Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
J Agric Food Chem ; 72(7): 3483-3494, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346790

RESUMO

Noncaloric or low-caloric sweeteners have become popular worldwide, although debates persist regarding their impact on health. To investigate whether the sweeteners are favorable for glucose homeostasis, our study assessed the effects of glycyrrhetinic acid monoglucuronide (GAMG) and several commonly used sweeteners [glycyrrhetinic acid (GA), stevioside, erythritol, sucralose, and aspartame] on glycometabolism and elucidated the underlying mechanisms. The C57BL/6J male mice were exposed to different sweeteners for 10 weeks, and our results showed that GAMG significantly reduced fasting blood glucose (FBG) levels (FBG-control: 3.81 ± 0.42 mmol/L; FBG-GAMG: 3.37 ± 0.38 mmol/L; p < 0.05) and the blood glucose levels 15 and 30 min after sucrose or maltose loading (p < 0.05). Furthermore, it improved glucose tolerance (p = 0.028) and enhanced insulin sensitivity (p = 0.044), while the other sweeteners had negligible or adverse effects on glucose homeostasis. Subsequent experiments showed that GAMG inhibited α-glucosidases potently (IC50 = 0.879 mg·mL-1), increased three SCFA-producing bacteria and SCFAs levels (p < 0.05), and promoted the gene expression of SCFA receptor GPR43 (p = 0.018). These results suggest that GAMG may regulate blood glucose by inhibiting α-glucosidases and modulating gut microbial SCFAs. Our findings prove that GAMG, beneficial to blood glucose regulation, is a promising natural sweetener for future utilization.


Assuntos
Ácido Glicirretínico , Edulcorantes , Masculino , Animais , Camundongos , Edulcorantes/análise , Ácido Glicirretínico/metabolismo , Glicemia , alfa-Glucosidases , Camundongos Endogâmicos C57BL , Homeostase
2.
Bioresour Technol ; 395: 130376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278452

RESUMO

Altering the fermentation environment provides an effective approach to optimizing the production efficiency of microbial cell factories globally. Here, lower fermentation temperatures of yeast were found to significantly improve the synthesis and efflux of terpenoids, including glycyrrhetinic acid (GA), ß-caryophyllene, and α-amyrin. The production of GA at 22°C increased by 5.5 times compared to 30°C. Yeast subjected to lower temperature showed substantial changes at various omics levels. Certain genes involved in maintaining cellular homeostasis that were upregulated under the low temperature conditions, leading to enhanced GA production. Substituting Mvd1, a thermo-unstable enzyme in mevalonate pathway identified by transcriptome and proteome, with a thermo-tolerant isoenzyme effectively increased GA production. The lower temperature altered the composition of phospholipids and increased the unsaturation of fatty acid chains, which may influence GA efflux. This study presents a strategy for optimizing the fermentation process and identifying key targets of cell factories for terpenoid production.


Assuntos
Ácido Glicirretínico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Temperatura , Terpenos/metabolismo , Temperatura Baixa , Ácido Glicirretínico/metabolismo , Fermentação
3.
Cell Prolif ; 56(12): e13494, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37139662

RESUMO

Acute liver injury (ALI) is a severe liver disease that is characterized by sudden and massive hepatocyte necrosis and deterioration of liver functions. Oxidative stress is increasingly recognized as a key factor in the induction and progression of ALI. Scavenging excessive reactive oxygen species (ROS) with antioxidants has become a promising therapeutic option, but intrinsically hepatocyte-targeting antioxidants with excellent bioavailability and biocompatibility are yet to be developed. Herein, self-assembling nanoparticles (NPs) composed of amphiphilic polymers are introduced to encapsulate organic Selenium compound L-Se-methylselenocysteine (SeMC) and form SeMC NPs, which protect the viabilities and functions of cultured hepatocytes in drug- or chemical-induced acute hepatotoxicity models via efficient ROS removal. After further functionalization with the hepatocyte-targeting ligand glycyrrhetinic acid (GA), the resultant GA-SeMC NPs exhibit enhanced hepatocyte uptake and liver accumulation. In mouse models of ALI induced by acetaminophen (APAP) or carbon tetrachloride (CCl4 ), treatment with GA-SeMC NPs significantly decrease the levels of hepatic lipid peroxidation, tissue vacuolization and serum liver transaminases, while prominently increase that of endogenous antioxidant enzymes. Our study therefore presents a liver-targeting drug delivery strategy for the prevention and treatment of hepatic diseases.


Assuntos
Antioxidantes , Ácido Glicirretínico , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fígado/metabolismo , Hepatócitos , Estresse Oxidativo , Ácido Glicirretínico/metabolismo , Camundongos Endogâmicos C57BL
4.
Rev Med Interne ; 44(9): 487-494, 2023 Sep.
Artigo em Francês | MEDLINE | ID: mdl-37005098

RESUMO

The word "licorice" refers to the plant, its root, and its aromatic extract. From a commercial point of view, Glycyrrhiza glabra is the most important species with a wide range of uses (herbal medicine, tobacco industry, cosmetics, food and pharmaceutical). Glycyrrhizin is one of the main constituents of licorice. Glycyrrhizin is hydrolyzed in the intestinal lumen by bacterial ß-glucuronidases to 3ß-monoglucuronyl-18ß-glycyrrhetinic acid (3MGA) and 18ß-glycyrrhetinic acid (GA), which are metabolized in the liver. Plasma clearance is slow due to enterohepatic cycling. 3MGA and GA can bind to mineralocorticoid receptors with very low affinity, and 3MGA induces apparent mineralocorticoid excess syndrome through dose-dependent inhibition of 11ß-hydroxysteroid dehydrogenase type 2 in renal tissue. The cases of apparent mineralocorticoid excess syndrome reported in the literature are numerous and sometimes severe, even fatal, most often in cases of chronic high dose consumption. Glycyrrhizin poisonings are characterized by hypertension, fluid retention, and hypokalemia with metabolic alkalosis and increased kaliuresis. Toxicity depends on the dose, the type of product consumed, the mode of consumption (acute or chronic) and a very large inter-individual variability. The diagnosis of glycyrrhizin-induced apparent mineralocorticoid excess syndrome is based on the history, clinical examination, and biochemical analysis. Management is primarily based on symptomatic care and stopping licorice consumption.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ácido Glicirretínico , Glycyrrhiza , Síndrome de Excesso Aparente de Minerolocorticoides , Humanos , Ácido Glicirrízico/efeitos adversos , Ácido Glicirrízico/química , Ácido Glicirrízico/metabolismo , Síndrome de Excesso Aparente de Minerolocorticoides/induzido quimicamente , Ácido Glicirretínico/efeitos adversos , Ácido Glicirretínico/metabolismo , Glycyrrhiza/efeitos adversos , Glycyrrhiza/química , Glycyrrhiza/metabolismo
5.
J Appl Toxicol ; 43(8): 1139-1147, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36807597

RESUMO

Exposure to diosbulbin B (DBB), the primary component of the herbal medicine Dioscorea bulbifera L. (DB), can cause liver injury in humans and experimental animals. A previous study found DBB-induced hepatotoxicity was initiated by CYP3A4-mediated metabolic activation and subsequent formation of adducts with cellular proteins. The herbal medicine licorice (Glycyrrhiza glabra L.) is frequently combined with DB used in numerous Chinese medicinal formulas in an effort to protect against DB-elicited hepatotoxicity. Importantly, glycyrrhetinic acid (GA), the major bioactive ingredient in licorice, inhibits CYP3A4 activity. The study aimed to investigate the protection of GA against DBB-induced hepatotoxicity and the underlying mechanism. Biochemical and histopathological analysis showed GA alleviated DBB-induced liver injury in a dose-dependent manner. In vitro metabolism assay with mouse liver microsomes (MLMs) indicated that GA decreased the generation of metabolic activation-derived pyrrole-glutathione (GSH) conjugates from DBB. Toxicokinetic studies demonstrated that GA increased maximal serum concentration (Cmax ) and area under the serum-time curve (AUC) of DBB in mice. In addition, GA attenuated hepatic GSH depletion caused by DBB. Further mechanistic studies showed that GA reduced the production of DBB-derived pyrroline-protein adducts in a dose-dependent manner. In conclusion, our findings demonstrated that GA exerted protective effect against DBB-induced hepatotoxicity, mainly correlated with suppressing the metabolic activation of DBB. Therefore, the development of a standardized combination of DBB with GA may protect patients from DBB-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ácido Glicirretínico , Plantas Medicinais , Animais , Humanos , Camundongos , Ativação Metabólica , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/metabolismo , Fígado , Extratos Vegetais/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis
6.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 475-484, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35989475

RESUMO

This study was conducted to evaluate the antioxidant capability of dietary supplementation with monoammonium glycyrrhizinate (MAG) in perinatal cows. Glycyrrhizic acid has been shown to have strong antioxidant activity and we hypothesised that the aglycone of glycyrrhizin and MAG, could reduce damage from oxidative stress in perinatal cows by enhancing antioxidant capacity. Blood and milk samples were collected from three groups of healthy perinatal cows that were similar in body weight, parity, milk yield in the last milk cycle, etc., receiving dietary MAG supplementation ([Day 0 = parturition]: 0 g/day, [n = 13)] 3 g/day [n = 13] or 6 g/day [n = 11]) from -28 to 56 day (0 day = parturition). Compared with 0 g/day controls (CON), milk fat was significantly decreased in cows fed with MAG, and 3 g/day had the greatest effect. A diet containing 3 g/day MAG decreased the serum alanine aminotransferase (ALT) level compared with CON at -7 day post-partum. ALT was also lower at 5 day post-partum in cows fed with 3 g/day MAG compared to 6 g/day. The administration of 3 g/day and 6 g/day MAG decreased serum aspartate transaminase (AST) at 3 day post-partum. Supplementation of MAG in cows increased total antioxidant capacity (T-AOC) in serum, and cows given 3 g MAG per day had higher T-AOC than controls on post-partum 7 day. At the end of the experiment, we isolated and cultured primary hepatocytes to determine the effect of MAG on oxidative stress caused by incubation with the sodium oleate (SO). SO increased lipid synthesis, but pre-treatment with MAG prevented the fatty buildup. SO treatment increased AST and ALT levels and malondialdehyde concentration, but decreased T-AOC and superoxide dismutase (SOD). Incubation with MAG increased antioxidant capacity and inhibited oxidant damage in bovine hepatocytes. SO stimulated expression of the antioxidant genes, NAD(P)H quinone dehydrogenase 1 (NQO1) and SOD1, in the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, and catalase 1 (CAT1); this increase was accentuated by MAG pre-treatment. The results suggest that MAG can alleviate the damage caused by oxidative stress in perinatal cows by enhancing antioxidant activity.


Assuntos
Antioxidantes , Ácido Glicirretínico , Gravidez , Feminino , Bovinos , Animais , Antioxidantes/metabolismo , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacologia , Estresse Oxidativo , Parto , Dieta/veterinária , Leite/metabolismo , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Suplementos Nutricionais , Lactação
7.
Acta Biomater ; 152: 235-254, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087869

RESUMO

Liver fibrosis is a pathological process of multiple chronic liver diseases progressing to cirrhosis for which there are currently no effective treatment options. During fibrosis progression, the overproduction of extracellular matrix (ECM) collagen secreted by hepatic stellate cells (HSCs) greatly impedes drug delivery and reduces drug therapeutic effects. In this study, a glycyrrhetinic acid (GA)-conjugated prodrug micellar system with collagenase I (COL) decoration (COL-HA-GA, abbreviated as CHG) was designed to codelivery sorafenib (Sora/CHG, abbreviated as S/CHG) for potentiating ECM degradation and HSCs targeting on liver fibrosis therapy. In ECM barrier models established in vitro or in vivo, CHG micelles efficiently degraded pericellular collagen and demonstrated enormous ECM penetration abilities as well as superior HSCs internalization. Moreover, CHG micelles exhibited more Sora & GA accumulations and activated HSCs targeting efficiencies in the fibrotic livers than those in the normal livers. More importantly, S/CHG micelles were more effective in anti-liver fibrosis by lowering the collagen content, inhibiting the HSCs activation, as well as down-regulating the fibrosis-related factors, leading to reverse the fibrotic liver to normal liver through the multi-mechanisms including angiogenesis reduction, liver fibrosis microenvironment regulation, and epithelial-mesenchymal transition inhibition. In conclusion, the developed COL decorated nano-codelivery system with fibrotic ECM collagen degradation and activated HSCs targeting dual-functions exhibited great potential for liver fibrosis therapy. STATEMENT OF SIGNIFICANCE: A glycyrrhetinic acid (GA)-conjugated prodrug with collagenase I (COL) decoration (CHG) was designed for codelivery with sorafenib (S/CHG), potentiating extracellular matrix (ECM) degradation-penetration and hepatic stellate cells (HSCs) targeting on liver fibrosis therapy. In ECM barrier models, CHG micelles efficiently degraded pericellular collagen and demonstrated ECM penetration abilities, as well as displayed superior HSCs internalization. Moreover, S/CHG micelles were more effective in anti-liver fibrosis by lowering the collagen content, inhibiting the HSCs activation, as well as down-regulating cytokines, reversing the fibrotic liver to normal through various mechanisms. In conclusion, the developed fibrotic ECM degradation and HSCs targeting dual-functional nano-codelivery system provided a prospective potentiality in liver fibrosis therapy.


Assuntos
Ácido Glicirretínico , Pró-Fármacos , Colágeno/metabolismo , Colagenases/metabolismo , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/metabolismo , Micelas , Pró-Fármacos/farmacologia , Estudos Prospectivos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
8.
Front Immunol ; 13: 959495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967372

RESUMO

Macrophages are involved in hepatocyte steatosis and necroinflammation and play an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Impaired autophagy function (decreased autophagy or blocked autophagic flow) leads to cell damage and death and promotes NAFLD progression. The experimental and clinical research of glycyrrhetinic acid (GA) in the treatment of NAFLD has gradually attracted attention with clear pharmacological activities such as immune regulation, antiviral, antitumor, antioxidant, liver protection, and anti-inflammatory. However, the effects of GA on the STAT3-HIF-1α pathway and autophagy in macrophages are still unclear, and its mechanism of action in the treatment of NAFLD remains to be further elucidated. We constructed a NAFLD mouse model through a high-fat and high-sugar diet to investigate the therapeutic effects of GA. The results showed that GA reduced weight, improved the pathological changes and hepatic lipid deposition of liver, and abnormally elevated the levels of serum biochemical (AST, ALT, TG, T-CHO, LDL-C, and HDL-C) and inflammatory indexes (IL-1ß, IL-4, IL-6, MCP-1, and TNF-α) in NAFLD mice. Further examination revealed that GA ameliorates excessive hepatic macrophage infiltration and hepatocyte apoptosis. The results of the cell experiments further elaborated that GA modulated the PA-induced macrophage STAT3-HIF-1α pathway and ameliorated impaired autophagic flux (blockade of autophagosome-lysosome fusion) and overactivation of inflammation. Excessive hepatocyte apoptosis caused by the uncontrolled release of inflammatory cytokines was also suppressed by GA. Conclusion: This study demonstrated that GA could regulate the STAT3-HIF-1α pathway of macrophages, ameliorate the impaired autophagy flux, and reduce the excessive production of inflammatory cytokines to improve the excessive apoptosis of liver cells, thus playing a therapeutic role on NAFLD.


Assuntos
Ácido Glicirretínico , Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia , Citocinas/metabolismo , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Macrófagos , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo
9.
Ecotoxicol Environ Saf ; 242: 113858, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809393

RESUMO

Carbon nanotubes (CNTs) have become far and wide used in a number of technical and merchant applications as a result of substantial advances in nanotechnology, therein single-walled carbon nanotubes (SWCNT) are one of the most promising nanoparticles. Inhaling CNTs has been linked to a variety of health problems, including lung fibrosis. Glycyrrhetinic acid 3-O-mono-ß-D-glucuronide (GAMG), a natural sweetener, has anti-inflammatory and antioxidant capacities. The purpose of this study was to evaluate the potential for GAMG to alleviate SWCNT-induced lung inflammation and fibrosis. During days 3-28 after SWCNT intratracheal administration, we observed a remarkable increase of IL-1ß, IL-6 and TNF-α in bronchoalveolar lavage fluid (BALF) on day 3 and collagen deposition on day 28. GAMG treatment remarkably ameliorated SWCNT-induced pulmonary fibrosis and attenuated SWCNT-induced inflammation and collagen deposition, and suppressed the activation of PI3K/AKT/NF-κB signaling pathway in the lungs. Therefore, GAMG has a therapeutic potential for the treatment of SWCNT-induced pulmonary fibrosis. Targeting PI3K/AKT/NF-κB signaling pathway may be a potential therapeutic approach to treat pulmonary fibrosis in mice with SWCNT.


Assuntos
Ácido Glicirretínico , Nanotubos de Carbono , Pneumonia , Fibrose Pulmonar , Animais , Colágeno/metabolismo , Fibrose , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/toxicidade , Pulmão/metabolismo , Camundongos , NF-kappa B/metabolismo , Nanotubos de Carbono/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Transdução de Sinais
10.
Eur J Nutr ; 61(7): 3437-3447, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35578042

RESUMO

PURPOSE: Glycyrrhizin (GL) and its metabolites 18α-glycyrrhetinic acid (18α-GA) and 18ß-glycyrrhetinic acid (18ß-GA) are used as traditional medicine and food sweeteners. As the major rout of their administration is oral way, therefore their impact on intestinal epithelial cells are investigated. METHODS: The effects of GL and its metabolites on cell viability using MTT assay, on cytotoxicity using LDH release, on integrity of intestinal epithelial cells by measuring the transepithelial electrical resistance (TEER) and Luciferase permeability tests, on the expression of tight junction proteins at mRNA and protein level by qPCR and western blot techniques, and ultimately on the rate of test compounds absorption via Caco-2 cells monolayer were investigated. RESULTS: MTT assay showed a concentration- and time-dependent decrease in metabolic activity of Caco-2 cells induced by GL, 18α-GA, and 18ß-GA, while only 18ß-GA increased the LDH leakage. The monolayer integrity of Caco-2 cells in TEER assay only was affected by 18ß-GA. The permeability of paracellular transport marker was increased by 18α-GA and 18ß-GA and not GL. In transport studies, only metabolites were able to cross from Caco-2 cells monolayer. qPCR analyses revealed that 18ß-GA upregulated the expression of claudin-1 and -4, occludin, junctional adhesion molecules and zonula occludens-1, while 18α-GA upregulated only claudin-4. The expression of claudin-4 at protein level was downregulated non-significantly at 50 µM concentration of 18ß-GA. CONCLUSION: Our results suggest that 18ß-GA may cause cellular damages at higher concentrations on gastrointestinal cells and requires a remarkable attention of the nutraceutical and pharmaceutical industries.


Assuntos
Ácido Glicirretínico , Células CACO-2 , Claudina-4/metabolismo , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Permeabilidade
11.
Biomed Mater ; 17(4)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35483344

RESUMO

The article presents a hepatocellular carcinoma cell surface-specific ligand glycyrrhetinic acid (GA) and cell-penetrating peptide (TAT) with good cell membrane penetration to modify the anti-tumor drug pingyangmycin (PYM) liver delivery system, which achieve targeted delivery of drugs and improve anti-tumor efficiency. In this study, we synthesized the pingyangmycin liposome modified by glycyrrhetinic acid and cell penetrating peptide(GA-TAT-PYM-L) and evaluated the anti-tumor effect of GA-TAT-PYM-Lin vitro. Using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylte-trazolium bromidecell proliferation method, GA-TAT-PYM-L had a stronger inhibitory effect on HepG2 cells than the free drug PYM at the same concentration. Acridine orange-ethidium bromide staining assays showed that GA-TAT-PYM-L had stronger apoptosis promotion effects on HepG2 cells in comparison to PYM. Pharmacokinetic studies indicated that, compared with PYM, GA-TAT-PYM-L enhanced mean residence time (MRT0-∞) and area under curve (AUC0-∞) by about 2.79-fold and 2.45-fold. TheT1/2was prolonged to 140.23 ± 14.13 min. Tissue distribution results showed that the PYM concentrations in livers from the GA-TAT-PYM-L group were always higher than other tissues at each monitoring period after 5 min, indicating that GA-TAT-PYM-L can achieve liver targeting.


Assuntos
Ácido Glicirretínico , Lipossomos , Ácido Glicirretínico/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Peptídeos
12.
Biochim Biophys Acta Biomembr ; 1864(6): 183890, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181296

RESUMO

Glycyrrhetinic acid (GA) is one of the major bioactive components of the leguminous plant, Glycyrrhiza spp. (Chinese licorice). Owing to GA's complicated chemical structure, its production by chemical synthesis is challenging and requires other efficient strategies such as microbial synthesis. Earlier investigations employed numerous approaches to improve GA yield by refining the synthetic pathway and improving the metabolic flux. Nevertheless, the metabolic role of transporters in GA biosynthesis in microbial cell factories has not been studied so far. In this study, we investigated the role of yeast ATP binding cassette (ABC) vacuolar transporters in GA production. Molecular docking of GA and its precursors, ß-Amyrin and 11-oxo-ß-amyrin, was performed with five vacuolar ABC transporters (Bpt1p, Vmr1p, Ybt1p, Ycf1p and Nft1p). Based on docking scores, two top scoring transporters were selected (Bpt1p and Vmr1p) to investigate transporters' functions on GA production via overexpression and knockout experiments in one GA-producing yeast strain (GA166). Results revealed that GA and its precursors exhibited the highest predicted binding affinity towards BPT1 (ΔG = -10.9, -10.6, -10.9 kcal/mol for GA, ß-amyrin and 11-oxo-ß-amyrin, respectively). Experimental results showed that the overexpression of BPT1 and VMR1 restored the intracellular as well as extracellular GA production level under limited nutritional conditions, whereas knockout of BPT1 resulted in a total loss of GA production. These results suggest that the activity of BPT1 is required for GA production in engineered Saccharomyces cerevisiae.


Assuntos
Ácido Glicirretínico , Saccharomyces cerevisiae , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Glicirretínico/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
13.
Bioorg Chem ; 106: 104461, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223202

RESUMO

Novel Glycyrrhetinic Acid (GA) derivatives with fused heterocycles on A ring were structure-based designed and synthesized. Their potential anti-inflammatory effects were investigated by a classical LPS stimulated macrophage model. Surface plasmon resonance (SPR) was used to verify the binding of GA analogues with HMGB1. A preliminary structure-activity relationship was summarized and an analogue GA-60 with ortho-methoxybenzyl pyrozole showed stronger anti-inflammatory effect and higher affinity for HMGB1 with a Kd value of 12.5 µM. In addition, this compound exhibited excellent inhibitory functions on NO (96%), TNF-α (94%), and IL-6 (100%), by interfering with phosphorylation of p38, ERK, JNK MAPKs, as well as that of NF-κB p65 and IKKα/ß. Moreover, GA-60 extended the survival of either the classic CLP-induced or LPS-induced sepsis mouse models. Molecular modeling predictions further supported these findings, clearly indicating that inhibiting HMGB1 release, using fused heterocyclic GA derivatives, is a promising strategy for treatment of sepsis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/uso terapêutico , Proteína HMGB1/antagonistas & inibidores , Sepse/tratamento farmacológico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/toxicidade , Ceco/cirurgia , Desenho de Fármacos , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/toxicidade , Proteína HMGB1/metabolismo , Ligadura , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Células RAW 264.7 , Ratos , Sepse/induzido quimicamente , Relação Estrutura-Atividade
14.
Biomed Pharmacother ; 131: 110682, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947204

RESUMO

Hepatocellular carcinoma (HCC), a common malignancy in China and globally, is primarily treated through surgical resection and liver transplantation, with chemotherapy as a significant synergistic option. Adenine (Ade), a nucleobase, exhibits antitumor effects by blocking human hepatic carcinoma cells in S phase and inhibiting tumor cell proliferation. However, its use is limited owing to its low solubility, poor targeting ability, and nephrotoxicity. Therefore, liver-targeting drug delivery systems have attracted considerable attention for the treatment of HCC. In this study, we explored the liver-targeting efficacy and antitumor effect of adenine-loaded glycyrrhetinic acid-modified hyaluronic acid (Ade/GA-HA) nanoparticles in vitro and in vivo. The GA-HA nanoparticles possessed obvious targeting specificity toward liver cancer cells, which was mainly achieved by the specific binding of the GA ligand to the GA receptor that was highly expressed on the liver cell membrane. In vitro and in vivo results showed that Ade/GA-HA nanoparticles could inhibit liver cancer cell proliferation and migration, promote apoptosis, and significantly inhibit the growth of tumor tissues. Altogether, this study is the first to successfully demonstrate that the targeting activity and antitumor effect of Ade against HCC are enhanced by using GA-HA nanoparticles in vitro and in vivo.


Assuntos
Adenina/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Ácido Glicirretínico/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/administração & dosagem , Adenina/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/metabolismo , Carcinoma Hepatocelular/metabolismo , Feminino , Ácido Glicirretínico/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia
15.
Bioorg Chem ; 103: 104187, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890994

RESUMO

A series of novel 18ß-glycyrrhetinic acid (GA) derivatives featuring an exocyclic α,ß-unsaturated carbonyl moiety in ring A were synthesized and evaluated for their antitumor activities. Compounds 5c and 5l showed stronger cytotoxicity than other compounds and reported GA analogue CDODA-Me (methyl 2-cyano-3,11-dioxo-18ß-olean-1,12-dien-30-oate). 5c and 5l induced apoptosis in cancer cells accompanying with c-Flip reduction and Noxa induction, associated with decreased HDAC3 expression and increased acetylation of H3. 5l displayed better stability properties than 5c and CDODA-Me in microsomes and plasma, 5l also showed favorable pharmacokinetic profiles and inhibited tumor growth in mice. Compound 5l represents a new type of GA derivatives with improved antitumor activity.


Assuntos
Antineoplásicos/uso terapêutico , Ácido Glicirretínico/análogos & derivados , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Feminino , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacocinética , Ácido Glicirretínico/uso terapêutico , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Artif Cells Nanomed Biotechnol ; 48(1): 1105-1113, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32880189

RESUMO

This study aimed to increase the solubility of glycyrrhetinic acid (GA) in water and enhance its liver-targeting ability using self-assembling nanomicelles (NMs) based on stearic acid-modified fenugreek gum (FG-C18). The GA/FG-C18 NMs were prepared by an ultrasonication dispersion method. The nanomicelles were spherical particles with a particle size of 198.61 ± 1.58 nm and a zeta potential of -30.12 ± 0.28 mV. The drug loading and encapsulation efficiency were 13.34 ± 0.24% and 80.07 ± 1.44%, respectively. The results of differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) indicated that GA was successfully encapsulated into the nanomicelles in a molecularly dispersed state. An in vitro release test showed that GA/FG-C18 NMs possessed a slow drug release profile in PBS (pH 7.4) over 200 h. The cytotoxicity assay indicated that GA/FG-C18 NMs showed much higher inhibitory efficacy in HepG2 cells than in MCF-7 cells. Tissue section studies indicated that the accumulation of DiR-loaded FG-C18 nanomicelles in the liver of mice was higher than that of the DiR solution, and the fluorescence intensity decreased over time. GA/FG-C18 NMs showed a larger area under the curve (AUC) and mean residence time (MRT) compared with free GA after intravenous administration in mice. The in vivo studies showed that GA mainly accumulated in the liver after encapsulation by FG-C18 NMs, and the drug concentration was higher than that of free GA. These results suggested that FG-C18 NMs could serve as a potential drug delivery system for targeting GA to liver tissue.


Assuntos
Ácido Glicirretínico/química , Ácido Glicirretínico/metabolismo , Fígado/metabolismo , Micelas , Nanoestruturas/química , Extratos Vegetais/química , Ácidos Esteáricos/química , Trigonella/química , Células Hep G2 , Humanos , Células MCF-7 , Solubilidade , Sonicação
17.
J Agric Food Chem ; 68(32): 8580-8588, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32689796

RESUMO

Glycyrrhetinic acid (GA), a pentacyclic triterpenoid aglycone, is the major functional component in licorice which mainly exists in the form of functional glycosides in licorice. The introduction of a sugar moiety to the C-3 OH of GA to yield glycosylated derivatives has been reported, but the late-stage glycosylation of GA-3-O-sugar to form rare GA glycosides with more complexed glycosyl decoration has been rarely reported. In this study, a unique UDP-galactosyltransferase GmSGT2 from Glycine max was found to transfer a galactose to the C2 position of the sugar moiety of GA-3-O-monoglucuronide (GAMG) and GA-3-O-monoglucose. In addition to UDP-galactose, GmSGT2 also recognizes UDP-glucose, UDP-xylose, and UDP-arabinose with relative activities of 32.1-89.2%. Based on a test of 12 typical natural products, GmSGT2 showed high specificity toward the pentacyclic triterpenoid skeleton as the sugar acceptor. Molecular docking was performed to elucidate the substrate recognition mechanism of GmSGT2 toward GAMG.


Assuntos
/enzimologia , Glicosiltransferases/metabolismo , Ácido Glicirretínico/metabolismo , Monossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Glicosilação , Glicosiltransferases/genética , Ácido Glicirretínico/química , Simulação de Acoplamento Molecular , Monossacarídeos/química , Proteínas de Plantas/genética , /genética , Especificidade por Substrato , Difosfato de Uridina/metabolismo
18.
Int J Biol Macromol ; 161: 231-246, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32522541

RESUMO

The Histone-like DNA binding protein is one of the most abundant nucleoid associated protein expressed by human gastric-pathogen, Helicobacter pylori (H. pylori). The protein -referred here as Hup- has been recognized as a potential drug target for developing therapeutic strategies against H. pylori. However, no attempts have been made, so far, to perturb the functioning of Hup through small molecules. As a first step in this direction, we virtually screened a natural product library containing 56 drug-like bioactive compounds and rationally selected 18ß-Glycyrrhetinic acid (GrA) for further computational and experimental testing of its binding interaction with Hup at the molecular level. The binding modes for GrA-Hup complexes were identified using in silico molecular docking methods and their solution dynamics and stability were evaluated using long run molecular dynamics simulations. Next, we experimentally demonstrated this binding interaction using fluorescence-quenching and ligand based NMR approaches. The fluorescence quenching and NMR titration experiments resulted into apparent dissociation constant (kD) for GrA-Hup binding equal to 87±12 µM and 36.6±1.5 µM, respectively. The various results demonstrate that GrA exhibits an exquisite binding interaction with Hup and would serve as an important molecular scaffold for developing next generation anti-H. pylori agents.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Ácido Glicirretínico/análogos & derivados , Helicobacter pylori/metabolismo , Histonas/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ácido Glicirretínico/química , Ácido Glicirretínico/metabolismo , Histonas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade
19.
Eur J Pharmacol ; 883: 173167, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485245

RESUMO

Abnormal vitamin A (retinol) metabolism plays an important role in the occurrence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this study, NAFLD and NASH models were established to investigate the effects of food additives glycyrrhizic acid (GL) on retinol metabolism in NAFLD/NASH mice. Potential targets of GL and its active metabolite glycyrrhetinic acid (GA) were analyzed by RNA sequence, bioinformatics, and molecular docking analyses. Gene transfection and enzymatic kinetics were used to identify the target of GL. The results showed that GL could resolve the fatty and inflammatory lesions in the mouse liver, thereby improving the disorder of retinol metabolism. RNA sequence analysis of model mice liver revealed significant changes in AKR1B10 (retinol metabolic enzymes). Bioinformatics and molecular docking analyses showed that AKR1B10 is a potential target of GA but not GL. GA could inhibit AKR1B10 activity, which then affects retinol metabolism, whereas GL only had the same effect after hydrolysis into GA. In AKR1B10-KO hepatocytes, GA, GL, and hydrolysates of GL had no regulatory effect on retinol metabolism. Therefore, GA, the active metabolite of GL, as a novel AKR1B10 inhibitor, could promote retinoic acid synthesis. GL restored the balance of retinol metabolism in NAFLD/NASH mice by metabolizing to GA.


Assuntos
Aldo-Ceto Redutases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ácido Glicirretínico/farmacologia , Ácido Glicirrízico/farmacologia , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Vitamina A/metabolismo , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácido Glicirretínico/metabolismo , Ácido Glicirrízico/metabolismo , Células Hep G2 , Humanos , Hidrólise , Cinética , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia
20.
Bioorg Med Chem ; 28(11): 115465, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32299661

RESUMO

Glycyrrhetinic acid (GA), the major bioactive pentacyclic triterpene aglycone of licorice root, was known to play a vital role in anti-ulcer, anti-depressant, anti-inflammatory, and anti-allergic. In this study, we semi-synthesized five GA derivatives by a series of chemical reactions. They were selected as substrates for the biotransformation and yielded thirteen metabolites by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741. Their structures were identified on the basis of extensive spectroscopic methods and nine of them were found for the first time. Two main types of reactions, regio- and stereo-selective hydroxylation and glycosylation, especially in the unactivated C-H bonds including C-11, C-19 and C-27, were observed in the biotransformation process, which greatly expand the chemical diversities of GA derivatives. All compounds were tested for their inhibitory effects on nitric oxide (NO) generation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Among them, olean-12-ene-3ß,7ß,15α,19α,30-pentol (16) and olean-12-ene-3ß,7ß,15α,27,30-pentol (17) showed significant inhibitory effect with IC50 values of 0.64 and 0.07 µM, respectively.


Assuntos
Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Bacillus megaterium/metabolismo , Bacillus subtilis/metabolismo , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Animais , Anti-Inflamatórios/química , Biotransformação , Relação Dose-Resposta a Droga , Ácido Glicirretínico/análogos & derivados , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Conformação Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Células RAW 264.7 , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...