Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.987
Filtrar
1.
Bioresour Technol ; 291: 121834, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31371157

RESUMO

In present study, lipids were extracted from unbroken microalga Chlorella vulgaris with high water content (50% microalgal solution) through three-phase partitioning (TPP). The method was found to extract around 15.9% of total lipid transformable to methyl esters (LTMEs) from unbroken microalgal cells which is two times of Bligh and Dyer method. We investigated the effects of various parameters on TPP performance and were optimised through response surface methodology. The results indicated that incubation duration, temperature and extraction time were positively correlated with LTME extraction efficiency. The optimum temperature was 60 °C, incubation duration was 120 min, extraction time was 60 min, ratio of solvent to DKP was 1:1. The FAME yield was calculated as 12.05% and major fatty acids together accounted for 71.33% which indicated the great potential of the proposed lipid extraction procedure for microalga-based biodiesel production.


Assuntos
Biocombustíveis , Biomassa , Chlorella vulgaris/metabolismo , Lipídeos/isolamento & purificação , Microalgas/metabolismo , Ácidos Graxos/metabolismo , Lipídeos/biossíntese , Solventes , Temperatura Ambiente , Água
2.
Chem Biol Interact ; 311: 108787, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31400341

RESUMO

Antipsychotic drugs interfere with the antioxidant defense system provoking complex and often toxicological effects. Here we examined differences in plasma albumin reduced free thiol (SH) group content and its reactivity as a consequence of clozapine (CLZ) and ziprasidone (ZIP) binding. Chronic administration of CLZ reduced, whereas treatment with ZIP increased albumin-SH content in rats. Regardless of the ratio of stearic acid (SA) bound to protein, in vitro binding of ZIP to human serum albumin (HSA) increased both the SH group level and reactivity. In contrast, the effect of CLZ on HSA-SH reactivity was dependent on HSA to SA molar ratio. CLZ binding was accompanied by an increase in HSA-SH reactivity in samples with normal, but a reduction of its reactivity level with higher SA/HSA ratio, compared to drug-free samples. We demonstrate by steady-state fluorescence quenching studies that an increase in SA binding to HSA is associated with a significant reduction of binding constant for both antipsychotics. In addition, this is the first report of quantitative characterization of ZIP binding to HSA. Our findings suggest that albumin-SH content and reactivity is modulated by ZIP towards an increased antioxidant defense capacity in circulation, as opposed to CLZ, which can contribute to the safer, more effective treatment of schizophrenia.


Assuntos
Clozapina/química , Ácidos Graxos/química , Piperazinas/química , Albumina Sérica/química , Compostos de Sulfidrila/química , Tiazóis/química , Animais , Clozapina/metabolismo , Ácidos Graxos/metabolismo , Humanos , Masculino , Piperazinas/metabolismo , Ligação Proteica , Ratos , Ratos Wistar , Albumina Sérica/metabolismo , Espectrometria de Fluorescência , Espectrofotometria , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/metabolismo , Tiazóis/metabolismo
3.
Dokl Biochem Biophys ; 486(1): 229-233, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31367828

RESUMO

The composition of fatty acids of total lipids of the outer and parenchymal parts of the pericarp in Cydonia oblonga Mill. and Mespilus germanica L. (Maloideae, Rosaceae), growing in the Northern Caucasian mountains at altitudes of 300, 500, 700, and 1200 m above sea level in various natural zones from experimental sites, was studied for the first time. It is established that the altitude of plant growth is largely correlated with the changes in the FA composition of the outer, but not the parenchymal, part of the pericarp. The nature of this variability suggests that the adaptation of plants to the conditions of significant temperature differences in the mountains is associated with the regulation of cell membrane fluidity, based on the interaction of opposite processes of synthesis of polyunsaturated and very-long-chain fatty acids.


Assuntos
Adaptação Fisiológica , Altitude , Ácidos Graxos/metabolismo , Rosaceae/metabolismo , Rosaceae/fisiologia
4.
Nat Commun ; 10(1): 2902, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263173

RESUMO

Exogenous metabolites from microbial and dietary origins have profound effects on host metabolism. Here, we report that a sub-population of lipid droplets (LDs), which are conserved organelles for fat storage, is defined by metabolite-modulated targeting of the C. elegans seipin ortholog, SEIP-1. Loss of SEIP-1 function reduces the size of a subset of LDs while over-expression of SEIP-1 has the opposite effect. Ultrastructural analysis reveals SEIP-1 enrichment in an endoplasmic reticulum (ER) subdomain, which co-purifies with LDs. Analyses of C. elegans and bacterial genetic mutants indicate a requirement of polyunsaturated fatty acids (PUFAs) and microbial cyclopropane fatty acids (CFAs) for SEIP-1 enrichment, as confirmed by dietary supplementation experiments. In mammalian cells, heterologously expressed SEIP-1 engages nascent lipid droplets and promotes their subsequent expansion in a conserved manner. Our results suggest that microbial and polyunsaturated fatty acids serve unexpected roles in regulating cellular fat storage by promoting LD diversity.


Assuntos
Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Transporte Proteico
5.
Animal ; 13(S1): s26-s34, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31280746

RESUMO

Colostrum plays an essential role in ensuring the survival, growth and health of piglets by providing energy, nutrients, immunoglobulins, growth factors and many other bioactive components and cells. Both colostrum yield and composition are highly variable among sows, yet mechanisms and factors that regulate colostrogenesis are not fully known. Unlike sow milk yield, sow colostrum yield is not highly determined by litter size and suckling intensity but is largely driven by sow-related factors. Colostrum synthesis is under hormonal control, with prolactin and progesterone concentrations prepartum having, respectively, positive and negative influences on colostrum yield. Less is known about the endocrine control of the end of colostrogenesis in swine, which is characterized by the closure of tight junctions in the mammary epithelium and the cessation of transfer of immunoglobulin G (IgG) into lacteal secretions. Recent studies indicate that exogenous hormones may influence colostrogenesis. Inducing parturition by injecting prostaglandin F2α on day 114 of gestation in combination with an oxytocin-like molecule reduced colostrum yield, and injection of prostaglandin F2α alone either reduced colostrum yield or had no effect. Injecting a supraphysiological dose of oxytocin to sows in the early postpartum period delayed the tightening of mammary tight junctions, thereby prolonging the colostral phase and increasing concentrations of IGF-I and IgG and IgA in early milk. The development of strategies to improve colostrum composition in swine through maternal feeding has been largely explored but very few attempts were made to increase colostrum yield. This is most likely because of the difficulty in measuring colostrum yield in swine. The fatty acid content of colostrum greatly depends on the amount of lipids provided in the sow diet during late gestation, whereas the fatty acid profile is largely influenced by the type of lipid being fed to the pregnant sow. Moreover, various ingredients that presumably have immuno-modulating effects (such as fish oil, prebiotics and probiotics) increased concentrations of IgG, IgA and/or IgM in sow colostrum when they were provided during the last weeks of gestation. Finally, there is some evidence that sow nutrition during late gestation may influence colostrum yield but this clearly warrants more research. This review emphasizes that although progress has been made in understanding the control of colostrogenesis in swine, and that strategies exist to manipulate fat and immunoglobulin contents of colostrum, ways to increase colostrum yield are still lacking.


Assuntos
Colostro/metabolismo , Sistema Endócrino/fisiologia , Ácidos Graxos/metabolismo , Leite/metabolismo , Suínos/fisiologia , Animais , Colostro/química , Dieta/veterinária , Feminino , Óleos de Peixe/metabolismo , Hormônios/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Fator de Crescimento Insulin-Like I/metabolismo , Tamanho da Ninhada de Vivíparos , Leite/química , Estado Nutricional , Parto , Gravidez , Proteínas Recombinantes/metabolismo
6.
J Agric Food Chem ; 67(28): 7986-7994, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31282158

RESUMO

Compositional analyses were performed on samples of rice grain, straw, and derived bran obtained from golden rice event GR2E and near-isogenic control PSBRc82 rice grown at four locations in the Philippines during 2015 and 2016. Grain samples were analyzed for key nutritional components, including proximates, fiber, polysaccharides, fatty acids, amino acids, minerals, vitamins, and antinutrients. Samples of straw and bran were analyzed for proximates and minerals. The only biologically meaningful difference between GR2E and control rice was in levels of ß-carotene and other provitamin A carotenoids in the grain. Except for ß-carotene and related carotenoids, the compositional parameters of GR2E rice were within the range of natural variability of those components in conventional rice varieties with a history of safe consumption. Mean provitamin A concentrations in milled rice of GR2E can contribute up to 89-113% and 57-99% of the estimated average requirement for vitamin A for preschool children in Bangladesh and the Philippines, respectively.


Assuntos
Oryza/genética , Plantas Geneticamente Modificadas/química , Sementes/química , Aminoácidos/análise , Aminoácidos/metabolismo , Bangladesh , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Alimentos Geneticamente Modificados , Engenharia Genética , Valor Nutritivo , Oryza/química , Oryza/metabolismo , Filipinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Provitaminas/análise , Provitaminas/metabolismo , Sementes/genética , Sementes/metabolismo , Vitamina A/análise , Vitamina A/metabolismo , beta Caroteno/análise , beta Caroteno/metabolismo
7.
Nature ; 571(7766): 515-520, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31341297

RESUMO

The mitochondrial ADP/ATP carrier (AAC) is a major transport protein of the inner mitochondrial membrane. It exchanges mitochondrial ATP for cytosolic ADP and controls cellular production of ATP. In addition, it has been proposed that AAC mediates mitochondrial uncoupling, but it has proven difficult to demonstrate this function or to elucidate its mechanisms. Here we record AAC currents directly from inner mitochondrial membranes from various mouse tissues and identify two distinct transport modes: ADP/ATP exchange and H+ transport. The AAC-mediated H+ current requires free fatty acids and resembles the H+ leak via the thermogenic uncoupling protein 1 found in brown fat. The ADP/ATP exchange via AAC negatively regulates the H+ leak, but does not completely inhibit it. This suggests that the H+ leak and mitochondrial uncoupling could be dynamically controlled by cellular ATP demand and the rate of ADP/ATP exchange. By mediating two distinct transport modes, ADP/ATP exchange and H+ leak, AAC connects coupled (ATP production) and uncoupled (thermogenesis) energy conversion in mitochondria.


Assuntos
Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Prótons , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Coenzimas/metabolismo , Ácidos Graxos/metabolismo , Transporte de Íons , Masculino , Camundongos , Consumo de Oxigênio
8.
Bioresour Technol ; 289: 121704, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31276990

RESUMO

Rhodococcus sp. YHY01 was studied to utilize various lignin derived aromatic compounds. It was able to utilize p-coumaric acid, cresol, and 2,6 dimethoxyphenol and resulted in biomass production i.e. 0.38 g dcw/L, 0.25 g dcw/L and 0.1 g dcw/L, and lipid accumulation i.e. 49%, 40%, 30%, respectively. The half maximal inhibitory concentration (IC50) value for p-coumaric acid (13.4 mM), cresol (7.9 mM), and 2,6 dimethoxyphenol (3.4 mM) was analyzed. Dimethyl sulfoxide (DMSO) solubilized barley straw lignin fraction was used as a carbon source for Rhodococcus sp. YHY01 and resulted in 0.130 g dcw/L with 39% w/w lipid accumulation. Major fatty acids were palmitic acid (C16:0) 51.87%, palmitoleic acid (C16:l) 14.90%, and oleic acid (C18:1) 13.76%, respectively. Properties of biodiesel produced from barley straw lignin were as iodine value (IV) 27.25, cetane number (CN) 65.57, cold filter plugging point (CFPP) 14.36, viscosity (υ) 3.81, and density (ρ) 0.86.


Assuntos
Biocombustíveis , Hordeum/química , Lignina/metabolismo , Rhodococcus/metabolismo , Biomassa , Ácidos Graxos/metabolismo , Lignina/química
9.
Plant Sci ; 286: 98-107, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300147

RESUMO

Flax seeds have a high oil content and are rich in unsaturated fatty acids, which have advantageous effects in preventing chronic diseases, such as cardiovascular diseases. At present, flax seeds are mainly developed for oil. Therefore, it is of practical significance to identify the candidate genes of fatty acid metabolism in flax seeds for breeding flax seeds with high oil content. In the present study, a natural population of flax containing 224 samples planted in 3 different environments was studied. The genome-wide association analysis (GWAS) of seed fatty acid content was conducted based on specific length amplified fragment sequencing (SLAF-seq) data. Transcriptome sequencing (RNA-seq) of samples from 3 different periods (14 d, 21 d and 28 d after anthesis) during seed development of the low oil variety Shuangya 4 and the high oil variety NEW was performed. The candidate genes for seed fatty acid metabolism were identified by combined analysis of these 2 methods. GWAS detected 16 SNP loci significantly associated with seed fatty acid content, and RNA-seq analysis identified 11,802 differentially expressed genes between high and low oil samples. Pathway enrichment analysis revealed that some differentially expressed genes were classified into fatty acid-related pathways. After comparison of these differentially expressed genes with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, 20 genes homologous to other species were obtained. After analysis, 10 candidate genes were screened by GWAS and RNA-seq screening. Of these 10 genes, qRT-PCR assays using flax seeds in 5 different developmental stages showed that the expression levels of 6 candidate genes were significantly correlated with 5 fatty acid contents in seeds of the high oil variety NEW. Through metabolic pathway analysis found that 6 genes were involved in important fatty acid metabolic pathways, and some of them also have upstream and downstream regulation relations. The present study combined GWAS and RNA-seq methods to identify candidate genes for fatty acid metabolism in flax seeds, which provided reference for screening of candidate genes with complex traits.


Assuntos
Ácidos Graxos/metabolismo , Linho/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Transcriptoma , Linho/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes/metabolismo , Análise de Sequência de RNA
10.
Nat Commun ; 10(1): 2943, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270333

RESUMO

Mutations exclusively in equilibrative nucleoside transporter 3 (ENT3), the only intracellular nucleoside transporter within the solute carrier 29 (SLC29) gene family, cause an expanding spectrum of human genetic disorders (e.g., H syndrome, PHID syndrome, and SHML/RDD syndrome). Here, we identify adult stem cell deficits that drive ENT3-related abnormalities in mice. ENT3 deficiency alters hematopoietic and mesenchymal stem cell fates; the former leads to stem cell exhaustion, and the latter leads to breaches of mesodermal tissue integrity. The molecular pathogenesis stems from the loss of lysosomal adenosine transport, which impedes autophagy-regulated stem cell differentiation programs via misregulation of the AMPK-mTOR-ULK axis. Furthermore, mass spectrometry-based metabolomics and bioenergetics studies identify defects in fatty acid utilization, and alterations in mitochondrial bioenergetics can additionally propel stem cell deficits. Genetic, pharmacologic and stem cell interventions ameliorate ENT3-disease pathologies and extend the lifespan of ENT3-deficient mice. These findings delineate a primary pathogenic basis for the development of ENT3 spectrum disorders and offer critical mechanistic insights into treating human ENT3-related disorders.


Assuntos
Células-Tronco Adultas/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Adenosina/metabolismo , Adenilato Quinase/metabolismo , Células-Tronco Adultas/ultraestrutura , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Autofagia , Transporte Biológico , Diferenciação Celular , Autorrenovação Celular , Metabolismo Energético , Ácidos Graxos/metabolismo , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fenótipo , Ribonucleotídeos/farmacologia , Transdução de Sinais , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo
11.
J Agric Food Chem ; 67(32): 8756-8765, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31310525

RESUMO

Parasitism usually causes considerable changes in lipids and fatty acids by redirecting the development of the host. In this study, changes in weight and in free fatty acid content of cotton aphids were recorded after aphids had been parasitized. Results showed that the weight of parasitized Aphis gossypii was increased compared to nonparasitized aphids, and significantly increased weights were detected at 1, 2, and 3 instars after parasitization by Lysiphlebia japonica. Free fatty acid test kits and GC-MS showed that the fatty acid content increased in the early stage of parasitization but decreased after 3 days of parasitization. Seven genes related to the fatty acid synthesis pathway were significantly upregulated in the parasitized aphids, where they were 1.96-10.97 times greater. Our data described the change that occurs in the fatty acid content of parasitized A. gossypii.


Assuntos
Afídeos/metabolismo , Ácidos Graxos/metabolismo , Vespas/fisiologia , Animais , Afídeos/química , Afídeos/parasitologia , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Interações Hospedeiro-Parasita
12.
J Agric Food Chem ; 67(25): 7197-7203, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31240934

RESUMO

Nutritional profiles and consumer preferences differ between wild and farmed fish, and identification of fish sources can be difficult. We analyzed the metabolite molecules of wild and farmed red sea bream ( Pagrus major) to identify specific metabolic differences. The total lipid content and molecular composition of wild and farmed red sea bream muscles were analyzed using thin-layer chromatography and mass spectrometry imaging. Triacylglycerol levels were significantly higher in farmed fish. Wild fish contained saturated-fatty-acid-containing triacylglycerols as a major molecular species, while docosahexaenoic-acid-containing triacylglycerol levels were significantly higher in farmed fish than in wild fish. The localization of each muscle-fiber-type-specific marker demonstrated that wild fish exhibit myosin heavy chain (MHC)-type-IIb-specific phospholipids, while farmed fish exhibit MHC-type-IIa-specific phospholipids in their white muscle. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses separated the identified myosins and revealed that farmed fish possess additional myosin isoforms when compared to wild fish. In addition, we found a farmed-fish-specific distribution of anserine in their white muscle. These molecules can be used as new molecular markers for determining the geographic origins of wild versus farmed red sea bream.


Assuntos
Dourada/metabolismo , Alimentos Marinhos/análise , Animais , Animais Selvagens/metabolismo , Cromatografia em Camada Delgada , Análise Discriminante , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Pesqueiros , Espectrometria de Massas/métodos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Triglicerídeos/química , Triglicerídeos/metabolismo
13.
Microbiol Res ; 223-225: 79-87, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178055

RESUMO

Vibrio parahaemolyticus is a seafood-borne Gram-negative bacteria causing diarrheal diseases in humans world wide. ToxR is a membrane-associated transcriptional factor which plays an important role in acid stress tolerance and regulates the expression of virulence genes including type III secretion system 1 (T3SS1) and type VI secretion system 1 (T6SS1) in V. parahaemolyticus. However, possible mechanisms of ToxR mediating virulence gene expression have not been fully understood. In this study, we demonstrated that ToxR is essential for V. parahaemolyticus to tolerate acid stress by constructing a ToxR deletion mutant (ΔtoxR) and its complemented strain (toxR+). Quantitative PCR showed that the expression of toxR was up regulated under acid stress condition. RNA-seq analysis showed that ompU encoding one of outer membrane proteins was dramatically down regulated in ΔtoxR. Furthermore, the mutation of ompU also led to a significant reduction in tolerating acid stress indicating that ToxR mediated acid stress through regulating ompU expression. RNA-seq results further confirmed that acid stress condition could alter multiple signaling pathways either depending on ToxR (e.g., quorum sensing, fatty acid metabolism) or independent of ToxR (e.g., biosynthesis of secondary metabolites, microbial metabolism in diverse environment, biosynthesis of antibiotics, biosynthesis of amino acids and carbon metabolism pathways). We also for the first time demonstrated that ToxR positively regulated the expression of T6SS2 gene and the interbacteria killing activity. Our study provides comprehensive understanding of signaling pathways which are regulated by both acid stress and ToxR.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Vibrio parahaemolyticus/metabolismo , Adesinas Bacterianas/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Ácidos Graxos/metabolismo , Percepção de Quorum , Metabolismo Secundário , Análise de Sequência de RNA , Deleção de Sequência , Fatores de Transcrição/genética , Transcriptoma , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo VI/genética , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/crescimento & desenvolvimento , Virulência/genética
14.
Nat Commun ; 10(1): 2698, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221959

RESUMO

The different stages of the metastatic cascade present distinct metabolic challenges to tumour cells and an altered tumour metabolism associated with successful metastatic colonisation provides a therapeutic vulnerability in disseminated disease. We identify the aldo-keto reductase AKR1B10 as a metastasis enhancer that has little impact on primary tumour growth or dissemination but promotes effective tumour growth in secondary sites and, in human disease, is associated with an increased risk of distant metastatic relapse. AKR1B10High tumour cells have reduced glycolytic capacity and dependency on glucose as fuel source but increased utilisation of fatty acid oxidation. Conversely, in both 3D tumour spheroid assays and in vivo metastasis assays, inhibition of fatty acid oxidation blocks AKR1B10High-enhanced metastatic colonisation with no impact on AKR1B10Low cells. Finally, mechanistic analysis supports a model in which AKR1B10 serves to limit the toxic side effects of oxidative stress thereby sustaining fatty acid oxidation in metabolically challenging metastatic environments.


Assuntos
Aldeído Redutase/metabolismo , Neoplasias da Mama/patologia , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia/patologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Feminino , Glicólise , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Recidiva Local de Neoplasia/metabolismo , Oxirredução , Estresse Oxidativo , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Ecotoxicol Environ Saf ; 181: 164-171, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31185430

RESUMO

Short-chain chlorinated paraffins (SCCPs) are frequently detected in environmental matrices and human tissues. It was hypothesized that SCCPs might interact with the peroxisome proliferator-activated receptor α (PPARα). In the present study, an in vitro, dual-luciferase reporter gene assay and in silico molecular docking analysis were employed together to study the interactions between SCCPs congeners and PPARα. Expressions of genes downstream in pathways activated by PPARα in liver of rats exposed to 1, 10, or 100 mg/kg bm/d of C10-13-CPs (56.5% Cl) for 28 days were examined to confirm activation potencies of SCCPs toward PPARα signaling. Effects of exposure to C10-13-CPs (56.5% Cl) on fatty acid metabolism in rat liver were also explored via a pseudo-targeted metabolomics strategy. Our results showed that C10-13-CPs (56.5% Cl) caused a dose-dependent greater expression of luciferase activity of rat PPARα. Molecular docking modeling revealed that SCCPs had a strong capacity to bind with PPARα only through hydrophobic interactions and the binding affinity was dependent on the degree of chlorination in SCCPs congeners. In livers of male rats, exposure to 100 mg/kg bm/d of C10-13-CPs (56.5% Cl) resulted in up-regulated expressions of 11 genes that are downstream in the PPARα-activated pathway and regulate catabolism of fatty acid. Consistently, accelerated fatty acid oxidation was observed mainly characterized by lesser concentrations of ∑fatty acids in livers of rats. Overall, these results demonstrated, for the first time, that SCCPs could activate rat PPARα signaling and thereby disrupt metabolism of fatty acid in livers of male rats.


Assuntos
Ácidos Graxos/metabolismo , Fígado/efeitos dos fármacos , PPAR alfa/metabolismo , Parafina/toxicidade , Animais , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Halogenação , Fígado/metabolismo , Luciferases/genética , Masculino , Simulação de Acoplamento Molecular , PPAR alfa/química , Parafina/química , Ratos , Transdução de Sinais , Regulação para Cima
16.
Life Sci ; 231: 116509, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31152812

RESUMO

Non-coding RNAs (NcRNAs), a family of functional RNA molecules that cannot translate into proteins but control specific gene expression programs, have been shown to be implicated in various biological processes, including fatty acid metabolism. Fast-growing tumor cells rewire their fatty acid metabolic circuitry in order to meet the needs of energy storage, membrane proliferation, and the generation of signaling molecules, which is achieved by regulating a variety of key enzymes along with related signaling pathways in fatty acid metabolism. This review presents an update of our knowledge about the regulatory network of ncRNAs-specifically, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs)-in this metabolic shift and discusses the possibility of ncRNA-based therapeutics being applied to the restoration of cancer-related fatty acid metabolism.


Assuntos
Ácidos Graxos/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Reprogramação Celular/fisiologia , Ácidos Graxos/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA/genética , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
17.
Eur J Radiol ; 116: 205-211, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31153566

RESUMO

PURPOSE: To assess the association of fatty acid levels in mammary adipose tissue of postmenopausal women with the presence of breast cancer using the Gradient-echo Spectroscopic Imaging (GSI). MATERIALS AND METHODS: Unilateral GSI was performed at 3 T in 61 postmenopausal women undergoing breast MRI exams. The study included 19 women with breast cancer, 23 women with benign/high risk lesions, and 19 women with a history of cancer. Voxel-wise spectral analysis of fatty acids was conducted to measure relative portions of monounsaturated (MUFA), polyunsaturated (PUFA), and saturated fatty acids (SFA) in each voxel. The voxels within mammary adipose tissue were automatically selected and their median fatty acid fractions were used for quantitative analysis. Statistical analyses were performed using χ2 test, one-way analysis of variance (ANOVA) with Tukey-Kramer multiple comparison tests, and linear regression. RESULTS: Postmenopausal women with malignancies had significantly higher SFA (0.336 ± 0.038) in mammary adipose tissue compared to those with benign disease (0.283 ± 0.046, p = 0.0008) and to those with a history of breast cancer (0.287 ± 0.050, p = 0.0038). Postmenopausal women with malignant lesions had significantly lower MUFA (0.352 ± 0.041) compared to those with benign disease (0.401 ± 0.043, p = 0.0032) and with history of breast cancer (0.388 ± 0.055, p = 0.0484). The history of cancer group had a significant correlation (r = 0.60, p = 0.006) between SFA and BMI, and the cancer group had a significant correlation (r = 0.57, p = 0.010) between PUFA and BMI. CONCLUSIONS: Fatty acid composition of mammary adipose tissue, particularly higher SFA and lower MUFA, may be associated with breast cancer. The GSI method utilizes an automated voxel-based analysis to measure fatty acid composition, and may be used to assess the role of mammary adipose tissue in cancer development and progress.


Assuntos
Tecido Adiposo/química , Neoplasias da Mama/metabolismo , Mama/química , Ácidos Graxos/metabolismo , Feminino , Humanos , Imagem por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Pessoa de Meia-Idade , Pós-Menopausa/fisiologia , Estudos Retrospectivos
18.
Food Chem ; 295: 26-35, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174758

RESUMO

Bell peppers are susceptible to chilling injury (CI). To uncover the metabolism of membrane lipid fatty acids (FAs) accompanying CI, a gas chromatography-mass spectrometry (GC-MS)-based approach was used to quantitatively profile major membrane lipid FAs in bell peppers. RT-qPCR was performed to investigate the expression of the key genes that regulate the synthesis of unsaturated FAs. Additionally, we used microstructural, organoleptic, and physicochemical investigations to monitor the primary physiological metabolism of bell peppers. The study revealed that CI symptoms mostly resulted from the destabilization of the cytomembrane, which was induced by decreasing FA desaturation. Moreover, three times lower level of the double bond index in chilled fruits, than the control, further proved that membrane FA unsaturation can be considered a key factor during CI. In conclusion, this study revealed that the metabolism of membrane lipid FAs is involved in responses to CI.


Assuntos
Capsicum/metabolismo , Ácidos Graxos/metabolismo , Conservação de Alimentos/métodos , Lipídeos de Membrana/metabolismo , Capsicum/química , Capsicum/genética , Ácidos Graxos/análise , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Frutas/química , Frutas/genética , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Lipoxigenase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Temperatura Ambiente
19.
Food Chem ; 295: 172-179, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174747

RESUMO

The effects of 10 and 20 days of fermentation followed by freeze-drying on the vitamin C and fatty acids contents, chemical conversions and overall chemical composition of Jerusalem artichoke were studied. Fermentation between the 10th and 20th days increased content of all saturated fatty acids and two of the four unsaturated fatty acids. The only fatty acid content that decreased was that of C18:1 cis 9 acid, which was suggested to be converted to other fatty acids. The experimental data, which were supported by energetical feasibility, suggested the reaction pathways of the mutual conversions of fatty acids and confirmed the decreased vitamin C content during fermentation. Discriminant modelling of the spectral data successfully distinguished the fresh, 10 days and 20 days fermented samples. The correlation of the spectral and reference data allowed to construct reference models for predicting the content of vitamin C and C18:1 cis 9 fatty acid.


Assuntos
Ácido Ascórbico/metabolismo , Ácidos Graxos/metabolismo , Helianthus/química , Silagem , Ácido Ascórbico/análise , Ácidos Graxos/análise , Fermentação , Análise de Alimentos/estatística & dados numéricos , Liofilização , Helianthus/metabolismo , Modelos Estatísticos , Silagem/análise , Espectrofotometria Infravermelho/estatística & dados numéricos
20.
Klin Lab Diagn ; 64(6): 324-332, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31200402

RESUMO

The deficiency of energy substrates in the biological function of trophology and biological reaction of exotrophy is formed by two factors. Excess of meat in the diet leads to high content of palmitic fatty acid (FA) in hepatocytes and formation of palmitic triglycerides (TG). Post heparin lipoprotein lipase slowly hydrolyzes palmitic TG in blood plasma lipoproteins and releases small amounts of FA. If dietary carbohydrate content is low, the biological function of exotrophy does not provide the substrate from which hepatocytes can rapidly produce oleic nonesterified FA de novo. Energy substrate deficiency activates the biological function of adaptation and the biological reaction of compensation. Under the effect of epinephrin NEFA deficiency is compensated via the biological reaction of endotrophy and lipolysis in omental visceral fat cells. In insulin resistance (IR) syndrome, the biological function of feeding is realized nonphysiologically while the biological reaction of adaptation is realized physiologically. An increase in NEFA blood content physiologically blocks glucose uptake in cells. Biological role of insulin consists in conversion of distant ocean-living carnivorous (fish-eating) ancestors of Homo sapiens with palmitic type of FA metabolism into herbivorous dry land-living species with oleic type metabolism of FA. The IR syndrome can be normalized. To this end a) the patient's will to activate the cognitive biological function (intellect) and b) comprehension of the fact that phylogenetically dry land-living Homo sapiens has developed as a herbivorous but not carnivorous species. Concerning death rate, cardiovascular pathologies are dominating in populations of many countries, while feeding function disorders prevail in frequency. These disorders form the pathophysiological basis for all metabolic pandemias: 1) atherosclerosis and atheromatosis, 2) essential arterial hypertension, 3) metabolic syndrome, 4) obesity, 5) insulin resistance syndrome, 6) nonalcoholic fatty liver disease, and 7) endogenous hyperuricemia. Persistent potential deficiency of energy for realization of all biological reactions and functions is the major metabolic disorders in diabetes mellitus. Insulin resistance is a pathology associated primarily with FA and secondarily with glucose.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Resistência à Insulina , Ácidos Graxos não Esterificados , Humanos , Insulina , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA