Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62.130
Filtrar
1.
J Environ Sci (China) ; 148: 188-197, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095156

RESUMO

Bisphenol compounds (BPs) have various industrial uses and can enter the environment through various sources. To evaluate the ecotoxicity of BPs and identify potential gene candidates involved in the plant toxicity, Arabidopsis thaliana was exposed to bisphenol A (BPA), BPB, BPE, BPF, and BPS at 1, 3, 10 mg/L for a duration of 14 days, and their growth status were monitored. At day 14, roots and leaves were collected for internal BPs exposure concentration detection, RNA-seq (only roots), and morphological observations. As shown in the results, exposure to BPs significantly disturbed root elongation, exhibiting a trend of stimulation at low concentration and inhibition at high concentration. Additionally, BPs exhibited pronounced generation of reactive oxygen species, while none of the pollutants caused significant changes in root morphology. Internal exposure concentration analysis indicated that BPs tended to accumulate in the roots, with BPS exhibiting the highest level of accumulation. The results of RNA-seq indicated that the shared 211 differently expressed genes (DEGs) of these 5 exposure groups were enriched in defense response, generation of precursor metabolites, response to organic substance, response to oxygen-containing, response to hormone, oxidation-reduction process and so on. Regarding unique DEGs in each group, BPS was mainly associated with the redox pathway, BPB primarily influenced seed germination, and BPA, BPE and BPF were primarily involved in metabolic signaling pathways. Our results provide new insights for BPs induced adverse effects on Arabidopsis thaliana and suggest that the ecological risks associated with BPA alternatives cannot be ignored.


Assuntos
Arabidopsis , Compostos Benzidrílicos , Oxirredução , Fenóis , Raízes de Plantas , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , RNA-Seq , Análise de Sequência de RNA , Poluentes do Solo/toxicidade
2.
BMC Microbiol ; 24(1): 294, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107680

RESUMO

The colonization of alien plants in new habitats is typically facilitated by microorganisms present in the soil environment. However, the diversity and structure of the archaeal, bacterial, and fungal communities in the latitudinal spread of alien plants remain unclear. In this study, the rhizosphere and bulk soil of Chromolaena odorata were collected from five latitudes in Pu' er city, Yunnan Province, followed by amplicon sequencing of the soil archaeal, bacterial, and fungal communities. Alpha and beta diversity results revealed that the richness indices and the structures of the archaeal, bacterial, and fungal communities significantly differed along the latitudinal gradient. Additionally, significant differences were observed in the bacterial Shannon index, as well as in the structures of the bacterial and fungal communities between the rhizosphere and bulk soils. Due to the small spatial scale, trends of latitudinal variation in the archaeal, bacterial, and fungal communities were not pronounced. Total potassium, total phosphorus, available nitrogen, available potassium and total nitrogen were the important driving factors affecting the soil microbial community structure. Compared with those in bulk soil, co-occurrence networks in rhizosphere microbial networks presented lower complexity but greater modularity and positive connections. Among the main functional fungi, arbuscular mycorrhizae and soil saprotrophs were more abundant in the bulk soil. The significant differences in the soil microbes between rhizosphere and bulk soils further underscore the impact of C. odorata invasion on soil environments. The significant differences in the soil microbiota along latitudinal gradients, along with specific driving factors, demonstrate distinct nutrient preferences among archaea, bacteria, and fungi and indicate complex microbial responses to soil nutrient elements following the invasion of C. odorata.


Assuntos
Archaea , Bactérias , Chromolaena , Fungos , Microbiota , Rizosfera , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Chromolaena/microbiologia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , China , Espécies Introduzidas , Biodiversidade , Solo/química , Raízes de Plantas/microbiologia , Filogenia
3.
Artigo em Inglês | MEDLINE | ID: mdl-39111872

RESUMO

BACKGROUND: Arsenic is a toxic metalloid that can cause acute and chronic adverse health problems. Unfortunately, rice, the primary staple food for more than half of the world's population, is generally regarded as a typical arsenic-accumulating crop plant. Evidence indicates that arsenic stress can influence the growth and development of the rice plant, and lead to high concentrations of arsenic in rice grain. But the underlying mechanisms remain unclear. METHODS: In the present research, the possible molecules and pathways involved in rice roots in response to arsenic stress were explored using bioinformatics methods. Datasets that involving arsenic-treated rice root and the "study type" that was restricted to "Expression profiling by array" were selected and downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between the arsenic-treated group and the control group were obtained using the online web tool GEO2R. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to investigate the functions of DEGs. The protein-protein interactions (PPI) network and the molecular complex detection algorithm (MCODE) of DEGs were analyzed using STRING and Cystoscope, respectively. Important nodes and hub genes in the PPI network were predicted and explored using the Cytoscape-cytoHubba plug-in. RESULTS: Two datasets, GSE25206 and GSE71492, were downloaded from Gene Expression Omnibus (GEO) database. Eighty common DEGs from the two datasets, including sixty-three up-regulated and seventeen down-regulated genes, were then selected. After functional enrichment analysis, these common DEGs were enriched mainly in 10 GO items, including glutathione transferase activity, glutathione metabolic process, toxin catabolic process, and 7 KEGG pathways related to metabolism. After PPI network and MCODE analysis, 49 nodes from the DEGs PPI network were identified, filtering two significant modules. Next, the Cytoscape-cytoHubba plug-in was used to predict important nodes and hub genes. Finally, five genes [Os01g0644000, PRDX6 (Os07g0638400), PRX112 (Os07g0677300), ENO1(Os06g0136600), LOGL9 (Os09g0547500)] were verified and could serve as the best candidates associated with rice root in response to arsenic stress. CONCLUSIONS: In summary, we elucidated the potential pathways and genes in rice root in response to arsenic stress through a comprehensive bioinformatics analysis.


Assuntos
Arsênio , Oryza , Mapas de Interação de Proteínas , Oryza/genética , Arsênio/toxicidade , Biologia Computacional , Perfilação da Expressão Gênica , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética
4.
Molecules ; 29(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125044

RESUMO

Eleutherococcus divaricatus (Siebold and Zucc.) S. Y. Hu. has been used in Traditional Chinese Medicine (TCM) due to its anticancer, immunostimulant, and anti-inflammatory activities. However, its mechanism of action and chemical composition are still insufficiently understood and require more advanced research, especially for cases in which anti-inflammatory properties are beneficial. The aim of this study was to evaluate the impact of E. divaricatus root extracts and fractions on proinflammatory serum hyaluronidase and tyrosinase in children diagnosed with acute lymphoblastic leukemia. Antioxidant and anti-melanoma activities were also examined and correlated with metabolomic data. For the first time, we discovered that the ethyl acetate fraction significantly inhibits hyaluronidase activity, with mean group values of 55.82% and 63.8% for aescin used as a control. However, interestingly, the fraction showed no activity against human tyrosinase, and in A375 melanoma cells treated with a doxorubicin fraction, doxorubicin activity decreased. This fraction exhibited the most potent antioxidant activity, which can be attributed to high contents of polyphenols, especially caffeic acid (24 mg/g). The findings suggest an important role of the ethyl acetate fraction in hyaluronidase inhibition, which may additionally indicate its anti-inflammatory property. The results suggest that this fraction can be used in inflammatory-related diseases, although with precautions in cases of patients undergoing chemotherapy.


Assuntos
Acetatos , Antioxidantes , Eleutherococcus , Hialuronoglucosaminidase , Melanoma , Monofenol Mono-Oxigenase , Extratos Vegetais , Raízes de Plantas , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Raízes de Plantas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Acetatos/química , Eleutherococcus/química , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
5.
J Hazard Mater ; 477: 135440, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39111179

RESUMO

Biochar amendment is a promising strategy for mitigating antibiotic resistance genes (ARGs) in soil and plants, but its effects on ARGs at field scale are not fully understood. Here, field trials were executed utilizing two plant varieties, Brassica juncea and Lolium multiflorum, with four types of biochar to investigate changes in ARGs and microbiome in soil, rhizosphere, root endophytes, and leaf endophytes. Results showed that biochar altered ARG distribution in soil and plant, and restrained their transmission from soil and rhizosphere to endophytes. A reduction of 1.2-2.2 orders of magnitude in the quantity of ARGs was observed in root and leaf endophytes following biochar addition, while no significant changes were observed in soil and rhizosphere samples. Procrustes and network analyses revealed significant correlations between microbial communities and mobile genetic elements with ARGs (P < 0.05). Besides, redundancy and variation partitioning analysis indicated that bacterial communities may play a dominant role in shaping the ARGs profile, contributing to 43 % of the variation observed in ARGs. These field results suggest that biochar amendment alone may not fully alleviate ARGs in soil, but it has a significant beneficial impact on food safety and human health by effectively reducing ARGs in plant endophytes.


Assuntos
Carvão Vegetal , Resistência Microbiana a Medicamentos , Microbiota , Rizosfera , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Microbiota/genética , Resistência Microbiana a Medicamentos/genética , Lolium/microbiologia , Lolium/genética , Lolium/efeitos dos fármacos , Solo/química , Mostardeira/genética , Mostardeira/microbiologia , Bactérias/genética , Bactérias/efeitos dos fármacos , Raízes de Plantas/microbiologia , Endófitos/genética , Endófitos/efeitos dos fármacos , Genes Bacterianos , Folhas de Planta/microbiologia
6.
Sci Rep ; 14(1): 18806, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138231

RESUMO

Manipulating the rhizosphere microbiome to enhance plant stress tolerance is an environmentally friendly technology and a renewable resource to restore degraded environments. Here we suggest a sustainable bioremediation strategy on the example of Stebnyk mine tailings storage. We consider Salicornia europaea rhizosphere community, and the ability of the phytoremediation plant Salix viminalis to recruit its beneficial microbiome to mediate the pollution stress at the Stebnyk mine tailings storage. The tailings contain large amounts of brine salts and heavy metals that contaminate the ground water and surrounding areas, changing soil biogeochemistry and causing increased erosion. The species richness of the endophytic bacterial community of S. viminalis roots was assessed based on observed OTUs, Shannon-InvSimpson, and evenness index. Our results obtained using the plant-based enrichment strategy show that biodiversity was decreased across the contamination zones and that S. europaea supplementation significantly increased the species richness. Our results also indicate that the number of dominating bacteria was not changed across zones in both S. europaea-treated and untreated bacterial populations, and that the decrease in richness was mainly caused by the low abundant bacterial OTUs. The importance of selecting the bioremediation strains that are likely to harbor a reservoir of genetic traits that aid in bioremediation function from the target environment is discussed.


Assuntos
Biodegradação Ambiental , Biodiversidade , Chenopodiaceae , Microbiota , Rizosfera , Microbiologia do Solo , Chenopodiaceae/microbiologia , Salix/microbiologia , Poluentes do Solo/metabolismo , Raízes de Plantas/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Mineração
7.
Sci Rep ; 14(1): 18833, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138343

RESUMO

Coix lacryma-jobi L. is a traditional medicinal plant in east Asia and is an important crop in Guizhou province, southwest China, where there are elevated levels of soil mercury and arsenic (As). Exposure to multiple potentially toxic elements (PTEs) may affect plant accumulation of metal(loid)s and food safety in regions with high geological metal concentrations. Field experiments were conducted to study the effects of PTEs on metal(loid) accumulation and physiological response of C. lacryma in different plant parts at three pollution levels. Total root length, number of root tips, number of branches, and number of root crosses increased with increasing pollution level, with increases in highly polluted areas of 44.2, 57.0, 79.6, and 97.2%, respectively, compared to lightly polluted areas. Under multi-element stress the activity of C. lacryma antioxidant oxidase showed an increase at low and medium PTE concentrations and inhibition at high concentrations. The As contents were all below the maximum limit of cereal food contaminants in China (GB 2762-2022, As < 0.5 mg kg-1). The stems had high Tl bioconcentration factors but the translocation factors from stem to grain were very low, indicating that the stems may be a key plant part restricting Tl transport to the grains. C. lacryma increased root retention and reduced the transport effect, thus reducing metal accumulation in the grains. C. lacryma adapted to PTE stress through root remodeling and enhanced antioxidant enzyme activities.


Assuntos
Mineração , Poluentes do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Solo/química , China , Arsênio/toxicidade , Arsênio/metabolismo , Mercúrio/toxicidade , Mercúrio/metabolismo , Mercúrio/análise
8.
BMC Microbiol ; 24(1): 304, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138453

RESUMO

BACKGROUND: Ectomycorrhizal (ECM and ECM-like) structures associated with plant root systems are a challenge for scientists. The dispersion pattern of roots within the soil profile and the nutritional conditions are both favourable factors to motivate the plants to make ECM associations. RESULTS: This study discusses the colonization of mycorrhizal associations in Kobresia and Polygonum species including Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens grown naturally in cold stressed soils of Gilgit-Baltistan (high-altitude alpine Deosai plains), Hazara, Swat, Dir, and Bajaur. Sieved soil batches were exposed to +5 °C (control), -10, -20, -30, -40, -50, -125 °C for 5 h, and selected plants were sown to these soils for 10 weeks under favourable conditions for ECM colonization. Ectomycorrhizal associations were examined in the above mentioned plants. Some ECM fungi have dark mycelia that look like the mantle and Hartig net. Examples of these are Kobresia filicina, K. myosuroides, and Polygonum viviparum. Findings of this study revealed that K. myosuroides excelled in ECM root tip length, dry mass, and NH4 concentration at -125 °C. Contrarily, A. nitida demonstrated the lower values, indicated its minimum tolerance. Notably, T. repens boasted the highest nitrogen concentration (18.7 ± 1.31 mg/g), while P. sylvestris led in phosphorus (3.2 ± 0.22 mg/g). The B. pendula showed the highest potassium concentration (9.4 ± 0.66 mg/g), emphasising species-specific nutrient uptake capabilities in extreme cold conditions. The PCA analysis revealed that the parameters, e.g., NH4 in soil mix (NH4), NO3 in soil mix (NO3), phosphorus in soil in species of Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens are most accurately represented in cases of + 5 °C, -10 °C, and -20 °C temperatures. On the other hand, the parameters for ECM root tips (ECM) and Dry Mass (DM) are best described in -40 °C, -50 °C, and - 125 °C temperatures. All parameters have a strong influence on the variability of the system indicated the efficiency of ECM. The heatmap supported the nutrients positively correlated with ECM colonization with the host plants. CONCLUSION: At lower temperatures, hyphae and spores in roots were reduced, while soluble phosphorus concentrations of leaves were increased in cold stress soils. Maximum foliar nutrient concentrations were found in K. myosuroides at the lowest temperature treatments due to efficient functioning and colonization of ECM.


Assuntos
Temperatura Baixa , Micorrizas , Raízes de Plantas , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Trifolium/microbiologia , Trifolium/crescimento & desenvolvimento , Solo/química , Nutrientes/metabolismo , Cyperaceae/microbiologia , Cyperaceae/crescimento & desenvolvimento , Estresse Fisiológico , Simbiose , Polygonum/microbiologia , Polygonum/crescimento & desenvolvimento , Fósforo/metabolismo , Fósforo/análise
9.
World J Microbiol Biotechnol ; 40(10): 304, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155347

RESUMO

In sugarcane, sequences related to the genus Sphingomonas have been widely detected by microbiome studies. In this work, the presence of bacteria of this genus was confirmed using culture-dependent and independent techniques. A collection of thirty isolates was obtained using semispecific cultivation conditions, and a specific PCR assay was applied to help confirm the isolates as belonging to the genus. A series of laboratory evaluations were carried out to identify potential properties among the isolates in the collection, which consequently allowed the identification of some most promising isolates for the development of new agricultural bioinputs. In a separate analysis, the culture-independent fluorescence in situ hybridization (FISH) methodology was applied to demonstrate the natural occurrence of Sphingomonas in different organs and tissues of sugarcane. The results showed the presence of bacteria of the genus in the spaces between cells (apoplast) of the culm parenchyma, in vessels in the region of the leaf vein, on the adaxial surface of the leaf blade, and on the root surface, sometimes close to the base of root hairs, which suggests extensive colonization on the host plant. In summary, the present study corroborates previous metagenomic amplicon sequencing results that indicated a high occurrence of Sphingomonas associated with sugarcane. This is the first study that uses approaches other than amplicon sequencing to confirm the occurrence of the genus in sugarcane and, at the same time, demonstrates potentially beneficial activities to be explored by sugarcane cultivation.


Assuntos
Hibridização in Situ Fluorescente , Filogenia , RNA Ribossômico 16S , Saccharum , Sphingomonas , Saccharum/microbiologia , Sphingomonas/isolamento & purificação , Sphingomonas/classificação , Sphingomonas/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Raízes de Plantas/microbiologia , Folhas de Planta/microbiologia , Análise de Sequência de DNA
10.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106481

RESUMO

The rhizosphere hosts complex and abundant microbiomes whose structure and composition are now well described by metagenomic studies. However, the dynamic mechanisms that enable micro-organisms to establish along a growing plant root are poorly characterized. Here, we studied how a motile bacterium utilizes the microhabitats created by soil pore space to establish in the proximity of plant roots. We have established a model system consisting of Bacillus subtilis and lettuce seedlings co-inoculated in transparent soil microcosms. We carried out live imaging experiments and developed image analysis pipelines to quantify the abundance of the bacterium as a function of time and position in the pore space. Results showed that the establishment of the bacterium in the rhizosphere follows a precise sequence of events where small islands of mobile bacteria were first seen forming near the root tip within the first 12-24 h of inoculation. Biofilm was then seen forming on the root epidermis at distances of about 700-1000 µm from the tip. Bacteria accumulated predominantly in confined pore spaces within 200 µm from the root or the surface of a particle. Using probabilistic models, we could map the complete sequence of events and propose a conceptual model of bacterial establishment in the pore space. This study therefore advances our understanding of the respective role of growth and mobility in the efficient colonization of bacteria in the rhizosphere.


Assuntos
Bacillus subtilis , Lactuca , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Raízes de Plantas/microbiologia , Lactuca/microbiologia , Biofilmes/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/crescimento & desenvolvimento
11.
Physiol Plant ; 176(4): e14452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108068

RESUMO

Salinity is considered one of the abiotic stresses that have the greatest impact on soybean production worldwide. Lanthanum (La) is a rare earth element that can reduce adverse conditions on plant growth and productivity. However, the regulatory mechanism of La-mediated plant response to salt stress has been poorly studied, particularly in soybeans. Therefore, our study investigated the mechanisms of La-mediated salt stress alleviation from the perspectives of the antioxidant system, subcellular structure, and metabolomics responses. The results indicated that salt stress altered plant morphology and biomass, resulting in an increase in peroxidation, inhibition of photosynthesis, and damage to leaf structure. Exogenous La application effectively promoted the activity of superoxide dismutase (SOD) and peroxidase (POD), as well as the soluble protein content, while decreasing the Na+ content and Na+/K+ ratio in roots and leaves, and reducing oxidative damage. Moreover, transmission electron microscopy (TEM) demonstrated that La prevented the disintegration of chloroplasts. Fourier-transform infrared spectroscopy (FTIR) analysis further confirmed that La addition mitigated the decline in protein, carbohydrates, and pectin levels in the leaves. Lanthanum decreased the leaf flavonoid content and synthesis by inhibiting the content of key substances in the phenylalanine metabolism pathway during NaCl exposure. Collectively, our research indicates that La reduces cell damage by regulating the antioxidant system and secondary metabolite synthesis, which are important mechanisms for the adaptive response of soybean leaves, thereby improving the salt tolerance of soybeans.


Assuntos
Glycine max , Lantânio , Folhas de Planta , Estresse Salino , Lantânio/farmacologia , Glycine max/efeitos dos fármacos , Glycine max/fisiologia , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Proteínas de Plantas/metabolismo
12.
Glob Chang Biol ; 30(8): e17446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109391

RESUMO

Tree-mycorrhizal associations are associated with patterns in nitrogen (N) availability and soil organic matter storage; however, we still lack a mechanistic understanding of what tree and fungal traits drive these patterns and how they will respond to global changes in soil N availability. To address this knowledge gap, we investigated how arbuscular mycorrhizal (AM)- and ectomycorrhizal (EcM)-associated seedlings alter rhizodeposition in response to increased seedling inorganic N acquisition. We grew four species each of EcM and AM seedlings from forests of the eastern United States in a continuously 13C-labeled atmosphere within an environmentally controlled chamber and subjected to three levels of 15N-labeled fertilizer. We traced seedling 15N uptake from, and 13C-labeled inputs (net rhizodeposition) into, root-excluded or -included soil over a 5-month growing season. N uptake by seedlings was positively related to rhizodeposition for EcM- but not AM-associated seedlings in root-included soils. Despite this contrast in rhizodeposition, there was no difference in soil C storage between mycorrhizal types over the course of the experiment. Instead root-inclusive soils lost C, while root-exclusive soils gained C. Our findings suggest that mycorrhizal associations mediate tree belowground C investment in response to inorganic N availability, but these differences do not affect C storage. Continued soil warming and N deposition under global change will increase soil inorganic N availability and our seedling results indicate this could lead to greater belowground C investment by EcM-associated trees. This potential for less efficient N uptake by EcM-trees could contribute to AM-tree success and a shift toward more AM-dominated temperate forests.


Assuntos
Carbono , Florestas , Micorrizas , Nitrogênio , Plântula , Solo , Micorrizas/fisiologia , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Nitrogênio/metabolismo , Solo/química , Carbono/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Árvores/microbiologia , Árvores/crescimento & desenvolvimento , Microbiologia do Solo
13.
PeerJ ; 12: e17849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131625

RESUMO

The physiological activity facilitated by arbuscular mycorrhizal fungi (AMF) contributes to plants' ability to tolerate drought. Nevertheless, it is unclear if AMF colonization affects the expression of genes in the host plant that encode antioxidant enzymes in the superoxide dismutase (SOD) family, which help alleviate drought stress in plants. Here, we conducted a pot trial to determine whether colonization by the AMF Rhizophagus irregularis improves drought resistance in Bombax ceiba. We comprehensively analyzed the SOD gene family and evaluated genome-wide expression patterns of SODs and SOD activity in AMF-colonized and non-mycorrhizal plants under simulated drought. We identified a total of 13 SODs in the genome of B. ceiba, including three FeSODs (BcFSDs), three MnSODs (BcMSDs), and seven Cu/ZnSODs (BcCSDs). Phylogenetic analysis based on binding domain revealed that SOD genes from B. ceiba and various other plant species can be divided into three separate groups, showing significant bootstrap values. Our examination of gene composition and patterns suggests that most BcSOD genes in these three subgroups are significantly conserved. Additionally, it was noted that hormones and stress-responsive cis-regulatory elements were found in all BcSOD promoters. Expression profiling by qRT-PCR demonstrated that AMF increased relative expression levels of Cu/Zn-SODs in both roots and shoots under drought stress, except for BcCSD3 in roots. Furthermore, AMF colonization increased the relative expression of BcMSD1a and BcMSD1b in roots, augmenting SOD activities and increasing ROS scavenging during drought. In general, this work offers molecular evidence in support of the beneficial effect of AMF colonization on drought tolerance in B. ceiba. It also elucidates the expression patterns of SOD genes, which will support efforts to optimize mycorrhizal seedling cultivation under stressful conditions.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Micorrizas , Superóxido Dismutase , Micorrizas/fisiologia , Micorrizas/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Filogenia , Estresse Fisiológico/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Família Multigênica/genética , Resistência à Seca , Fungos
14.
Funct Plant Biol ; 512024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088691

RESUMO

Under salt stress, plants are forced to take up and accumulate large amounts of sodium (Na+ ) and chloride (Cl- ). Although most studies have focused on the toxic effects of Na+ on plants, Cl- stress is also very important. This study aimed to clarify physiological mechanisms underpinning growth contrasts in canola varieties with different salt tolerance. In hydroponic experiments, 150mM Na+ , Cl- and NaCl were applied to salt-tolerant and sensitive canola varieties. Both NaCl and Na+ treatments inhibited seedling growth. NaCl caused the strongest damage to both canola varieties, and stress damage was more severe at high concentrations of Na+ than Cl- . High Cl- promoted the uptake of ions (potassium K+ , calcium Ca2+ ) and induced antioxidant defence. Salt-tolerant varieties were able to mitigate ion toxicity by maintaining lower Na+ content in the root system for a short period of time, and elevating magnesium Mg2+ content, Mg2+ /Na+ ratio, and antioxidant enzyme activity to improve photosynthetic capacity. They subsequently re-established new K+ /Na+ and Ca2+ /Na+ balances to improve their salt tolerance. High concentrations of Cl salts caused less damage to seedlings than NaCl and Na salts, and Cl- also had a positive role in inducing oxidative stress and responsive antioxidant defence in the short term.


Assuntos
Antioxidantes , Brassica napus , Homeostase , Fotossíntese , Tolerância ao Sal , Plântula , Cloreto de Sódio , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Brassica napus/enzimologia , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Sódio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fluorescência , Potássio/metabolismo , Íons/metabolismo , Cálcio/metabolismo
15.
Physiol Plant ; 176(4): e14460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091116

RESUMO

Soil salinization is a major abiotic factor threatening rapeseed yields and quality worldwide, yet the adaptive mechanisms underlying salt resistance in rapeseed are not clear. Therefore, this study aimed to explore the differences in growth potential, sodium (Na+) retention in different plant tissues, and transport patterns between salt-tolerant (HY9) and salt-sensitive (XY15) rapeseed genotypes, which cultivated in Hoagland's nutrient solution in either the with or without of 150 mM NaCl stress. The results showed that the inhibition of growth-related parameters of the XY15 genotype was higher than those of the HY9 in response to salt stress. The XY15 had lower photosynthesis, chloroplast disintegration, and pigment content but higher oxidative damage than the HY9. Under NaCl treatment, the proline content in the root of HY9 variety increased by 8.47-fold, surpassing XY15 (5.41-fold). Under salt stress, the HY9 maintained lower Na+ content, while higher K+ content and exhibited a relatively abundant K+/Na+ ratio in root and leaf. HY9 also had lower Na+ absorption, Na+ concentration in xylem sap, and Na+ transfer factor than XY15. Moreover, more Na+ contents were accumulated in the root cell wall of HY9 with higher pectin content and pectin methylesterase (PME) activity than XY15. Collectively, our results showed that salt-tolerant varieties absorbed lower Na+ and retained more Na+ in the root cell wall (carboxyl group in pectin) to avoid leaf salt toxicity and induced higher proline accumulation as a defense and antioxidant system, resulting in higher resistance to salt stress, which provides the theoretical basis for screening salt resistant cultivars.


Assuntos
Brassica napus , Genótipo , Prolina , Estresse Salino , Tolerância ao Sal , Sódio , Prolina/metabolismo , Brassica napus/genética , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Brassica napus/fisiologia , Sódio/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Fotossíntese/efeitos dos fármacos , Potássio/metabolismo
16.
J Environ Manage ; 367: 121979, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39088904

RESUMO

Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 µM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.


Assuntos
Cádmio , Reguladores de Crescimento de Plantas , Fatores de Transcrição , Transcriptoma , Cádmio/toxicidade , Cádmio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcriptoma/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Estresse Fisiológico , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
17.
Proc Natl Acad Sci U S A ; 121(32): e2303439121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39093948

RESUMO

Plants release a wealth of metabolites into the rhizosphere that can shape the composition and activity of microbial communities in response to environmental stress. The connection between rhizodeposition and rhizosphere microbiome succession has been suggested, particularly under environmental stress conditions, yet definitive evidence is scarce. In this study, we investigated the relationship between rhizosphere chemistry, microbiome dynamics, and abiotic stress in the bioenergy crop switchgrass grown in a marginal soil under nutrient-limited, moisture-limited, and nitrogen (N)-replete, phosphorus (P)-replete, and NP-replete conditions. We combined 16S rRNA amplicon sequencing and LC-MS/MS-based metabolomics to link rhizosphere microbial communities and metabolites. We identified significant changes in rhizosphere metabolite profiles in response to abiotic stress and linked them to changes in microbial communities using network analysis. N-limitation amplified the abundance of aromatic acids, pentoses, and their derivatives in the rhizosphere, and their enhanced availability was linked to the abundance of bacterial lineages from Acidobacteria, Verrucomicrobia, Planctomycetes, and Alphaproteobacteria. Conversely, N-amended conditions increased the availability of N-rich rhizosphere compounds, which coincided with proliferation of Actinobacteria. Treatments with contrasting N availability differed greatly in the abundance of potential keystone metabolites; serotonin and ectoine were particularly abundant in N-replete soils, while chlorogenic, cinnamic, and glucuronic acids were enriched in N-limited soils. Serotonin, the keystone metabolite we identified with the largest number of links to microbial taxa, significantly affected root architecture and growth of rhizosphere microorganisms, highlighting its potential to shape microbial community and mediate rhizosphere plant-microbe interactions.


Assuntos
Metaboloma , Microbiota , Rizosfera , Microbiologia do Solo , Microbiota/fisiologia , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética , Nutrientes/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Solo/química , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Panicum/metabolismo , Panicum/microbiologia
18.
Sci Rep ; 14(1): 18090, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103386

RESUMO

Sowing date and soil fertility are very important factors in the overwintering and production performance of alfalfa (Medicago sativa L.), yet there's a knowledge gap in knowledge on how late-seeded alfalfa responds to phosphorus (P) fertilization. A field study was conducted in Inner Mongolia from 2020 to 2022 using a split-plot design. The main plots consisted of five sowing dates (31 July, 8, 16, and 24 August, and 1 September), while the subplots involved five P application rates (0, 40, 70, 100, and 130 kg P2O5 ha-1). Throughout the growing seasons, the overwintering rate, root traits, forage yield, and yield components were measured. The results revealed a consistent decrease in overwintering ability and productivity with the delayed sowing. This reduction in overwintering rate was mainly due to diminished root traits, while the decrease in forage yield was largely associated with a reduction in plants per square meter. However, P fertilizer application to late-seeded alfalfa demonstrated potential in enhancing the diameter of both the crown and taproot, thus strengthening the root system and improving the overwintering rate, the rate of increase ranges from 11.6 to 49%. This adjustment could also improve the shoots per square meter and mass per shoot, increasing by 9.4-31.3% and 15.0-27.1% respectively in 2 years, which can offset the decline in forage yield caused by late sowing and might even increase the forage yield. Regression and path analysis indicated that alfalfa forage yield is primarily affected by mass per shoot rather than shoots per square meter. This study recommended that the sowing of alfalfa in similar regions of Inner Mongolia should not be later than mid-August. Moreover, applying P fertilizer (P2O5) at 70.6-85.9 kg ha-1 can enhance the forage yield and persistence of late-seeded alfalfa. Therefore, appropriate late sowing combined with the application of P fertilizer can be used as an efficient cultivation strategy for alfalfa cultivation after a short-season crop harvest in arid and cold regions.


Assuntos
Fertilizantes , Medicago sativa , Fósforo , Raízes de Plantas , Estações do Ano , Solo , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/metabolismo , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Solo/química
19.
Sci Rep ; 14(1): 18214, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107341

RESUMO

Understanding the structure and diversity of microbiomes is critical to establishing olives in non-traditional production areas. Limited studies have investigated soil and root-associated microbiota dynamics in olives across seasons or locations in the United States. We explored the composition and spatiotemporal patterns of the olive-associated microbial communities and specificity in two niches (rhizosphere and root endosphere), seasons (spring, summer, and fall), and domains (bacteria and fungi) in the microbiome of the olive cultivar Arbequina across three olive orchards in Texas. Phylum Proteobacteria, followed by Actinobacteriota, dominated the bacterial populations in the rhizosphere and endosphere. Rubrobacter and Actinophytocola were dominant taxa in the rhizosphere and root endosphere at the genus level. Among fungal communities, phylum Ascomycota was prevalent in the rhizosphere and endosphere, while members of the Chaetomiaceae family outnumbered other taxa in the root endosphere. As per the alpha diversity indices, the rhizosphere at Moulton showed much higher richness and diversity than other places, which predicted a significant difference in rhizosphere between locations for bacterial diversity and richness. There was no significant variation in the bacterial diversity in the niches and the fungal diversity within the root endosphere between locations. Beta diversity analysis confirmed the effect of compartments-in influencing community differences. Microbial diversity was apparent within the endosphere and rhizosphere. The seasons influenced only the rhizosphere fungal diversity, contrasting the bacterial diversity in either niche. The research provided a comprehensive overview of the microbial diversity in olive trees' rhizosphere and root endosphere. The abundance and composition of OTUs associated with the rhizosphere soil of Arbequina suggest its role as a source reservoir in defining the potential endophytes.


Assuntos
Bactérias , Microbiota , Olea , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Olea/microbiologia , Raízes de Plantas/microbiologia , Texas , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Estações do Ano , Análise Espaço-Temporal , Biodiversidade , Solo/química
20.
BMC Plant Biol ; 24(1): 766, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39123119

RESUMO

BACKGROUND: Legumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood. RESULTS: We report a new hypernodulating mutant, defective in autoregulation, with disruption of a gene, DAR (Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. The dar-1 mutant produces ten-fold more nodules than wild type, similar to AON mutants with disrupted SUNN gene function. As in sunn mutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished in dar. Furthermore, dar-1 also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlike SUNN which functions in the shoot to control nodulation, DAR functions in the root. CONCLUSIONS: DAR encodes a membrane protein that is a member of a small protein family in M. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis. DAR gene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis.


Assuntos
Medicago truncatula , Micorrizas , Proteínas de Plantas , Nodulação , Simbiose , Medicago truncatula/genética , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Mutação , Genes de Plantas , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Homeostase , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA