the fruit's nutraceutical aspects. Among the studied genes, Polygalacturonase (PG), Pectin methylesterase (PME), Aminocyclopropane-1-carboxylate synthase (ACS), and Myo-inositol-1-phosphate synthase (INO1) were directly related to fruit maturation and quality. Significant differential expression was observed between the cultivars, which correlated with variations in firmness, shelf life, and sensory characteristics of the apricots. 'Rojo Pasión' displayed high levels of PG, associated with rapid maturation and shorter postharvest shelf life, whereas 'Cebas Red' exhibited lower levels of this gene, resulting in greater firmness and extended shelf life. Genes CCD4, CRTZ, and ZDS, related to carotenoids, showed varied expression patterns during growth and postharvest stages, with higher levels in 'Rojo Pasión'. On the other hand, Sucrose synthase (SUSY) and Lipoxygenase (LOX2) were prominent during the postharvest and growth stages, respectively. Additionally, GDP-L-galactose phosphorylase (VTC2_5) was linked to better postharvest performance. This research provides valuable insights for future breeding initiatives aimed at enhancing the quality and sustainability of apricot cultivation.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Prunus armeniaca , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Prunus armeniaca/genética , Prunus armeniaca/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poligalacturonase/genética , Poligalacturonase/metabolismo , Perfilação da Expressão Gênica/métodos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo
2.
Plant Physiol ; 195(1): 566-579, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38345864

RESUMO

The formation of multi-pistil flowers reduces the yield and quality in Japanese apricot (Prunus mume). However, the molecular mechanism underlying the formation of multi-pistil flowers remains unknown. In the current study, overexpression of PmKNAT2/6-a, a class I KNOTTED1-like homeobox (KNOX) member, in Arabidopsis (Arabidopsis thaliana) resulted in a multi-pistil phenotype. Analysis of the upstream regulators of PmKNAT2/6-a showed that AGAMOUS-like 24 (PmAGL24) could directly bind to the PmKNAT2/6-a promoter and regulate its expression. PmAGL24 also interacted with Like Heterochromatin Protein 1 (PmLHP1) to recruit lysine trimethylation at position 27 on histone H3 (H3K27me3) to regulate PmKNAT2/6-a expression, which is indirectly involved in multiple pistils formation in Japanese apricot flowers. Our study reveals that the PmAGL24 transcription factor, an upstream regulator of PmKNAT2/6-a, regulates PmKNAT2/6-a expression via direct and indirect pathways and is involved in the formation of multiple pistils in Japanese apricot.


Assuntos
Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Prunus/genética , Prunus/metabolismo , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Regiões Promotoras Genéticas/genética
3.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069317

RESUMO

The apricot (Prunus armeniaca L.) is a fruit that belongs to the Rosaceae family; it has a unique flavor and is of important economic and nutritional value. The composition and content of soluble sugars and organic acids in fruit are key factors in determining the flavor quality. However, the molecular mechanism of sugar and acid accumulation in apricots remains unclear. We measured sucrose, fructose, glucose, sorbitol, starch, malate, citric acid, titratable acid, and pH, and investigated the transcriptome profiles of three apricots (the high-sugar cultivar 'Shushanggan', common-sugar cultivar 'Sungold', and low-sugar cultivar 'F43') at three distinct developmental phases. The findings indicated that 'Shushanggan' accumulates a greater amount of sucrose, glucose, fructose, and sorbitol, and less citric acid and titratable acid, resulting in a better flavor; 'Sungold' mainly accumulates more sucrose and less citric acid and starch for the second flavor; and 'F43' mainly accumulates more titratable acid, citric acid, and starch for a lesser degree of sweetness. We investigated the DEGs associated with the starch and sucrose metabolism pathways, citrate cycle pathway, glycolysis pathway, and a handful of sugar transporter proteins, which were considered to be important regulators of sugar and acid accumulation. Additionally, an analysis of the co-expression network of weighted genes unveiled a robust correlation between the brown module and sucrose, glucose, and fructose, with VIP being identified as a hub gene that interacted with four sugar transporter proteins (SLC35B3, SLC32A, SLC2A8, and SLC2A13), as well as three structural genes for sugar and acid metabolism (MUR3, E3.2.1.67, and CSLD). Furthermore, we found some lncRNAs and miRNAs that regulate these genes. Our findings provide clues to the functional genes related to sugar metabolism, and lay the foundation for the selection and cultivation of high-sugar apricots in the future.


Assuntos
Prunus armeniaca , Transcriptoma , Açúcares/metabolismo , Prunus armeniaca/genética , Frutas/metabolismo , Carboidratos/análise , Glucose/metabolismo , Ácidos/metabolismo , Sacarose/metabolismo , Ácido Cítrico/metabolismo , Amido/metabolismo , Frutose/metabolismo , Metaboloma , Sorbitol/análise
4.
Genes (Basel) ; 14(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895308

RESUMO

The production and quality of apricots in China is currently limited by the availability of germplasm resource characterizations, including identification at the species and cultivar level. To help address this issue, the complete chloroplast genomes of Prunus armeniaca L., P. sibirica L. and kernel consumption apricot were sequenced, characterized, and phylogenetically analyzed. The three chloroplast (cp) genomes ranged from 157,951 to 158,224 bp, and 131 genes were identified, including 86 protein-coding genes, 37 rRNAs, and 8 tRNAs. The GC content ranged from 36.70% to 36.75%. Of the 170 repetitive sequences detected, 42 were shared by all three species, and 53-57 simple sequence repeats were detected with AT base preferences. Comparative genomic analysis revealed high similarity in overall structure and gene content as well as seven variation hotspot regions, including psbA-trnK-UUU, rpoC1-rpoB, rpl32-trnL-UAG, trnK-rps16, ndhG-ndhI, ccsA-ndhD, and ndhF-trnL. Phylogenetic analysis showed that the three apricot species clustered into one group, and the genetic relationship between P. armeniaca and kernel consumption apricot was the closest. The results of this study provide a theoretical basis for further research on the genetic diversity of apricots and the development and utilization of molecular markers for the genetic engineering and breeding of apricots.


Assuntos
Genoma de Cloroplastos , Prunus armeniaca , Prunus armeniaca/genética , Genômica/métodos , Filogenia , Melhoramento Vegetal
5.
Mol Genet Genomics ; 298(6): 1365-1375, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632570

RESUMO

The Japanese apricot (Prunus mume) is a popular fruit tree in Japan. However, the genetic factors associated with fruit trait variations are poorly understood. In this study, we investigated nine fruit-associated traits, including harvesting time, fruit diameter, fruit shape, fruit weight, stone (endocarp) weight, ratio of stone weight to fruit weight, and rate of fruit gumming, using 110 Japanese apricot accessions over four years. A genome-wide association study (GWAS) was performed for these traits and strong signals were detected on chromosome 6 for harvesting time and fruit diameters. These peaks were shown to undergo strong artificial selection during the differentiation of small-fruit cultivars. The genomic region defined by the GWAS and XP-nSL analyses harbored several candidate genes associated with plant hormone regulation. Furthermore, the alleles of small-fruit cultivars in this region were shown to have genetic proximity to some Chinese cultivars of P. mume. These results indicate that the small-fruit trait originated in China; after being introduced into Japan, it was preferred and selected by the Japanese people, resulting in the differentiation of small-fruit cultivars.


Assuntos
Prunus armeniaca , Prunus , Humanos , Prunus armeniaca/genética , Prunus/genética , Frutas/genética , Estudo de Associação Genômica Ampla , Genômica
6.
Planta ; 258(3): 64, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555984

RESUMO

MAIN CONCLUSION: Integrated transcriptome and physiological analysis of apricot leaves after Fusarium solani treatment. In addition, we identified core transcription factors and flavonoid-related synthase genes which may function in apricot disease resistance. Apricot (Prunus armeniaca) is an important economic fruit species, whose yield and quality of fruit are limited owing to its susceptibility to diseases. However, the molecular mechanisms underlying the response of P. armeniaca to diseases is still unknown. In this study, we used physiology and transcriptome analysis to characterize responses of P. armeniaca subjected to Fusarium solani. The results showed increasing malondialdehyde (MDA) content, enhanced peroxidase (POD) and catalase (CAT) activity during F. solani infestation. A large number of differentially expressed genes (DEGs), which included 4281 upregulated DEGs and 3305 downregulated DEGs, were detected in P. armeniaca leaves exposed to F. solani infestation. Changes in expression of transcription factors (TFs), including bHLH, AP2/ERF, and WRKY indicated their role in triggering pathogen-responsive genes in P. armeniaca. During the P. armeniaca response to F. solani infestation, the content of total flavonoid was changed, and we identified enzyme genes associated with flavonoid biosynthesis. Ectopic overexpression of PabHLH15 and PabHLH102 in Nicotiana benthamiana conferred elevated resistance to Fspa_1. Moreover, PabHLH15 and PabHLH102 positively interact with the promoter of flavonoid biosynthesis-related genes. A regulatory network of TFs regulating enzyme genes related to flavonoid synthesis affecting apricot disease resistance was constructed. These results reveal the potential underlying mechanisms of the F. solani response of P. armeniaca, which would help improve the disease resistance of P. armeniaca and may cultivate high-quality disease-resistant varieties in the future.


Assuntos
Micoses , Prunus armeniaca , Transcriptoma , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Resistência à Doença/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Mol Biol Rep ; 50(10): 7995-8003, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540452

RESUMO

BACKGROUND: Apricot fruit has great economic value. In the process of apricot breeding using traditional breeding methods, we obtained a larger seedling (named Us) from the original variety (named U). And Us fruit is larger than U, taste better. Therefore, revealing its mechanism is very important for Apricot breeding. METHODS: In this study, de novo assembly and transcriptome sequencing (RNA-Seq) was used to screen the differently expressed genes (DEGs) between U and Us at three development stages, including young fruits stage, mid-ripening stage and mature fruit stage. RESULTS: The results showed that there were 6,753 DEGs at different sampling time. "Cellulose synthase (UDP-forming) activity" and "cellulose synthase activity" were the key GO terms enriched in GO, of which CESA and CSL family played a key role. "Photosynthesis-antenna proteins" and "Plant hormone signal transduction" were the candidate pathways and lhca, lhcb, Aux/IAA and SAUR were the main regulators. CONCLUSION: The auxin signaling pathway was active in Us, of which Aux/IAAs and SAUR were the key fruit size regulators. The low level of lhca and lhcb in Us could reveal the low demand for exogenous carbon, but they increased at mature stage, which might be due to the role of aux, who was keeping the fruit growing. Aux and photosynthesis maight be the main causes of appearance formation of Us fruits. Interestingly, the higher expression of CESA and CSL proved that Us entered the hardening process earlier than U. The advanced developmental progress might also be due to the role of Aux.


Assuntos
Frutas , Prunus armeniaca , Frutas/metabolismo , Prunus armeniaca/genética , Plântula/genética , Plântula/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Transcriptoma/genética , Ácidos Indolacéticos/metabolismo
8.
Sci Rep ; 13(1): 11245, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433853

RESUMO

Siberian apricot (Prunus sibirica L.) is a woody tree species of ecological, economic, and social importance. To evaluate the genetic diversity, differentiation, and structure of P. sibirica, we analyzed 176 individuals from 10 natural populations using 14 microsatellite markers. These markers generated 194 alleles in total. The mean number of alleles (13.8571) was higher than the mean number of effective alleles (6.4822). The average expected heterozygosity (0.8292) was higher than the average observed heterozygosity (0.3178). Shannon information index and polymorphism information content were separately 2.0610 and 0.8093, demonstrating the rich genetic diversity of P. sibirica. Analysis of molecular variance revealed that 85% of the genetic variation occurred within populations, with only 15% among them. The genetic differentiation coefficient and gene flow were separately 0.151 and 1.401, indicating a high degree of genetic differentiation. Clustering results showed that a genetic distance coefficient of 0.6 divided the 10 natural populations into two subgroups (subgroups A and B). STRUCTURE and principal coordinate analysis divided the 176 individuals into two subgroups (clusters 1 and 2). Mantel tests revealed that genetic distance was correlated with geographical distance and elevation differences. These findings can contribute to the effective conservation and management of P. sibirica resources.


Assuntos
Prunus armeniaca , Prunus , Humanos , Prunus/genética , Prunus armeniaca/genética , Alelos , Repetições de Microssatélites/genética , Polimorfismo Genético
9.
Int J Mol Sci ; 24(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37240096

RESUMO

Fruit size is one of the essential quality traits and influences the economic value of apricots. To explore the underlying mechanisms of the formation of differences in fruit size in apricots, we performed a comparative analysis of anatomical and transcriptomics dynamics during fruit growth and development in two apricot cultivars with contrasting fruit sizes (large-fruit Prunus armeniaca 'Sungold' and small-fruit P. sibirica 'F43'). Our analysis identified that the difference in fruit size was mainly caused by the difference in cell size between the two apricot cultivars. Compared with 'F43', the transcriptional programs exhibited significant differences in 'Sungold', mainly in the cell expansion period. After analysis, key differentially expressed genes (DEGs) most likely to influence cell size were screened out, including genes involved in auxin signal transduction and cell wall loosening mechanisms. Furthermore, weighted gene co-expression network analysis (WGCNA) revealed that PRE6/bHLH was identified as a hub gene, which interacted with 1 TIR1, 3 AUX/IAAs, 4 SAURs, 3 EXPs, and 1 CEL. Hence, a total of 13 key candidate genes were identified as positive regulators of fruit size in apricots. The results provide new insights into the molecular basis of fruit size control and lay a foundation for future breeding and cultivation of larger fruits in apricot.


Assuntos
Prunus armeniaca , Prunus armeniaca/genética , Frutas , Transcriptoma , Melhoramento Vegetal , Perfilação da Expressão Gênica
10.
Plant Physiol Biochem ; 197: 107647, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36940521

RESUMO

Peach (Prunus persica L. Batsch) and apricot (Prunus armeniaca L.) are two species of economic importance for fruit production in the genus Prunus. Peach and apricot fruits exhibit significant differences in carotenoid levels and profiles. HPLC-PAD analysis showed that a greater content of ß-carotene in mature apricot fruits is primarily responsible for orange color, while peach fruits showed a prominent accumulation of xanthophylls (violaxanthin and cryptoxanthin) with yellow color. There are two ß-carotene hydroxylase genes in both peach and apricot genomes. Transcriptional analysis revealed that BCH1 expresses highly in peach but lowly in apricot fruit, showing a correlation with peach and apricot fruit carotenoid profiles. By using a carotenoid engineered bacterial system, it was demonstrated that there was no difference in the BCH1 enzymatic activity between peach and apricot. Comparative analysis about the putative cis-acting regulatory elements between peach and apricot BCH1 promoters provided important information for our understanding of the differences in promoter activity of the BCH1 genes in peach and apricot. Therefore, we investigated the promoter activity of BCH1 gene through a GUS detection system, and confirmed that the difference in the transcription level of the BCH1 gene resulted from the difference of the promoter function. This study provides important perspective to understanding the diversity of carotenoid accumulation in Prunus fruits such as peach and apricot. In particular, BCH1 gene is proposed as a main predictor for ß-carotene content in peach and apricot fruits during the ripening process.


Assuntos
Prunus armeniaca , Prunus persica , Prunus , Prunus armeniaca/genética , Prunus persica/genética , Frutas/metabolismo , beta Caroteno , Prunus/genética , Carotenoides/metabolismo
11.
Sci Rep ; 13(1): 4393, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928763

RESUMO

Prunus necrotic ringspot virus (PNRSV) is a pathogen that infects Prunus species worldwide, causing major economic losses. Using one and two-step RT-PCR and multiplex RT-PCR, the whole genome of the PNRSV-infecting apricot was obtained and described in this study. Computational approaches were used to investigate the participation of several regulatory motifs and domains of the Replicase1, Replicase2, MP, and CP. A single degenerated reverse and three forward oligo primers were used to amplify PNRSV's tripartite genome. The size of RNA1 was 3.332 kb, RNA2 was 2.591 kb, and RNA3 was 1.952 kb, according to the sequencing analysis. The Sequence Demarcation Tool analysis determined a percentage pair-wise identity ranging between 91 and 99% for RNA1 and 2, and 87-98% for RNA3. Interestingly, the phylogenetic analysis revealed that closely related RNA1, RNA2, and RNA3 sequences of PNRSV strains from various geographical regions of the world are classified into distinct clades or groups. This is the first report on the characterization of the whole genome of PNRSV from India, which provides the cornerstone for further studies on the molecular evolution of this virus. This study will assist in molecular diagnostics and management of the diseases caused by PNRSV.


Assuntos
Prunus armeniaca , Prunus , Filogenia , Prunus/genética , Prunus/virologia , Prunus armeniaca/genética , RNA Viral/genética , Sequenciamento Completo do Genoma , Doenças das Plantas/virologia
12.
Proc Biol Sci ; 289(1986): 20221989, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350205

RESUMO

'Evolve and resequence' (E&R) studies in Drosophila melanogaster have identified many candidate loci underlying the evolution of ageing and life history, but experiments that validate the effects of such candidates remain rare. In a recent E&R study we have identified several alleles of the LAMMER kinase Darkener of apricot (Doa) as candidates for evolutionary changes in lifespan and fecundity. Here, we use two complementary approaches to confirm a functional role of Doa in life-history evolution. First, we used transgenic RNAi to study the effects of Doa at the whole-gene level. Ubiquitous silencing of expression in adult flies reduced both lifespan and fecundity, indicating pleiotropic effects. Second, to characterize segregating variation at Doa, we examined four candidate single nucleotide polymorphisms (SNPs; Doa-1, -2, -3, -4) using a genetic association approach. Three candidate SNPs had effects that were qualitatively consistent with expectations based on our E&R study: Doa-2 pleiotropically affected both lifespan and late-life fecundity; Doa-1 affected lifespan (but not fecundity); and Doa-4 affected late-life fecundity (but not lifespan). Finally, the last candidate allele (Doa-3) also affected lifespan, but in the opposite direction from predicted.


Assuntos
Proteínas de Drosophila , Prunus armeniaca , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Alelos , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Longevidade , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
13.
BMC Plant Biol ; 22(1): 531, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380302

RESUMO

BACKGROUND: Apricot kernel, a woody oil tree species, is known for the high oil content of its almond that can be used as an ideal feedstock for biodiesel production. However, apricot kernel is vulnerable to spring frost, resulting in reduced or even no yield. There are no effective countermeasures in production, and the molecular mechanisms underlying freezing resistance are not well understood. RESULTS: We used transcriptome and hormone profiles to investigate differentially responsive hormones and their associated co-expression patterns of gene networks in the pistils of two apricot kernel cultivars with different cold resistances under freezing stress. The levels of auxin (IAA and ICA), cytokinin (IP and tZ), salicylic acid (SA) and jasmonic acid (JA and ILE-JA) were regulated differently, especially IAA between two cultivars, and external application of an IAA inhibitor and SA increased the spring frost resistance of the pistils of apricot kernels. We identified one gene network containing 65 hub genes highly correlated with IAA. Among these genes, three genes in auxin signaling pathway and three genes in brassinosteroid biosynthesis were identified. Moreover, some hub genes in this network showed a strong correlation such as protein kinases (PKs)-hormone related genes (HRGs), HRGs-HRGs and PKs-Ca2+ related genes. CONCLUSIONS: Ca2+, brassinosteroid and some regulators (such as PKs) may be involved in an auxin-mediated freezing response of apricot kernels. These findings add to our knowledge of the freezing response of apricot kernels and may provide new ideas for frost prevention measures and high cold-resistant apricot breeding.


Assuntos
Prunus armeniaca , Transcriptoma , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Redes Reguladoras de Genes , Regulação da Expressão Gênica de Plantas , Congelamento , Brassinosteroides , Melhoramento Vegetal , Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico , Hormônios , Fenótipo
14.
BMC Genomics ; 23(1): 712, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36258163

RESUMO

BACKGROUND: Single primer enrichment technology (SPET) is an emerging and increasingly popular solution for high-throughput targeted genotyping in plants. Although SPET requires a priori identification of polymorphisms for probe design, this technology has potentially higher reproducibility and transferability compared to other reduced representation sequencing (RRS) approaches, also enabling the discovery of closely linked polymorphisms surrounding the target one. RESULTS: The potential for SPET application in fruit trees was evaluated by developing a 25K target SNPs assay to genotype a panel of apricot accessions and progenies. A total of 32,492 polymorphic sites were genotyped in 128 accessions (including 8,188 accessory non-target SNPs) with extremely low levels of missing data and a significant correlation of allelic frequencies compared to whole-genome sequencing data used for array design. Assay performance was further validated by estimating genotyping errors in two biparental progenies, resulting in an overall 1.8% rate. SPET genotyping data were used to infer population structure and to dissect the architecture of fruit maturity date (MD), a quantitative reproductive phenological trait of great agronomical interest in apricot species. Depending on the year, GWAS revealed loci associated to MD on several chromosomes. The QTLs on chromosomes 1 and 4 (the latter explaining most of the phenotypic variability in the panel) were the most consistent over years and were further confirmed by linkage mapping in two segregating progenies. CONCLUSIONS: Besides the utility for marker assisted selection and for paving the way to in-depth studies to clarify the molecular bases of MD trait variation in apricot, the results provide an overview of the performance and reliability of SPET for fruit tree genetics.


Assuntos
Prunus armeniaca , Prunus armeniaca/genética , Reprodutibilidade dos Testes , Frutas/genética , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único , Tecnologia
15.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232348

RESUMO

The physiology of Prunus fruit ripening is a complex and not completely understood process. To improve this knowledge, postharvest behavior during the shelf-life period at the transcriptomic level has been studied using high-throughput sequencing analysis (RNA-Seq). Monitoring of fruits has been analyzed after different ethylene regulator treatments, including 1-MCP (ethylene-inhibitor) and Ethrel (ethylene-precursor) in two contrasting selected apricot (Prunus armeniaca L.) and Japanese plum (P. salicina L.) cultivars, 'Goldrich' and 'Santa Rosa'. KEEG and protein-protein interaction network analysis unveiled that the most significant metabolic pathways involved in the ripening process were photosynthesis and plant hormone signal transduction. In addition, previously discovered genes linked to fruit ripening, such as pectinesterase or auxin-responsive protein, have been confirmed as the main genes involved in this process. Genes encoding pectinesterase in the pentose and glucuronate interconversions pathway were the most overexpressed in both species, being upregulated by Ethrel. On the other hand, auxin-responsive protein IAA and aquaporin PIP were both upregulated by 1-MCP in 'Goldrich' and 'Santa Rosa', respectively. Results also showed the upregulation of chitinase and glutaredoxin 3 after Ethrel treatment in 'Goldrich' and 'Santa Rosa', respectively, while photosystem I subunit V psaG (photosynthesis) was upregulated after 1-MCP in both species. Furthermore, the overexpression of genes encoding GDP-L-galactose and ferredoxin in the ascorbate and aldarate metabolism and photosynthesis pathways caused by 1-MCP favored antioxidant activity and therefore slowed down the fruit senescence process.


Assuntos
Quitinases , Prunus armeniaca , Prunus domestica , Antioxidantes/metabolismo , Quitinases/metabolismo , Ciclopropanos , Etilenos , Ferredoxinas/metabolismo , Frutas/genética , Frutas/metabolismo , Galactose/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucuronatos/metabolismo , Glutarredoxinas/genética , Ácidos Indolacéticos/metabolismo , Compostos Organofosforados , Pentoses/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus armeniaca/genética , Prunus domestica/genética
16.
Arch Microbiol ; 204(9): 542, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35932430

RESUMO

The present study aims to analyze the effect of apricot kernels' extract (AKE) and amygdalin (AMY) on bleomycin-induced genetic alternations. Five endpoints were analyzed: cell survival, Ty1 retrotransposition, mitotic gene conversion in the trp-5 locus, reverse point mutations in ilv1-92 allele, and mitotic crossing-over in the ade2 locus. The present work provides the first experimental evidence that bleomycin induces Ty1 retrotransposition in Saccharomyces cerevisiae. New data is obtained that the degree of DNA protection of AMY and AKE depends on the studied genetic event. AKE has been found to provide significant protection against bleomycin-induced Ty1 retrotransposition due to better-expressed antioxidant potential. On the other side, AMY better-expressed protection against bleomycin-induced mitotic gene conversion and reverse mutations may be attributed to the activation of the repair enzymes.


Assuntos
Amigdalina , Prunus armeniaca , Proteínas de Saccharomyces cerevisiae , Alelos , Amigdalina/farmacologia , Bleomicina/farmacologia , Conversão Gênica , Extratos Vegetais/farmacologia , Mutação Puntual , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Retroelementos/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Genomics ; 114(5): 110451, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35988654

RESUMO

Japanese apricot is an imperative stone fruit plant with numerous processing importance. The failure of reproductive system is the most common cause of fruit loss, through which pistil abortion is the fundamental one. To understand this mechanism, we used a combination of transcriptomic and metabolomic approaches to investigate the biochemical and molecular basis of flavonoid biosynthesis. Due to the regulated expression of flavonoid pathway-related genes in plants, flavonoid biosynthesis is largely regulated at the transcriptional level. A total of 2272 differently expressed genes and 215 differential metabolites were found. The expression of the genes and metabolites encoding flavonoid biosynthesis was lower in abnormal pistils that are in line with the flavonoid quantification from abnormal pistils. Besides, a couple of genes were also detected related to MYB, MADS, NAC and bHLH transcription factors. Remarkably, we found 'hydroxycinnamoyl transferase (LOC103323133)' and flavonoid related metabolite '2-hydroxycinnamic acid' was lower expressed in abnormal pistil, proposing the cause of pistil abortion. Collectively, the present study delivers inclusive transcriptional and metabolic datasets that proposed valuable prospects to unravel the genetic mechanism underlying pistil abortion.


Assuntos
Prunus armeniaca , Transcriptoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ácidos Cumáricos/metabolismo , Flavonoides , Flores/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Transferases/genética , Transferases/metabolismo
18.
BMC Plant Biol ; 22(1): 354, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864441

RESUMO

BACKGROUND: Chloroplast (cp) genomes are generally considered to be conservative and play an important role in population diversity analysis in plants, but the characteristics and diversity of the different germplasm populations in Japanese apricot are still not clear. RESULTS: A total of 146 cp genomes from three groups of wild, domesticated, and bred accessions of Japanese apricot were sequenced in this study. The comparative genome analysis revealed that the 146 cp genomes were divided into 41 types, and ranged in size from 157,886 to 158,167 bp with a similar structure and composition to those of the genus Prunus. However, there were still minor differences in the cp genome that were mainly caused by the contraction and expansion of the IR region, and six types of SSR in which mono-nucleotide repeats were the most dominant type of repeats in the cp genome. The genes rpl33 and psbI, and intergenic regions of start-psbA, rps3-rpl22, and ccsA-ndhD, showed the highest nucleotide polymorphism in the whole cp genome. A total of 325 SNPs were detected in the 146 cp genomes, and more than 70% of the SNPs were in region of large single-copy (LSC). The SNPs and haplotypes in the cp genome indicated that the wild group had higher genetic diversity than the domesticated and bred groups. In addition, among wild populations, Southwest China, including Yunnan, Tibet, and Bijie of Guizhou, had the highest genetic diversity. The genetic relationship of Japanese apricot germplasm resources in different regions showed a degree of correlation with their geographical distribution. CONCLUSION: Comparative analysis of chloroplast genomes of 146 Japanese apricot resources was performed to analyze the used to explore the genetic relationship and genetic diversity among Japanese apricot resources with different geographical distributions, providing some reference for the origin and evolution of Japanese apricot.


Assuntos
Genoma de Cloroplastos , Prunus armeniaca , China , Evolução Molecular , Genoma de Cloroplastos/genética , Repetições de Microssatélites/genética , Filogenia , Melhoramento Vegetal , Prunus armeniaca/genética
19.
PLoS One ; 17(6): e0269424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657925

RESUMO

The genetic diversity and genetic structure of P. armeniaca var. ansu were analyzed based on SSR markers. The aim was to provide scientific basis for conservation, efficient utilization, molecular marker assisted breeding and improved variety selection of P. armeniaca var. ansu germplasm resources. The results showed that the level of genetic diversity within the population was high. Among the 30 SSR markers, the mean number of observed alleles was 11.433, the mean number of effective alleles was 4.433, the mean of Shannon information index was 1.670, and the mean of polymorphic information content was 0.670. Among the eight provenances, Tuanjie Township, Xinyuan County, Xinjiang had the highest genetic diversity. The observed alleles, effective alleles, Shannon information index and Nei's gene diversity index among provenances were higher than those within provenances. Based on Bayesian mathematical modeling and UPGMA cluster analysis, 86 P. armeniaca var. ansu accessions were divided into three subpopulations and four groups, which reflected individual differences in provenances. Subpopulations classified by Bayesian mathematical modeling and groups classified by UPGMA cluster analysis were significantly correlated with geographical provenance (Sig<0.01) and the provenances significantly impacted classification of groups. The provenances played an important role in classification of groups. The genetic distance between Tuanjie Township of Xinyuan County and Alemale Township of Xinyuan County was the smallest, while the genetic relationship between them was the closest and the degree of genetic differentiation was small.


Assuntos
Prunus armeniaca , Alelos , Teorema de Bayes , Biomarcadores , Variação Genética , Repetições de Microssatélites/genética , Filogenia , Melhoramento Vegetal , Prunus armeniaca/genética
20.
BMC Plant Biol ; 22(1): 304, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751035

RESUMO

BACKGROUND: Japanese apricot (Prunus mume Sieb. et Zucc.) is popular for both ornamental and processing value, fruit color affects the processing quality, and red pigmentation is the most obvious phenotype associated with fruit color variation in Japanese apricot, mutations in structural genes in the anthocyanin pathway can disrupt the red pigmentation, while the formation mechanism of the red color trait in Japanese apricot is still unclear.  RESULTS: One SNP marker (PmuSNP_27) located within PmUFGT3 gene coding region was found highly polymorphic among 44 different fruit skin color cultivars and relative to anthocyanin biosynthesis in Japanese apricot. Meantime, critical mutations were identified in two alleles of PmUFGT3 in the green-skinned type is inactivated by seven nonsense mutations in the coding region, which leads to seven amino acid substitution, resulting in an inactive UFGT enzyme. Overexpression of the PmUFGT3 allele from red-skinned Japanese apricot in green-skinned fruit lines resulted in greater anthocyanin accumulation in fruit skin. Expression of same allele in an Arabidopsis T-DNA mutant deficient in anthocyanidin activity the accumulation of anthocyanins. In addition, using site-directed mutagenesis, we created a single-base substitution mutation (G to T) of PmUFGT3 isolated from green-skinned cultivar, which caused an E to D amino acid substitution and restored the function of the inactive allele of PmUFGT3 from a green-skinned individual. CONCLUSION: This study confirms the function of PmUFGT3, and provides insight into the mechanism underlying fruit color determination in Japanese apricot, and possible approaches towards genetic engineering of fruit color.


Assuntos
Prunus armeniaca , Prunus , Antocianinas/genética , Antocianinas/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus armeniaca/genética , Prunus armeniaca/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA