Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66.614
Filtrar
1.
PLoS Comput Biol ; 16(9): e1008103, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956350

RESUMO

Highly coordinated water molecules are frequently an integral part of protein-protein and protein-ligand interfaces. We introduce an updated energy model that efficiently captures the energetic effects of these ordered water molecules on the surfaces of proteins. A two-stage method is developed in which polar groups arranged in geometries suitable for water placement are first identified, then a modified Monte Carlo simulation allows highly coordinated waters to be placed on the surface of a protein while simultaneously sampling amino acid side chain orientations. This "semi-explicit" water model is implemented in Rosetta and is suitable for both structure prediction and protein design. We show that our new approach and energy model yield significant improvements in native structure recovery of protein-protein and protein-ligand docking discrimination tests.


Assuntos
Sítios de Ligação/fisiologia , Simulação de Acoplamento Molecular , Ligação Proteica/fisiologia , Proteínas , Água , Algoritmos , Aminoácidos/química , Aminoácidos/metabolismo , Ligação de Hidrogênio , Ligantes , Método de Monte Carlo , Proteínas/química , Proteínas/metabolismo , Água/química , Água/metabolismo
2.
Nat Commun ; 11(1): 4800, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968072

RESUMO

Out-of-equilibrium molecular systems hold great promise as dynamic, reconfigurable matter that executes complex tasks autonomously. However, translating molecular scale dynamics into spatiotemporally controlled phenomena emerging at mesoscopic scale remains a challenge-especially if one aims at a design where the system itself maintains gradients that are required to establish spatial differentiation. Here, we demonstrate how surface tension gradients, facilitated by a linear amphiphile molecule, generate Marangoni flows that coordinate the positioning of amphiphile source and drain droplets floating at air-water interfaces. Importantly, at the same time, this amphiphile leads, via buckling instabilities in lamellar systems of said amphiphile, to the assembly of millimeter long filaments that grow from the source droplets and get absorbed at the drain droplets. Thereby, the Marangoni flows and filament organization together sustain the autonomous positioning of interconnected droplet-filament networks at the mesoscale. Our concepts provide potential for the development of non-equilibrium matter with spatiotemporal programmability.


Assuntos
Citoesqueleto/química , Bainha de Mielina/química , Fenômenos Físicos , Cinética , Microscopia , Simulação de Dinâmica Molecular , Tensão Superficial , Água/química
3.
Yakugaku Zasshi ; 140(9): 1165-1173, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32879248

RESUMO

Relationship between water molecules and parent and hydroxypropylated cyclodextrins (denoted as CD and HP-CD) was assessed in this paper. The trends in ad-desorption isotherms of CD for water molecule were quite different compared to those of HP-CD. Ad-desorption isotherms of CD showed the hysteresis under our experimental conditions. The molar ratio of hydration (R-value) using α-CD, ß-CD, γ-CD, HP-α-CD, HP-ß-CD, and HP-γ-CD was 7.1, 11.4, 13.5, 12.5, 14.0, and 16.7, respectively. These results indicated that the adsorption capability of water molecule of HP-CD was greater than that of CD. Additionally, the changes in characteristics of CD and HP-CD at different water activity conditions were demonstrated. X-ray diffraction patterns were significantly different between CD and HP-CD. The crystal structure of HP-α-CD, HP-ß-CD, and HP-γ-CD showed amorphous at different water activity conditions. Finally, sorption entropy and heat of sorption of water molecules were calculated in this experiment. In summary, these results provide useful information for understanding the relationship between water molecules and parent and hydroxypropylated cyclodextrins.


Assuntos
Glicosídeo Hidrolases/química , Água/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Adsorção , Cristalização , Relação Estrutura-Atividade
4.
Nat Commun ; 11(1): 3818, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732937

RESUMO

The formation of peptide bonds by energetic processing of amino acids is an important step towards the formation of biologically relevant molecules. As amino acids are present in space, scenarios have been developed to identify the roots of life on Earth, either by processes occurring in outer space or on Earth itself. We study the formation of peptide bonds in single collisions of low-energy He2+ ions (α-particles) with loosely bound clusters of ß-alanine molecules at impact energies typical for solar wind. Experimental fragmentation mass spectra produced by collisions are compared with results of molecular dynamics simulations and an exhaustive exploration of potential energy surfaces. We show that peptide bonds are efficiently formed by water molecule emission, leading to the formation of up to tetrapeptide. The present results show that a plausible route to polypeptides formation in space is the collision of energetic ions with small clusters of amino acids.


Assuntos
Aminoácidos/química , Simulação de Dinâmica Molecular , Peptídeos/química , Termodinâmica , beta-Alanina/química , Dipeptídeos/síntese química , Dipeptídeos/química , Íons/química , Oligopeptídeos/síntese química , Oligopeptídeos/química , Peptídeos/síntese química , Espectrometria de Massas por Ionização por Electrospray/métodos , Água/química
5.
Biochem Biophys Res Commun ; 530(1): 1-3, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828268

RESUMO

Alcohol-based disinfectant shortage is a serious concern in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Acidic electrolyzed water (EW) with a high concentration of free available chlorine (FAC) shows strong antimicrobial activity against bacteria, fungi, and viruses. Here, we assessed the SARS-CoV-2-inactivating efficacy of acidic EW for use as an alternative disinfectant. The quick virucidal effect of acidic EW depended on the concentrations of contained-FAC. The effect completely disappeared in acidic EW in which FAC was lost owing to long-time storage after generation. In addition, the virucidal activity increased proportionately with the volume of acidic EW mixed with the virus solution when the FAC concentration in EW was same. These findings suggest that the virucidal activity of acidic EW against SARS-CoV-2 depends on the amount of FAC contacting the virus.


Assuntos
Betacoronavirus/efeitos dos fármacos , Cloro/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Inativação de Vírus/efeitos dos fármacos , Ácidos/química , Ácidos/farmacologia , Antivirais/química , Antivirais/farmacologia , Betacoronavirus/fisiologia , Cloro/química , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Desinfetantes/química , Eletrólise/métodos , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , Água/química , Água/farmacologia
6.
PLoS One ; 15(7): e0236492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735613

RESUMO

Scientific and reasonable treatment of dredged silt can not only protect the ecological environment but also play an essential role in the utilization of silt resources. Due to high water content, low permeability and high organic matter content of the silt, a large amount of bacteria and harmful gases are often produced during the process of silt sedimentation. Thermal drying has been taken as a technically attractive method for harmless treatment of contaminated dredged silt. In this study, ultrasound technology is introduced to shorten the time needed for silt drying. A preliminary laboratory study is carried out to assess the effectiveness of ultrasound on thermal drying. A series of thermal drying tests, with and without ultrasound, were conducted on kaolin soil specimens that were prepared by settling and self-weight consolidation. The test results show that the length of drying time can be shortened by increasing temperature and ultrasound power. The drying time plays a dominant role in the determination of the total energy consumption. This is because reduction of drying time leads to significant decrease in energy consumption for thermal drying, and the energy consumption for additional ultrasound is relatively marginal. For thermal drying at temperatures 60 and 100°C, when combined with 100 W ultrasound, the length of drying time was shortened by 44.19% and 45.16%, and the energy consumption was saved by 30.07% and 38.16%, respectively; when combined with 60 W ultrasound, the length of drying time was shortened by 4.65% and 6.45%, but the energy consumption was increased by 9.79% and 0.48%, respectively. The combination of thermal drying and 100 W ultrasound is found to be optimal in terms of drying rate and energy consumption for silt drying.


Assuntos
Fenômenos Ecológicos e Ambientais , Metabolismo Energético/efeitos da radiação , Água/química , Dessecação , Temperatura Alta , Caulim/efeitos da radiação , Solo/química , Ultrassonografia
7.
PLoS One ; 15(8): e0237789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32810188

RESUMO

Aquaporins are water-permeable membrane-channel proteins found in biological cell membranes that selectively exclude ions and large molecules and have high water permeability, which makes them promising candidates for water desalination systems. To effectively apply the properties of aquaporins in the desalination process, many studies have been conducted on aquaporin-lipid membrane systems using phospholipids, which are the main component of cell membranes. Many parametric studies have evaluated the permeability of such systems with various aquaporin types and lipid compositions. In this study, we performed molecular dynamics simulations for four cases with different protein-lipid molar ratios (1:50, 1:75, 1:100, and 1:150) between aquaporin Z and the phospholipids, and we propose a possibility of the existence of optimal protein-lipid molar ratio to maximize water permeability. Elucidating these simulation results from a structural viewpoint suggests that there is a relationship between the permeability and changes in the hydrophobic thickness of the lipid membrane adjacent to the aquaporin as a structural parameter. The results of this study can help optimize the design of an aquaporin-lipid membrane by considering its molar ratio at an early stage of development.


Assuntos
Aquaporinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfolipídeos/metabolismo , Purificação da Água/métodos , Água/metabolismo , Aquaporinas/química , Proteínas de Escherichia coli/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Modelos Químicos , Simulação de Dinâmica Molecular , Pressão Osmótica , Fosfolipídeos/química , Salinidade , Água/química
8.
PLoS One ; 15(8): e0237300, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-842269

RESUMO

The outbreak of COVID-19 across the world has posed unprecedented and global challenges on multiple fronts. Most of the vaccine and drug development has focused on the spike proteins and viral RNA-polymerases and main protease for viral replication. Using the bioinformatics and structural modelling approach, we modelled the structure of the envelope (E)-protein of novel SARS-CoV-2. The E-protein of this virus shares sequence similarity with that of SARS- CoV-1, and is highly conserved in the N-terminus regions. Incidentally, compared to spike proteins, E proteins demonstrate lower disparity and mutability among the isolated sequences. Using homology modelling, we found that the most favorable structure could function as a gated ion channel conducting H+ ions. Combining pocket estimation and docking with water, we determined that GLU 8 and ASN 15 in the N-terminal region were in close proximity to form H-bonds which was further validated by insertion of the E protein in an ERGIC-mimic membrane. Additionally, two distinct "core" structures were visible, the hydrophobic core and the central core, which may regulate the opening/closing of the channel. We propose this as a mechanism of viral ion channeling activity which plays a critical role in viral infection and pathogenesis. In addition, it provides a structural basis and additional avenues for vaccine development and generating therapeutic interventions against the virus.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Betacoronavirus/isolamento & purificação , Simulação por Computador , Infecções por Coronavirus/virologia , Humanos , Hidrogênio , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Pneumonia Viral/virologia , Mutação Puntual , Conformação Proteica , Homologia Estrutural de Proteína , Vacinas Atenuadas , Vacinas de Produtos Inativados , Proteínas do Envelope Viral/imunologia , Vacinas Virais , Água/química
9.
Int J Nanomedicine ; 15: 5389-5403, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801695

RESUMO

Hypothesis: Developing oral formulations to enable effective release of poorly water-soluble drugs like progesterone is a major challenge in pharmaceutics. Coaxial electrospray can generate drug-loaded nanoparticles of strategic compositions and configurations to enhance physiological dissolution and bioavailability of poorly water-soluble drug progesterone. Experiments: Six formulations comprising nanoparticles encapsulating progesterone in different poly(lactide-co-glycolide) (PLGA) matrix configurations and compositions were fabricated and characterized in terms of morphology, molecular crystallinity, drug encapsulation efficiency and release behavior. Findings: A protocol of fabrication conditions to achieve 100% drug encapsulation efficiency in nanoparticles was developed. Scanning electron microscopy shows smooth and spherical morphology of 472.1±54.8 to 588.0±92.1 nm in diameter. Multiphoton Airyscan super-resolution confocal microscopy revealed core-shell nanoparticle configuration. Fourier transform infrared spectroscopy confirmed presence of PLGA and progesterone in all formulations. Diffractometry indicated amorphous state of the encapsulated drug. UV-vis spectroscopy showed drug release increased with hydrophilic copolymer glycolide ratio while core-shell formulations with progesterone co-dissolved in PLGA core exhibited enhanced release over five hours at 79.9±1.4% and 70.7±3.5% for LA:GA 50:50 and 75:25 in comparison with pure progesterone without polymer matrix in the core at 67.0±1.7% and 57.5±2.8%, respectively. Computational modeling showed good agreement with the experimental drug release behavior in vitro.


Assuntos
Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Progesterona/administração & dosagem , Progesterona/farmacocinética , Disponibilidade Biológica , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Microscopia Eletrônica de Varredura , Nanopartículas/administração & dosagem , Tamanho da Partícula , Solubilidade , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
10.
Biochem Biophys Res Commun ; 530(1): 1-3, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: covidwho-641528

RESUMO

Alcohol-based disinfectant shortage is a serious concern in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Acidic electrolyzed water (EW) with a high concentration of free available chlorine (FAC) shows strong antimicrobial activity against bacteria, fungi, and viruses. Here, we assessed the SARS-CoV-2-inactivating efficacy of acidic EW for use as an alternative disinfectant. The quick virucidal effect of acidic EW depended on the concentrations of contained-FAC. The effect completely disappeared in acidic EW in which FAC was lost owing to long-time storage after generation. In addition, the virucidal activity increased proportionately with the volume of acidic EW mixed with the virus solution when the FAC concentration in EW was same. These findings suggest that the virucidal activity of acidic EW against SARS-CoV-2 depends on the amount of FAC contacting the virus.


Assuntos
Betacoronavirus/efeitos dos fármacos , Cloro/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Inativação de Vírus/efeitos dos fármacos , Ácidos/química , Ácidos/farmacologia , Antivirais/química , Antivirais/farmacologia , Betacoronavirus/fisiologia , Cloro/química , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Desinfetantes/química , Eletrólise/métodos , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , Água/química , Água/farmacologia
11.
J Chromatogr A ; 1627: 461398, 2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823103

RESUMO

A new mode of dispersive solid phase extraction based on in situ formation of adsorbent in aqueous phase has been introduced as an efficient method for the extraction of some pesticide residues in fruit juice samples. In this method, polycarbonate which is an inexpensive polymer is used as an adsorbent for the first time. The method is followed by dispersive liquid-liquid microextraction for more enrichment of the analytes. In the present study, a proper amount of the polymer is dissolved in N,N-dimethyl formamide and the obtained solution is injected into an aqueous phase containing the analytes. After injection, polycarbonate particles are formed and adsorbed the analytes. Then, the adsorbent is separated from the aqueous solution and eluted by acetone. The obtained acetone phase is mixed with 1,1,1-trichloroethane and the mixture is dispersed into deionized water and a cloudy solution is formed. Ultimately, after centrifugation, the obtained sedimented phase containing the extracted analytes is injected into gas chromatography-flame ionization detection. In the proposed method, the adsorbent synthesis step, which often is a time-consuming, expensive, and laborious step in most adsorbent-based sample preparation methods, has been removed. Moreover, there is no need for sonication or vortex agitation. Under the optimized experimental conditions, the relative standard deviation was equal or less than 7% for intra- (n = 6) and inter-day (n = 5) precisions at a concentration of 50 µg L-1 of each pesticide. The limits of detection and quantification were in the ranges of 0.34-1.2 and 1.1-4.0 µg L-1, respectively. In addition, extraction recoveries and enrichment factors varied in the ranges of 44-89% and 220-443, respectively.


Assuntos
Sucos de Frutas e Vegetais/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Resíduos de Praguicidas/análise , Centrifugação , Limite de Detecção , Microextração em Fase Líquida/métodos , Resíduos de Praguicidas/isolamento & purificação , Extração em Fase Sólida , Solventes/química , Triazinas/análise , Triazinas/isolamento & purificação , Água/química
12.
PLoS One ; 15(8): e0238040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32853273

RESUMO

In this study we attempted to assess whether seasonal upwelling or a steady thermocline persisted at the western margin of the Tethys Ocean during the late Turonian-early Coniacian interval. For this scope, we employed novel and published stable oxygen isotope (δ18O) data of various organisms (bivalves, bivalves, brachiopods, fish and belemnites). New seasonally resolved temperature estimates were based on the δ18O record of sequentially sampled inoceramid (Inoceramus sp.) and rudist (Hippurites resectus) shells from the Scaglia Rossa and Gosau deposits of northern Italy and western Austria, respectively. Diagenetic screening was performed using reflected light, cathodoluminescence (CL), scanning electron microscopy (SEM) and stable isotope analysis. Originally preserved δ13C and δ18O values were used to characterize the lifestyle of the bivalves and detect vital effects that could have biased oxygen isotope-based temperature reconstructions. Inoceramid δ18O values provide-for the first time-information on temperatures of Tethyan benthic waters, which were, on average, 14.4 ± 0.6 °C and fluctuated seasonally within a range of less than 2 °C. Such a thermal regime is in line with the temperatures postulated for late Turonian boreal water masses and support the existence of a cold water supply from the North Atlantic to the Tethyan bottom. Bottom cooling, however, did not affect the shallow water environment. In fact, the rudist-based temperature estimates for shallow water environment revealed a mean annual range of 11 °C, between 24 and 35 °C (assuming a seasonally constant δ18Ow = 1.0 ‰), which are among the warmest temperatures recorded over the entire Late Cretaceous. Our findings, thus, suggest a strong thermal and food web decoupling between the two environments. The absence of a seasonal vertical homogenization of different water bodies suggests the existence of a steady thermocline and, therefore, contrasts with the presence of an active coastal upwelling in the region as hypothesized by previous authors.


Assuntos
Bivalves , Oceanos e Mares , Estações do Ano , Temperatura , Animais , Bivalves/química , Isótopos de Oxigênio/química , Paleontologia , Água/química
13.
Ecotoxicol Environ Saf ; 204: 110977, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32739673

RESUMO

Indirect oxidation induced by reactive free radicals, such as hydroxyl radical (HO), sulfate radical (SO4-) and carbonate radical (CO3-), plays an important or even crucial role in the degradation of micropollutants. Thus, the coadjutant degradation of phenacetin (PNT) by HO, SO4- and CO3-, as well as the synergistic effect of O2 on HO and HO2 were studied through mechanism, kinetics and toxicity evaluation. The results showed that the degradation of PNT was mainly caused by radical adduct formation (RAF) reaction (69% for Г, the same as below) and H atom transfer (HAT) reaction (31%) of HO. For the two inorganic anionic radicals, SO4- initiated PNT degradation by sequential radical addition-elimination (SRAE; 55%), HAT (28%) and single electron transfer (SET; 17%) reactions, while only by HAT reaction for CO3-. The total initial reaction rate constants of PNT by three radicals were in the order: SO4- > HO > CO3-. The kinetics of PNT degradation simulated by Kintecus program showed that UV/persulfate could degrade target compound more effectively than UV/H2O2 in ultrapure water. In the subsequent reaction of PNT with O2, HO and HO2, the formation of mono/di/tri-hydroxyl substitutions and unsaturated aldehydes/ketones/alcohols were confirmed. The results of toxicity assessment showed that the acute and chronic toxicity of most products to fish increased and to daphnia decreased, and acute toxicity to green algae decreased while chronic toxicity increased.


Assuntos
Carbonatos/toxicidade , Peróxido de Hidrogênio/toxicidade , Fenacetina/toxicidade , Sulfatos/toxicidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Animais , Carbonatos/química , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Peixes , Peróxido de Hidrogênio/química , Íons/química , Íons/toxicidade , Cinética , Modelos Químicos , Oxigênio/química , Fenacetina/química , Sulfatos/química , Água/química
14.
PLoS One ; 15(8): e0237389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797116

RESUMO

In the present work, a series of magnetically separable Fe3O4/g-C3N4/MoO3 nanocomposite catalysts were prepared. The as-prepared catalysts were characterized by XRD, EDX, TEM, FT-IR, UV-Vis DRS, TGA, PL, BET and VSM. The photocatalytic activity of photocatalytic materials was evaluated by catalytic degradation of tetracycline solution under visible light irradiation. Furthermore, the influences of weight percent of MoO3 and scavengers of the reactive species on the degradation activity were investigated. The results showed that the Fe3O4/g-C3N4/MoO3 (30%) nanocomposites exhibited highest removal ability for TC, 94% TC was removed during the treatment. Photocatalytic activity of Fe3O4/g-C3N4/MoO3 (30%) was about 6.9, 5, and 19.9-fold higher than those of the MoO3, g-C3N4, and Fe3O4/g-C3N4 samples, respectively. The excellent photocatalytic performance was mainly attributed to the Z-scheme structure formed between MoO3 and g-C3N4, which enhanced the efficient separation of the electron-hole and sufficient utilization charge carriers for generating active radials. The highly improved activity was also partially beneficial from the increase in adsorption of the photocatalysts in visible range due to the combinaion of Fe3O4. Superoxide ions (·O2-) was the primary reactive species for the photocatalytic degradation of TC, as degradation rate were decreased to 6% in solution containing benzoquinone (BQ). Data indicate that the novel Fe3O4/g-C3N4/MoO3 was favorable for the degradation of high concentrations of tetracycline in water.


Assuntos
Óxido Ferroso-Férrico/química , Grafite/química , Molibdênio/química , Nanocompostos/química , Compostos de Nitrogênio/química , Óxidos/química , Processos Fotoquímicos , Tetraciclina/química , Água/química , Catálise , Luz , Imãs/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
15.
PLoS One ; 15(8): e0237909, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32853249

RESUMO

The influence of water content on mode I fracture toughness (KIc) of mudstones has been studied using semi-circular bend (SCB) specimens subject to three-point bendings. And the mudstone SCB specimens are divided into three types, including Type-A, Type-B and Type-C, corresponding to the three configurations of the bedding planes, including divider direction, arrester direction, and transverse direction, respectively. The test results show that the values of KIc for the three types of specimens are different due to the bedding structure, the Type-A specimens have the largest value of KIc for the same soak period, while the Type-C specimens possess the smallest value. As the soak period increases, the KIc of the three kinds of mudstone specimens decreases, and the fracture mechanisms of the specimens change gradually from the brittle failure form to the ductile failure form. Moreover, the standard deviation was used to quantify the anisotropy degree of the KIc of the mudstone samples. As the water content increases, the standard deviation increases from 0.057 to 0.139, which indicates a significant increase in anisotropy of the KIc of the mudstone specimens. In addition, the acoustic emission (AE) system was used to detect the AE events associated with the fracture initiation and propagation in the mudstone specimens for the different water content, with the raising water content, the cumulative AE events decrease, and the standard deviation of AE events increases, repesenting that the anisotropy of the AE events of the three types of specimens becomes more prominent. Further, the relationship between the tensile strength (σt) and the KIc of the three types of mudstone specimens for different water contents has been proved to be the linear relation.


Assuntos
Sedimentos Geológicos/química , Água/química , Acústica , Anisotropia , Difração de Raios X
16.
J Chromatogr A ; 1627: 461380, 2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823093

RESUMO

Microwave-ultrasonic assisted aqueous enzymatic extraction (MUAAEE) was applied to extract tiger nut oil (TNO). The conditions of MUAAEE were optimized by Plackett-Burman design followed Box-Behnken design. An oil recovery of 85.23% was achieved under optimum conditions of a 2% concentration of mixed enzyme including cellulase, pectinase and hemicellulase (1/1/1, w/w/w), particle size <600 µm, microwave power 300 W, ultrasonic power 460 W, radiation temperature 40 °C, time 30 min, enzymolysis temperature 45 °C, pH 4.9, liquid-to-solid ratio 10 mL/g and time 180 min. Oil by MUAAEE revealed the similar fatty acid compositions, triglyceride compositions, thermal behaviour and flavour compared with oil by Soxhlet extraction (SE), while the oil quality of MUAAEE is superior to that of SE. Scanning electron microscopy revealed that structural disruption of tiger nut caused by MUAAEE facilitated the oil extraction. Results suggest that MUAAEE could be an efficient and environment-friendly method for extraction of TNO.


Assuntos
Cyperus/química , Enzimas/metabolismo , Micro-Ondas , Nozes/química , Óleos Vegetais/química , Ultrassom , Varredura Diferencial de Calorimetria , Celulase/metabolismo , Análise Discriminante , Ácidos Graxos/química , Glicosídeo Hidrolases/metabolismo , Poligalacturonase/metabolismo , Análise de Componente Principal , Reprodutibilidade dos Testes , Temperatura , Triglicerídeos/análise , Água/química
17.
Nature ; 585(7823): 129-134, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848250

RESUMO

Transmembrane channels and pores have key roles in fundamental biological processes1 and in biotechnological applications such as DNA nanopore sequencing2-4, resulting in considerable interest in the design of pore-containing proteins. Synthetic amphiphilic peptides have been found to form ion channels5,6, and there have been recent advances in de novo membrane protein design7,8 and in redesigning naturally occurring channel-containing proteins9,10. However, the de novo design of stable, well-defined transmembrane protein pores that are capable of conducting ions selectively or are large enough to enable the passage of small-molecule fluorophores remains an outstanding challenge11,12. Here we report the computational design of protein pores formed by two concentric rings of α-helices that are stable and monodisperse in both their water-soluble and their transmembrane forms. Crystal structures of the water-soluble forms of a 12-helical pore and a 16-helical pore closely match the computational design models. Patch-clamp electrophysiology experiments show that, when expressed in insect cells, the transmembrane form of the 12-helix pore enables the passage of ions across the membrane with high selectivity for potassium over sodium; ion passage is blocked by specific chemical modification at the pore entrance. When incorporated into liposomes using in vitro protein synthesis, the transmembrane form of the 16-helix pore-but not the 12-helix pore-enables the passage of biotinylated Alexa Fluor 488. A cryo-electron microscopy structure of the 16-helix transmembrane pore closely matches the design model. The ability to produce structurally and functionally well-defined transmembrane pores opens the door to the creation of designer channels and pores for a wide variety of applications.


Assuntos
Simulação por Computador , Genes Sintéticos/genética , Canais Iônicos/química , Canais Iônicos/genética , Modelos Moleculares , Biologia Sintética , Linhagem Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Condutividade Elétrica , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrazinas , Canais Iônicos/metabolismo , Transporte de Íons , Lipossomos/metabolismo , Técnicas de Patch-Clamp , Porinas/química , Porinas/genética , Porinas/metabolismo , Engenharia de Proteínas , Estrutura Secundária de Proteína , Solubilidade , Água/química
18.
PLoS One ; 15(8): e0237261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804957

RESUMO

Soil fertilization with dehydrated sewage sludge (DSS) accelerates the recovery process of degraded areas by improving nutrient concentration, and favors the development of trophic webs with pioneer plants such as Acacia auriculiformis A. Cunn. ex Beth (Fabales: Fabaceae), phytophagous Hemiptera, predators, and protocooperanting ants. This study aimed to evaluate the development and production of A. auriculiformis litter with or without dehydrated sewage sludge application and the ecological indices of sucking insects (Hemiptera), their predators and protocooperating ants, as bioindicators, in a degraded area for 24 months. Complete randomization was applied for two treatments (with or without application of dehydrated sewage sludge) in 24 replications (one repetition = one plant). We evaluated the number of leaves/branch and branches/plant, percentage of soil cover (litter), ecological indices of phytophagous Hemiptera, their predators, and protocooperating ants. The plants of A. auriculiformis, that were applied with dehydrated sewage sludge, had superior development when compared to plants where DSS were not applied. The highest abundance and richness of phytophagous Hemiptera species and Sternorrhyncha predators occurred on A. auriculiformis plants that were applied with dehydrated sewage sludge. The increase in richness of species of protocooperanting ants that established mutualistic relationships positively influenced the phytophagous Hemiptera. The use of A. auriculiformis, with application of dehydrated sewage sludge, can increase recovery of degraded areas due to its higher soil cover (e.g., litter) and results in higher ecological indices of phytophagous Hemiptera and their predators.


Assuntos
Acacia/fisiologia , Fertilizantes , Hemípteros/fisiologia , Esgotos/química , Solo/química , Animais , Formigas/fisiologia , Biodiversidade , Fertilizantes/análise , Cadeia Alimentar , Água/química
19.
PLoS One ; 15(8): e0236063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756567

RESUMO

The primary objective of this research was to extract the essential information needed for setting atomization break up models, specifically, the Linear Instability Sheet Atomization (LISA) breakup model, and alternative hollow cone models. A secondary objective was to gain visualization and insight into the atomization break up mechanism caused by the effects of viscosity and surface tension on primary break-up, sheet disintegration, ligament and droplet formation. High speed imaging was used to capture the near-nozzle characteristics for water and drug formulations. This demonstrated more rapid atomization for lower viscosities. Image processing was used to analyze the near-nozzle spray characteristics during the primary break-up of the liquid sheet into ligament formation. Edges of the liquid sheet, spray break-up length, break-up radius, cone angle and dispersion angle were obtained. Spray characteristics pertinent for primary breakup modelling were determined from high speed imaging of multiple spray actuations. The results have established input data for computational modelling involving parametrical analysis of nasal drug delivery.


Assuntos
Sprays Nasais , Nebulizadores e Vaporizadores , Administração Intranasal , Aerossóis/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Desenho de Equipamento , Humanos , Tamanho da Partícula , Tensão Superficial , Viscosidade , Água/química
20.
PLoS One ; 15(8): e0236406, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745098

RESUMO

To address concerns over plastics in the global environment, this project produced three wood plastics composites (WPCs) which could divert plastics from the waste stream into new materials. The three materials made had a ratio of 85%:15%, 90%:10%, and 95%:5% low density polyethylene (LDPE) to wood powder and were produced using the dissolution method. Physical and mechanical properties of each WPC were evaluated according to Japanese Industrial Standard (JIS) A 5908:2003. Their degradation in nature was evaluated through a graveyard test and assay test conducted in Coptotermes curvignathus termites. Results showed that density, moisture content, thickness swelling and water absorption of the WPCs fulfilled the JIS standard. The mechanical properties of these composites also met the JIS standard, particularly their modulus of elasticity (MOE). Modulus of rupture (MOR) and internal bonding (IB) showed in lower values, depending on the proportion of wood filler they contained. Discoloration of the WPCs was observed after burial in the soil with spectra alteration of attenuated transmission reflectance (ATR) in the band of 500-1000 cm-1 which could be assigned to detach the interphase between wood and plastics. As termite bait, the WPCs decreased in weight, even though the mass loss was comparatively small. Micro Confocal Raman Imaging Spectrometer revealed that termite guts from insects feeding on WPCs contained small amounts of LDPE. This indicated termite can consume plastics in the form of WPCs. Thus WPCs made predominantly of plastics can be degraded in nature. While producing WPCs can assist in decreasing plastics litter in the environment, the eventual fate of the LDPE in termites is still unknown.


Assuntos
Plásticos Biodegradáveis/química , Elasticidade , Polietileno/química , Madeira/química , Plásticos Biodegradáveis/síntese química , Humanos , Polietileno/síntese química , Reciclagem , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA