Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Cell Commun Signal ; 22(1): 435, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252008

RESUMO

The inducers of neutrophil extracellular trap (NET) formation are heterogeneous and consequently, there is no specific pathway or signature molecule indispensable for NET formation. But certain events such as histone modification, chromatin decondensation, nuclear envelope breakdown, and NET release are ubiquitous. During NET formation, neutrophils drastically rearrange their cytoplasmic, granular and nuclear content. Yet, the exact mechanism for decoding each step during NET formation still remains elusive. Here, we investigated the mechanism of nuclear envelope breakdown during NET formation. Immunofluorescence microscopic evaluation revealed a gradual disintegration of outer nuclear membrane protein nesprin-1 and alterations in nuclear morphology during NET formation. MALDI-TOF analysis of NETs that had been generated by various inducers detected the accumulation of nesprin-1 fragments. This suggests that nesprin-1 degradation occurs before NET release. In the presence of a calpain-1, inhibitor nesprin-1 degradation was decreased in calcium driven NET formation. Microscopic evaluation confirmed that the disintegration of the lamin B receptor (LBR) and the collapse of the actin cytoskeleton occurs in early and later phases of NET release, respectively. We conclude that the calpain-1 degrades nesprin-1, orchestrates the weakening of the nuclear membrane, contributes to LBR disintegration, and promoting DNA release and finally, NETs formation.


Assuntos
Calpaína , Armadilhas Extracelulares , Receptor de Lamina B , Neutrófilos , Membrana Nuclear , Membrana Nuclear/metabolismo , Calpaína/metabolismo , Humanos , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Cálcio/metabolismo , Proteínas do Citoesqueleto
2.
Cell Struct Funct ; 49(2): 31-46, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38839376

RESUMO

In metazoans, the nuclear envelope (NE) disassembles during the prophase and reassembles around segregated chromatids during the telophase. The process of NE formation has been extensively studied using live-cell imaging. At the early step of NE reassembly in human cells, specific pattern-like localization of inner nuclear membrane (INM) proteins, connected to the nuclear pore complex (NPC), was observed in the so-called "core" region and "noncore" region on telophase chromosomes, which corresponded to the "pore-free" region and the "pore-rich" region, respectively, in the early G1 interphase nucleus. We refer to these phenomena as NE subdomain formation. To biochemically investigate this process, we aimed to develop an in vitro NE reconstitution system using digitonin-permeabilized semi-intact mitotic human cells coexpressing two INM proteins, emerin and lamin B receptor, which were labeled with fluorescent proteins. The targeting and accumulation of INM proteins to chromosomes before and after anaphase onset in semi-intact cells were observed using time-lapse imaging. Our in vitro NE reconstitution system recapitulated the formation of the NE subdomain, as in living cells, although chromosome segregation and cytokinesis were not observed. This in vitro NE reconstitution required the addition of a mitotic cytosolic fraction supplemented with a cyclin-dependent kinase inhibitor and energy sources. The cytoplasmic soluble factor(s) dependency of INM protein targeting differed among the segregation states of chromosomes. Furthermore, the NE reconstituted on segregated chromosomes exhibited active nucleocytoplasmic transport competency. These results indicate that the chromosome status changes after anaphase onset for recruiting NPC components.


Assuntos
Mitose , Membrana Nuclear , Proteínas Nucleares , Humanos , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células HeLa , Receptor de Lamina B , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Cromossomos Humanos/metabolismo , Poro Nuclear/metabolismo , Cromossomos/metabolismo
3.
FEBS J ; 291(10): 2091-2093, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38646863

RESUMO

Cellular immortalization is a complex process that requires multiple genetic alterations to overcome restricting barriers, including senescence. Not surprisingly, many of these alterations are associated with cancer; two tumor suppressor pathways, the cellular tumor antigen p53 and p16-Retinoblastoma (RB) pathways, are the best-characterized examples, but their mutations alone are known to be insufficient to drive full immortalization. En et al. identified a role for the lamin B receptor (LBR) in promoting cellular proliferation and immortalization in p53- and RB-deficient cells by maintaining their genome integrity and suppressing senescence. Thus, modulation of LBR could be exploited to treat cancer and potentially also to promote cell rejuvenation.


Assuntos
Senescência Celular , Instabilidade Genômica , Receptor de Lamina B , Proteína Supressora de Tumor p53 , Senescência Celular/genética , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia
4.
FEBS J ; 291(10): 2155-2171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462947

RESUMO

Mammalian somatic cells undergo terminal proliferation arrest after a limited number of cell divisions, a phenomenon termed cellular senescence. However, cells acquire the ability to proliferate infinitely (cellular immortalization) through multiple genetic alterations. Inactivation of tumor suppressor genes such as p53, RB and p16 is important for cellular immortalization, although additional molecular alterations are required for cellular immortalization to occur. Here, we aimed to gain insights into these molecular alterations. Given that cellular immortalization is the escape of cells from cellular senescence, genes that regulate cellular senescence are likely to be involved in cellular immortalization. Because senescent cells show altered heterochromatin organization, we investigated the implications of lamin A/C, lamin B1 and lamin B receptor (LBR), which regulate heterochromatin organization, in cellular immortalization. We employed human immortalized cell lines, KMST-6 and SUSM-1, and found that expression of LBR was upregulated upon cellular immortalization and downregulated upon cellular senescence. In addition, knockdown of LBR induced cellular senescence with altered chromatin configuration. Additionally, enforced expression of LBR increased cell proliferation likely through suppression of genome instability in human primary fibroblasts that expressed the simian virus 40 large T antigen (TAg), which inactivates p53 and RB. Furthermore, expression of TAg or knockdown of p53 led to upregulated LBR expression. These observations suggested that expression of LBR might be upregulated to suppress genome instability in TAg-expressing cells, and, consequently, its upregulated expression assisted the proliferation of TAg-expressing cells (i.e. p53/RB-defective cells). Our findings suggest a crucial role for LBR in the process of cellular immortalization.


Assuntos
Proliferação de Células , Senescência Celular , Instabilidade Genômica , Receptor de Lamina B , Receptores Citoplasmáticos e Nucleares , Humanos , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Proliferação de Células/genética , Senescência Celular/genética , Fibroblastos/metabolismo , Instabilidade Genômica/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
5.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38185834

RESUMO

In the fruit fly Drosophila melanogaster, circadian rhythm was disrupted when the inner nuclear membrane protein lamin B receptor (LBR) was depleted from its clock neurons (Proc. Natl. Acad. Sci. USA 118, e2019756118. 2021; https://doi.org/10. 1073/pnas.2019756118 and Research 6, 0139, 2023; https://doi.org/10.34133/research.0139). Ordinarily, the clock proteinPERIOD (PER) forms foci close to the inner nuclear membrane in the circadian clock's repression phase. The size, number, and location of foci near the nuclear membrane oscillate with a 24-h rhythm. When LBR was absent the foci did not form. The PER foci bring per and other clock genes close to the nuclear envelope, where their transcription is silenced. Then, in the circadian clock's activation phase, the PER protein gradually gets degraded and the foci disappear. The clock genes, including per, relocate to the nucleus interior where they resume transcription. Rhythmic re-positioning of clock genes between nucleus periphery and interior, correlates with their repression and activation in the circadian cycle. Absence of LBR disrupted this rhythm. Phosphorylation of PER promoted the formation of foci whereas dephosphorylation by protein phosphatase 2A causedthem to disappear. LBR promoted focus formation by destabilizing the catalytic subunit of protein phosphatase 2A. The lbr gene is no stranger to this journal. The first hint that vertebrate LBR is also a sterol biosynthesis enzyme, specifically, a sterol C14 reductase, was reported here (J. Genet. 73, 33-41, 1994; https://www.ias.ac.in/article/fulltext/jgen/073/01/0033-0041). Mutations in the human Lbr gene cause a range of phenotypes--from the relatively benign Pelger-Huet anomaly to the perinatally lethal Greenberg skeletal dysplasia.Drosophila, like all insects, is a sterol auxotroph. The fly orthologue of vertebrate lbr genes encodes a protein (dLBR) that shares several properties with vertebrate LBR proteins, with one notable exception. While human LBR complemented theyeast Saccharomyces cerevisiae erg24 mutant which lacks sterol C14 reductase activity, dLBR did not (J. Cell. Sci. 117, 2015-28, 2004; https://doi.org/10.1242/jcs.01052). Despite not possessing sterol reductase activity, dLBR retains significant sequence homology with vertebrate LBRs which have this activity. An undergraduate summer trainee in my laboratory obtained early (unpublished) evidence that dLBR lost sterol reductase activity during evolution. She transferred adult drosophila flies to vials containing a medium made of agar, dextrose, and dried and powdered mycelium of the filamentous fungus Neurospora crassa. On medium made with wild-type mycelium, theflies mated, laid eggs, hatched larvae, and developed pupae which eclosed progeny adult flies. The life cycle was no different than on 'regular' fly food composed of agar, dextrose and yeast extract. However, on a medium made with mycelium from a sterol C14 reductase null mutant, the flies laid eggs which hatched and released larvae, but the larvae failed to pupate, and no adult progeny flies emerged. This was because the fly lacks a sterol C14 reductase. The wild-type sterol, ergosterol, is a precursor of the steroid hormone ecdysone needed for molting and metamorphosis. Can expression of vertebrate LBR in dLBR-depleted fly clock neurons restore circadian rhythm? Can expression of vertebrate LBR enable flies to complete their life cycle on mutant Neurospora medium? Does LBR regulate the vertebrate clock in a like manner? If yes, then is the sterol reductase activity dispensable in this role? These are some questions that came to my mind on a recent morning walk. The walk itself was a much-cherished outcome of my circadian clock.


Assuntos
Drosophila melanogaster , Receptor de Lamina B , Adulto , Humanos , Feminino , Animais , Ágar , Drosophila melanogaster/genética , Proteína Fosfatase 2 , Drosophila , Larva , Esteróis , Glucose
6.
Mol Biol Cell ; 34(2): ar10, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598800

RESUMO

The nuclear lamina serves important roles in chromatin organization and structural support, and lamina mutations can result in laminopathies. Less is known about how nuclear lamina structure changes during cellular differentiation-changes that may influence gene regulation. We examined the structure and dynamics of the nuclear lamina in human-induced pluripotent stem cells (iPSCs) and differentiated germ layer cells, focusing on lamin B1. We report that lamin B1 dynamics generally increase as iPSCs differentiate, especially in mesoderm and ectoderm, and that lamin B receptor (LBR) partially redistributes from the nucleus to cytoplasm in mesoderm. Knocking down LBR in iPSCs led to an increase in lamin B1 dynamics, a change that was not observed for ELYS, emerin, or lamin B2 knockdown. LBR knockdown also affected expression of differentiation markers. These data suggest that differentiation-dependent tethering of lamin B1 either directly by LBR or indirectly via LBR-chromatin associations impacts gene expression.


Assuntos
Lamina Tipo A , Lamina Tipo B , Humanos , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Núcleo Celular/metabolismo , Diferenciação Celular , Membrana Nuclear/metabolismo , Receptor de Lamina B
7.
Bone ; 167: 116614, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400164

RESUMO

BACKGROUND: Metaphyseal chondrodysplasias are a heterogeneous group of diseases characterized by short and bowed long bones and metaphyseal abnormality. The aim of this study is to investigate the genetic etiology and prognostic findings in patients with metaphyseal dysplasia. METHODS: Twenty-four Turkish patients were included in this study and 13 of them were followed for 2-21 years. COL10A1, RMRP sequencing and whole exome sequencing were performed. RESULTS: Results: Seven heterozygous pathogenic variants in COL10A1 were detected in 17 patients with Schmid type metaphyseal chondrodysplasia(MCDS). The phenotype was more severe in patients with heterozygous missense variants (one in signal peptide domain at the N-terminus of the protein, the other, class-1 group mutation at NC1 domain) compared to the patients with truncating variants. Short stature and coxa vara deformity appeared after 3 and 5 years of age, respectively, while large femoral head resolved after the age of 13 years in MCDS group. Interestingly, one patient with severe phenotype also had a biallelic missense variant in NC1 domain of COL10A1. Three patients with biallelic mutations in RMRP had prenatal onset short stature with short limb, and typical findings of cartilage hair hypoplasia (CHH). While immunodeficiency or recurrent infections were not observed, resistant congenital anemia was detected in one. Biallelic mutation in LBR was described in a patient with prenatal onset short stature, short and curved limb and metaphyseal abnormalities. Unlike previously reported patients, this patient had ectodermal findings, similar to CHH. A biallelic COL2A1 mutation was also found in the patient with lower limb deformities and metaphyseal involvement without vertebral and epiphyseal changes. CONCLUSION: Long-term clinical characteristics are presented in a metaphyseal dysplasia cohort, including rare types caused by biallelic COL10A1, COL2A1, and LBR variants. We also point out that the domains where mutations on COL10A1 take place are important in the genotype-phenotype relationship.


Assuntos
Doenças Ósseas , Osteocondrodisplasias , Humanos , Colágeno Tipo II/genética , Mutação/genética , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Receptor de Lamina B
8.
Hum Mol Genet ; 32(5): 745-763, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36124691

RESUMO

Lamin B Receptor (LBR) is an inner nuclear membrane protein that assembles the nuclear envelope post mitosis. Here we show that LBR depletion induces mitotic defects accompanied by recurrent chromosomal losses. In addition, LBR knockdown results in nuclear aberrations such as nuclear blebs and micronuclei, with chromosomes showing higher frequency of losses, being enriched within the micronucleus. Furthermore, doxycycline-induced conditional depletion of LBR significantly increased tumor volumes that form within the subcutaneous xenografts of mice. Of note, the tumor-derived primary cells recapitulated chromosomal losses and gains, revealing a novel role for LBR as a tumor suppressor. Co-immunoprecipitation of LBR uncovered an association of LBR with telomere-associated factors. Interestingly, qPCR array-based gene expression profiling showed a significant upregulation of telomere repeat-binding factor 1 (TRF1) upon LBR depletion. Remarkably, TRF1 knockdown in the background of LBR depletion maintains chromosomal stability, unraveling a novel mechanism involving LBR and TRF in the maintenance of chromosomal stability in colorectal cancer cells.


Assuntos
Membrana Nuclear , Receptores Citoplasmáticos e Nucleares , Humanos , Animais , Camundongos , Membrana Nuclear/metabolismo , Proteínas de Membrana/metabolismo , Carcinogênese , Instabilidade Cromossômica , Lamina Tipo B/metabolismo , Receptor de Lamina B
9.
Am J Physiol Renal Physiol ; 324(1): F75-F90, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454702

RESUMO

Induction of SRY box transcription factor 9 (SOX9) has been shown to occur in response to kidney injury in rodents, where SOX9-positive cells proliferate and regenerate the proximal tubules of injured kidneys. Additionally, SOX9-positive cells demonstrate a capacity to differentiate toward other nephron segments. Here, we characterized the role of SOX9 in normal and injured human kidneys. SOX9 expression was found to colocalize with a proportion of so-called scattered tubular cells in the uninjured kidney, a cell population previously shown to be involved in kidney injury and regeneration. Following injury and in areas adjacent to inflammatory cell infiltrates, SOX9-positive cells were increased in number. With the use of primary tubular epithelial cells (PTECs) obtained from human kidney tissue, SOX9 expression was spontaneously induced in culture and further increased by transforming growth factor-ß1, whereas it was suppressed by interferon-γ. siRNA-mediated knockdown of SOX9 in PTECs followed by analysis of differential gene expression, immunohistochemical expression, and luciferase promoter assays suggested lamin B receptor (LBR), high mobility group AT-hook 2 (HMGA2), and homeodomain interacting protein kinase 3 (HIPK3) as possible target genes of SOX9. Moreover, a kidney explant model was used to demonstrate that only SOX9-positive cells survive the massive injury associated with kidney ischemia and that the surviving SOX9-positive cells spread and repopulate the tubules. Using a wound healing assay, we also showed that SOX9 positively regulated the migratory capacity of PTECs. These findings shed light on the functional and regulatory aspects of SOX9 activation in the human kidney during injury and regeneration.NEW & NOTEWORTHY Recent studies using murine models have shown that SRY box transcription factor 9 (SOX9) is activated during repair of renal tubular cells. In this study, we showed that SOX9-positive cells represent a proportion of scattered tubular cells found in the uninjured human kidney. Furthermore, we suggest that expression of LBR, HMGA2, and HIPK3 is altered by SOX9 in the kidney tubular epithelium, suggesting the involvement of these gene products in kidney injury and regeneration.


Assuntos
Rim , Receptores Citoplasmáticos e Nucleares , Humanos , Camundongos , Animais , Rim/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Túbulos Renais Proximais/metabolismo , Fatores de Transcrição/metabolismo , Túbulos Renais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição SOX9/metabolismo , Receptor de Lamina B
10.
Oxid Med Cell Longev ; 2022: 9096436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578521

RESUMO

N-6-Methyladenosine (m6A) modification is involved in multiple biological processes including aging. However, the regulation of m6A methyltransferase-like 14 (METTL14) in aging remains unclear. Here, we revealed that the level of m6A modification and the expression of METTL14 were particularly decreased in the intestine of aged mice as compared to young mice. Similar results were confirmed in Drosophila melanogaster. Knockdown of Mettl14 in Drosophila resulted in a short lifespan, associated disrupted intestinal integrity, and reduced climbing ability. In human CCD-18Co cells, knockdown of METTL14 accelerated cellular senescence, and the overexpression of METTL14 rescued senescent phenotypes. We also identified the lamin B receptor (LBR) as a target gene for METTL14-mediated m6A modification. Knockdown of METTL14 decreased m6A level of LBR, resulted in LBR mRNA instability, and thus induced cellular senescence. Our findings suggest that METTL14 plays an essential role in the m6A modification-dependent aging process via the regulation of LBR and provides a potential target for cellular senescence.


Assuntos
Senescência Celular , Drosophila melanogaster , Humanos , Camundongos , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Senescência Celular/genética , Receptores Citoplasmáticos e Nucleares/genética , Fenótipo , Metiltransferases/genética , Metiltransferases/metabolismo , Receptor de Lamina B
11.
J Virol ; 96(24): e0142922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448808

RESUMO

We investigated whether A-type lamins (lamin A/C) and lamin B receptor (LBR) are redundant during herpes simplex virus 1 (HSV-1) infection in HeLa cells expressing lamin A/C and LBR. Lamin A/C and LBR double knockout (KO) in HSV-1-infected HeLa cells significantly impaired expressions of HSV-1 early and late genes, maturation of replication compartments, marginalization of host chromatin to the nuclear periphery, enlargement of host cell nuclei, and viral DNA replication. Phenotypes of HSV-1-infected HeLa cells were restored by the ectopic expression of lamin A/C or LBR in lamin A/C and LBR double KO cells. Of note, lamin A/C single KO, but not LBR single KO, promoted the aberrant accumulation of virus particles outside the inner nuclear membrane (INM) and viral replication, as well as decreasing the frequency of virus particles inside the INM without affecting viral gene expression and DNA replication, time-spatial organization of replication compartments and host chromatin, and nuclear enlargement. These results indicated that lamin A/C and LBR had redundant and specific roles during HSV-1 infection. Thus, lamin A/C and LBR redundantly regulated the dynamics of the nuclear architecture, including the time-spatial organization of replication compartments and host chromatin, as well as promoting nuclear enlargement for efficient HSV-1 gene expression and DNA replication. In contrast, lamin A/C inhibited HSV-1 nuclear export through the INM during viral nuclear egress, which is a unique property of lamin A/C. IMPORTANCE This study demonstrated that lamin A/C and LBR had redundant functions associated with HSV-1 gene expression and DNA replication by regulating the dynamics of the nuclear architecture during HSV-1 infection. This is the first report to demonstrate the redundant roles of lamin A/C and LBR as well as the involvement of LBR in the regulation of these viral and cellular features in HSV-1-infected cells. These findings provide evidence for the specific property of lamin A/C to inhibit HSV-1 nuclear egress, which has long been considered but without direct proof.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Laminas , Humanos , Cromatina/metabolismo , Replicação do DNA , DNA Viral/genética , DNA Viral/metabolismo , Células HeLa , Herpes Simples/genética , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminas/genética , Laminas/metabolismo , Replicação Viral , Receptor de Lamina B
12.
J Biol Chem ; 298(10): 102452, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063998

RESUMO

The pMN domain is a restricted domain in the ventral spinal cord, defined by the expression of the olig2 gene. Though it is known that the pMN progenitor cells can sequentially generate motor neurons and oligodendrocytes, the lineages of these progenitors are controversial and how their progeny are generated is not well understood. Using single-cell RNA sequencing, here, we identified a previously unknown heterogeneity among pMN progenitors with distinct fates and molecular signatures in zebrafish. Notably, we characterized two distinct motor neuron lineages using bioinformatic analysis. We then went on to investigate specific molecular programs that regulate neural progenitor fate transition. We validated experimentally that expression of the transcription factor myt1 (myelin transcription factor 1) and inner nuclear membrane integral proteins lbr (lamin B receptor) were critical for the development of motor neurons and neural progenitor maintenance, respectively. We anticipate that the transcriptome features and molecular programs identified in zebrafish pMN progenitors will not only provide an in-depth understanding of previous findings regarding the lineage analysis of oligodendrocyte progenitor cells and motor neurons but will also help in further understanding of the molecular programming involved in neural progenitor fate transition.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptor de Lamina B
13.
J Proteome Res ; 21(9): 2197-2210, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35972904

RESUMO

Emerin and lamin B receptor (LBR) are abundant transmembrane proteins of the nuclear envelope that are concentrated at the inner nuclear membrane (INM). Although both proteins interact with chromatin and nuclear lamins, they have distinctive biochemical and functional properties. Here, we have deployed proximity labeling using the engineered biotin ligase TurboID (TbID) and quantitative proteomics to compare the neighborhoods of emerin and LBR in cultured mouse embryonic fibroblasts. Our analysis revealed 232 high confidence proximity partners that interact selectively with emerin and/or LBR, 49 of which are shared by both. These included previously characterized NE-concentrated proteins, as well as a host of additional proteins not previously linked to emerin or LBR functions. Many of these are TM proteins of the ER, including two E3 ubiquitin ligases. Supporting these results, we found that 11/12 representative proximity relationships identified by TbID also were detected at the NE with the proximity ligation assay. Overall, this work presents methodology that may be used for large-scale mapping of the landscape of the INM and reveals a group of new proteins with potential functional connections to emerin and LBR.


Assuntos
Lamina Tipo A , Proteômica , Animais , Fibroblastos/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana , Camundongos , Proteínas Nucleares , Receptores Citoplasmáticos e Nucleares , Receptor de Lamina B
14.
Cells ; 11(14)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883595

RESUMO

Modifications in nuclear structures of cells are implicated in several diseases including cancer. They result in changes in nuclear activity, structural dynamics and cell signalling. However, the role of the nuclear lamina and related proteins in malignant melanoma is still unknown. Its molecular characterisation might lead to a deeper understanding and the development of new therapy approaches. In this study, we analysed the functional effects of dysregulated nuclear lamin B1 (LMNB1) and its nuclear receptor (LBR). According to their cellular localisation and function, we revealed that these genes are crucially involved in nuclear processes like chromatin organisation. RNA sequencing and differential gene expression analysis after knockdown of LMNB1 and LBR revealed their implication in important cellular processes driving ER stress leading to senescence and changes in chromatin state, which were also experimentally validated. We determined that melanoma cells need both molecules independently to prevent senescence. Hence, downregulation of both molecules in a BRAFV600E melanocytic senescence model as well as in etoposide-treated melanoma cells indicates both as potential senescence markers in melanoma. Our findings suggest that LMNB1 and LBR influence senescence and affect nuclear processes like chromatin condensation and thus are functionally relevant for melanoma progression.


Assuntos
Lamina Tipo B , Melanoma , Receptores Citoplasmáticos e Nucleares , Senescência Celular/genética , Heterocromatina/genética , Humanos , Lamina Tipo B/genética , Melanoma/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptor de Lamina B
15.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638576

RESUMO

Nuclear envelope (NE) and endoplasmic reticulum (ER) collaborate to control a multitude of nuclear and cytoplasmic actions. In this context, the transmembrane protein TMEM147 localizes to both NE and ER, and through direct and indirect interactions regulates processes as varied as production and transport of multipass membrane proteins, neuronal signaling, nuclear-shape, lamina and chromatin dynamics and cholesterol synthesis. Aiming to delineate the emerging multifunctionality of TMEM147 more comprehensively, we set as objectives, first, to assess potentially more fundamental effects of TMEM147 on the ER and, second, to identify significantly TMEM147-associated cell-wide protein networks and pathways. Quantifying curved and flat ER markers RTN4 and CLIMP63/CKAP4, respectively, we found that TMEM147 silencing causes area and intensity increases for both RTN4 and CLIMP63, and the ER in general, with a profound shift toward flat areas, concurrent with reduction in DNA condensation. Protein network and pathway analyses based on comprehensive compilation of TMEM147 interactors, targets and co-factors then served to manifest novel and established roles for TMEM147. Thus, algorithmically simplified significant pathways reflect TMEM147 function in ribosome binding, oxidoreductase activity, G protein-coupled receptor activity and transmembrane transport, while analysis of protein factors and networks identifies hub proteins and corresponding pathways as potential targets of TMEM147 action and of future functional studies.


Assuntos
Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Retículo Endoplasmático/ultraestrutura , Inativação Gênica , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas Nogo/metabolismo , Mapas de Interação de Proteínas , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Receptor de Lamina B
16.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34234015

RESUMO

Circadian clocks regulate ∼24-h oscillations in gene expression, behavior, and physiology. While the genetic and molecular mechanisms of circadian rhythms are well characterized, what remains poorly understood are the intracellular dynamics of circadian clock components and how they affect circadian rhythms. Here, we elucidate how spatiotemporal organization and dynamics of core clock proteins and genes affect circadian rhythms in Drosophila clock neurons. Using high-resolution imaging and DNA-fluorescence in situ hybridization techniques, we demonstrate that Drosophila clock proteins (PERIOD and CLOCK) are organized into a few discrete foci at the nuclear envelope during the circadian repression phase and play an important role in the subnuclear localization of core clock genes to control circadian rhythms. Specifically, we show that core clock genes, period and timeless, are positioned close to the nuclear periphery by the PERIOD protein specifically during the repression phase, suggesting that subnuclear localization of core clock genes might play a key role in their rhythmic gene expression. Finally, we show that loss of Lamin B receptor, a nuclear envelope protein, leads to disruption of PER foci and per gene peripheral localization and results in circadian rhythm defects. These results demonstrate that clock proteins play a hitherto unexpected role in the subnuclear reorganization of core clock genes to control circadian rhythms, revealing how clocks function at the subcellular level. Our results further suggest that clock protein foci might regulate dynamic clustering and spatial reorganization of clock-regulated genes over the repression phase to control circadian rhythms in behavior and physiology.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica , Proteínas Circadianas Period/metabolismo , Animais , Proteínas CLOCK/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas Circadianas Period/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Tempo , Imagem com Lapso de Tempo , Receptor de Lamina B
17.
Nucleic Acids Res ; 49(13): 7389-7405, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34181735

RESUMO

A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging.


Assuntos
Senescência Celular/genética , MicroRNAs/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Linhagem Celular , Proliferação de Células , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Heterocromatina , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor de Lamina B
18.
Cell Death Dis ; 12(5): 452, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958580

RESUMO

One of the critical events that regulates muscle cell differentiation is the replacement of the lamin B receptor (LBR)-tether with the lamin A/C (LMNA)-tether to remodel transcription and induce differentiation-specific genes. Here, we report that localization and activity of the LBR-tether are crucially dependent on the muscle-specific chaperone HSPB3 and that depletion of HSPB3 prevents muscle cell differentiation. We further show that HSPB3 binds to LBR in the nucleoplasm and maintains it in a dynamic state, thus promoting the transcription of myogenic genes, including the genes to remodel the extracellular matrix. Remarkably, HSPB3 overexpression alone is sufficient to induce the differentiation of two human muscle cell lines, LHCNM2 cells, and rhabdomyosarcoma cells. We also show that mutant R116P-HSPB3 from a myopathy patient with chromatin alterations and muscle fiber disorganization, forms nuclear aggregates that immobilize LBR. We find that R116P-HSPB3 is unable to induce myoblast differentiation and instead activates the unfolded protein response. We propose that HSPB3 is a specialized chaperone engaged in muscle cell differentiation and that dysfunctional HSPB3 causes neuromuscular disease by deregulating LBR.


Assuntos
Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico/metabolismo , Desenvolvimento Muscular/imunologia , Músculo Esquelético/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular , Células HeLa , Humanos , Músculo Esquelético/citologia , Transfecção , Receptor de Lamina B
19.
Commun Biol ; 4(1): 478, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846535

RESUMO

Mutations in the gene encoding Lamin B receptor (LBR), a nuclear-membrane protein with sterol reductase activity, have been linked to rare human disorders. Phenotypes range from a benign blood disorder, such as Pelger-Huet anomaly (PHA), affecting the morphology and chromatin organization of white blood cells, to embryonic lethality as for Greenberg dysplasia (GRBGD). Existing PHA mouse models do not fully recapitulate the human phenotypes, hindering efforts to understand the molecular etiology of this disorder. Here we show, using CRISPR/Cas-9 gene editing technology, that a 236bp N-terminal deletion in the mouse Lbr gene, generating a protein missing the N-terminal domains of LBR, presents a superior model of human PHA. Further, we address recent reports of a link between Lbr and defects in X chromosome inactivation (XCI) and show that our mouse mutant displays minor X chromosome inactivation defects that do not lead to any overt phenotypes in vivo. We suggest that our N-terminal deletion model provides a valuable pre-clinical tool to the research community and will aid in further understanding the etiology of PHA and the diverse functions of LBR.


Assuntos
Anomalia de Pelger-Huët/genética , Receptores Citoplasmáticos e Nucleares/genética , Inativação do Cromossomo X/genética , Animais , Camundongos , Camundongos Knockout , Fenótipo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor de Lamina B
20.
Artigo em Inglês | MEDLINE | ID: mdl-33753404

RESUMO

The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Animais , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor de Lamina B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA