Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.015
Filtrar
2.
Huan Jing Ke Xue ; 42(7): 3366-3374, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34212662

RESUMO

Wastewater treatment plants (WWTPs) are considered important reservoirs of antibiotic resistance genes (ARGs) and function as the main sources of ARGs in the environment. Membrane bioreactors (MBRs) have been recognized as effective tools for removing ARGs in WWTPs.There are a large number of pathogens and resistance genes in colloids, particulate matter, suspended matter, and microbial metabolites in intercepted wastewater by MBR. However, the distribution characteristics of resistance genes in membrane cleaning sludge remains unclear. In this study, resistance genes of membrane cleaning sludge were analyzed using a metagenomic technique. The results showed that there were 39 phyla in the membrane cleaning sludge. Proteobacteria, Nitrospirae, and Actinobacteria were the dominant phyla. The dominant genera were Nitrospira, Pseudomonas, and Bradyrhizobium. The pathogens accounted for 10.54% of all bacteria in the sample, among which Pseudomonas had the highest abundance, accounting for 3.94%. A total of 17 types of antibiotic resistance genes and 16 types of metal resistance genes (MRGs) (15 types of single metal resistance genes and 1 types of multi-heavy metal resistance gene) were identified. Multidrug resistance genes had the highest abundance, accounting for 49.08%. Multi-heavy metal resistance genes were the most abundant, accounting for 34.58%. The copper resistance genes were the most abundant of the single metal resistance genes, accounting for 19.99%. The most important functional pathway of microbial community in the membrane cleaning sludge was metabolic related, and many genes identified were related to human diseases. The numbers of genes related to bacterial resistance and bacterial infectious diseases were the largest, accounting for 34.50% and 16.62%, respectively. These results indicate that there were abundant ARGs, MRGs, and pathogens in the membrane cleaning sludge, which has potential environmental health risks. It is necessary to strengthen the control of ARGs, MRGs, and pathogens in membrane cleaning sludge to provide guidance for selecting appropriate technologies for effectively removing ARGs, MRGs, and pathogens.


Assuntos
Genes Bacterianos , Esgotos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Humanos , Metagenômica , Águas Residuárias
3.
Huan Jing Ke Xue ; 42(7): 3375-3384, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34212663

RESUMO

A petrochemical wastewater treatment plant (PWWTP) was selected to investigate the distribution and removal of antibiotic-resistant bacteria (ARB) and three forms of antibiotic resistance genes (ARGs), namely intracellular ARGs (iARGs), adsorbed-extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs). Tetracycline, sulfanilamide, and ampicillin ARB were detected with the total absolute concentration of 8.45×102-2.38×105 CFU·mL-1; the absolute concentrations of three types of ARB decreased by 0.04 lg-0.21 lg through anaerobic treatment. The effect of aeration and precipitation treatment on ARB varies with its type, and the absolute concentration of ARB in effluent was 0.12 lg-0.63 lg higher than that in influent. The absolute abundance of aeARGs and iARGs in activated sludge was 1.96×107-3.02×1010 copies·g-1 and 5.22×107-4.15×1010 copies·g-1, respectively; the absolute abundance of feARGs in wastewater was 5.90×108-1.01×1012 copies·L-1. Anaerobic treatment can remove 0.13 lg-0.65 lg aeARGs and 0.04 lg-0.28 lg iARGs, while the removal efficiency of aeARGs and iARGs by aeration and precipitation process was affected by ARGs types and forms. The absolute abundance of feARGs in effluent is 0.06 lg-0.81 lg higher than that in influent. Redundancy analysis showed that the concentration of ARB was significantly positively correlated with chemical oxygen demand (COD), Cl-, and total nitrogen concentration (P<0.05). The abundance of aeARGs was positively correlated with COD and total nitrogen concentration (P<0.05), and both the abundance of iARGs and feARGs are positively correlated with heavy metals concentration (P<0.05). This study confirmed the enrichment risk of ARB and different forms of ARGs in PWWTPs, which provided references for the research and prevention of antibiotic resistance pollution in industrial wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Bactérias , Resistência Microbiana a Medicamentos , Genes Bacterianos , Águas Residuárias/análise
4.
Huan Jing Ke Xue ; 42(7): 3385-3391, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34212664

RESUMO

A SMBBR was established to treat medium ammonium under room temperature. Results showed that TN load can reach 0.16 kg·(m3·d)-1, and the average TN removal efficiency was (51.58±6.80)% in the SMBBR with an influent ammonia concentration of 100 mg·L-1 and DO of 0.4-0.7 mg·L-1. AOB, ANAMMOX, and NOB activity reached (2253.21±502.10) mg·(m2·d)-1, (4847.46±332.89) mg·(m2·d)-1, and (1455.17±473.83) mg·(m2·d)-1, and ANAMMOX and AOB bacteria were found to develop a good collaborative relationship. Quantitative PCR results showed that the relative abundance of ANAMMOX, AOB and NOB were 11.57%, 1.01% and 0.94%, respectively. The stable operation of single stage partial nitritation-ANAMMOX process provide an alternative technology for medium ammonia wastewater.


Assuntos
Compostos de Amônio , Águas Residuárias , Reatores Biológicos , Nitrogênio , Oxirredução
5.
Huan Jing Ke Xue ; 42(7): 3392-3399, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34212665

RESUMO

During wastewater treatment using a traditional biological denitrification process, the excessive concentration of nitrate nitrogen (NO3--N) in the effluent is the primary cause of excessive total nitrogen (TN) generation. By using an external carbon source to increase the carbon to nitrogen ratio (C/N), the denitrification process can be strengthened, which effectively addresses this problem. Using an integrated denitrification reactor developed based on the two-stage denitrification process principle with the addition of polybutylene succinate (PBS) in the second stage, the denitrification process was analyzed using a scanning electron microscope before and after characterization of PBS materials. Moreover, amplicon sequencing was used for in-depth exploration of changes in the microbial community structure in the second denitrification pool before and after the addition of PBS. The data of a continuous 120-day experiment showed that the COD removal rate dropped from 95.7% to 90.8%, the TN removal rate increased from 51.8% to 80%, the relative abundance of Proteobacteria phylum rose from 36.1% to 46.1%, and the relative abundance of Thermomonas rose from 6.47% to 13.48%. The results show that after the addition of PBS, PBS can not only provide carbon source for denitrification, but its surface can also serve as a carrier for microbial growth and attachment, play a good role in filming, and increase the abundance of denitrifying bacteria and strengthen denitrification. During the nitrification process, denitrification performance was significantly enhanced, effectively improving the TN removal rate of the system.


Assuntos
Carbono , Desnitrificação , Reatores Biológicos , Nitrificação , Nitrogênio , Águas Residuárias
6.
Environ Monit Assess ; 193(8): 465, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34218335

RESUMO

This study was conducted on the Danube River locality Visnjica, exposed to the discharge of the largest wastewater collector in Serbia's capital, Belgrade. Concentrations of metals and metalloids (Al, Fe, Cr, As, Sr, Mn, Cd, Zn, Mo, Cu, Li, Ni, B, Co, Pb, and Ba) and histopathological alterations were investigated in different tissues of common bream during one representative month of each season in 2014. This is the first study in which these two biomarkers were assessed parallelly in common bream. The highest concentrations of examined elements were noticed in gills and the lowest in muscle. Statistically significant differences in element concentrations between different seasons were noticed only in gills for Al, Cu, and Fe. Concentrations of As and Pb in fish muscle were below the maximum acceptable concentrations (MAC). The histopathological index (HI) of the liver showed higher values in comparison to the HI of the gills. Histopathological index of the gills had a significantly higher score in November in comparison to August. The liver HI had the highest score in April, and the lowest in August, while the total histopathological index had the highest score in November, and the lowest in August, both without significant differences between the months. This study endorses gills and liver as reliable organs for studying accumulation and histopathology as biomarkers of environmental changes. A faster reaction of the gills was confirmed since seasonal variations of both biomarkers were observed in this organ. Common bream proved as a good indicator of the state of organisms in polluted environments.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Biomarcadores , Monitoramento Ambiental , Brânquias/química , Metais Pesados/análise , Rios , Sérvia , Águas Residuárias , Poluentes Químicos da Água/análise
7.
Talanta ; 233: 122471, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215105

RESUMO

Development of novel functionalized adsorbents for efficient magnetic solid phase extraction (MSPE) is essential for promoting their versatile applications in sample pretreatment. Herein, we report the fabrication of a new polyethyleneimine-600 decorated magnetic microporous organic network nanosphere (Fe3O4@MON-PEI600) for effective MSPE of trace non-steroidal anti-inflammatory drugs (NSAIDs) from different water samples. The core-shelled Fe3O4@MON-PEI600 integrates the synergistic effects of Fe3O4, MON and PEI600, providing facile and effective extraction to NSAIDs via multiple hydrogen bonding, π-π and hydrophobic interactions. The inner MON shell employs π-π and hydrophobic interaction sites and the outer PEI-600 coat acts as the hydrogen bonding doner/receptor, which affords good extraction performance for NSAIDs. Under optimal conditions, the Fe3O4@MON-PEI600-MSPE-HPLC-UV method gives wide linear range (0.14-400 µg L-1), low limits of detection (0.042-0.149 µg L-1), good precisions (intra-day and inter-day RSDs < 4.5%, n = 6), and large enrichment factors (97.0-98.2). Extraction mechanisms and selectivity of Fe3O4@MON-PEI600 are evaluated in detail. Moreover, Fe3O4@MON-PEI600 is successfully applied to enrich the trace NSAIDs in different water samples with the concentrations of 0.7 and 0.8 µg L-1 for 1-naphthylacetic acid, 0.5 and 0.1 µg L-1 for naproxen as well as 0.7 µg L-1 for ibuprofen, respectively. The developed method not only affords a novel and efficient magnetic adsorbent for NSAIDs in aqueous media at trace level, but also provides a new strategy for the rational design and synthesis of multiple functionalized MON composites in sample pretreatment.


Assuntos
Nanosferas , Preparações Farmacêuticas , Adsorção , Anti-Inflamatórios não Esteroides , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Fenômenos Magnéticos , Polietilenoimina , Extração em Fase Sólida , Águas Residuárias
8.
J Hazard Mater ; 417: 125960, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34229405

RESUMO

The pollution of aquatic systems with noxious organic and inorganic contaminants is a challenging problem faced by most countries. Water bodies are contaminated with diverse inorganic and organic pollutants originating from various diffuse and point sources, including industrial sectors, agricultural practices, and domestic wastes. Such hazardous water pollutants tend to accumulate in the environmental media including living organisms, thereby posing significant environmental health risks. Therefore, the remediation of wastewater pollutants is a priority. Adsorption is considered as the most efficient technique for the removal of pollutants in aqueous systems, and the deployment of suitable adsorbents plays a vital role for the sustainable application of the technique. The present review gives an overview of polyurethane foam (PUF) as an adsorbent, the synthesis approaches of polyurethane, and characterization aspects. Further emphasis is on the preparation of the various forms of polyurethane adsorbents, and their potential application in the removal of various challenging water pollutants. The removal mechanisms, including adsorption kinetics, isotherms, thermodynamics, and electrostatic and hydrophobic interactions between polyurethane adsorbents and pollutants are discussed. In addition, regeneration, recycling and disposal of spent polyurethane adsorbents are reported. Finally, key knowledge gaps on synthesis, characterization, industrial applications, life cycle analysis, and potential health risks of polyurethane adsorbents are discussed.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Adsorção , Descontaminação , Poliuretanos , Águas Residuárias
9.
Chemosphere ; 281: 130899, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289605

RESUMO

The impacts of the influent type in wastewater treatment plants (WWTPs) on the distribution patterns of the microbial community and functional characteristics were investigated. The obtained results indicated that the influent types exhibited evident influences on the microbial distribution patterns. The diversity and richness of functional microbes in HI-WWTP (with a ratio of >30% industrial wastewater in influents) were evidently decreased compared with those in HM- (with 70-90% municipal wastewater in influents) and M-WWTPs (with >90% municipal wastewater in influents). The core functional bacteria included denitrifiers, anaerobic fermentation bacteria (AFB), organic degrading bacteria (ODB), phosphorus accumulating organisms (PAO) and nitrite oxidizing bacteria (NOB), but they exhibited distinct abundances in WWTPs receiving different categories of wastewater. The denitrifiers in HI-WWTPs was 15.6-32.5% higher than that in other WWTPs, while PAOs had higher abundances in M - and HI-WWTPs (28.9% and 39.3%, respectively) compared with HM-WWTPs. Clear co-occurrence relationships were found among the main functional microbes with similar metabolic characteristics. Moreover, information on functional genes related to carbon, nitrogen and phosphorus metabolism, which is closely associated with pollutant removal efficiency, was obtained. M-WWTPs had higher abundances of genetic expressions for organic matters degradation (i.e. amino acid (10.42%) and carbohydrate (9.86%) metabolisms). Nar, Nir and Nor showed lowest abundances in HM-WWTPs, causing the low nitrogen removal (63.04-65.79%). However, influent type had little effect on genetic expression related with phosphorus removal. This work provided new insights into the interrelationship among bacterial co-occurrence, microbial activity and pollutant removal in WWTPs with different influent types.


Assuntos
Microbiota , Purificação da Água , Nitrogênio , Fósforo , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
10.
Chemosphere ; 281: 130980, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289626

RESUMO

In this work, the primary focus is given on a mixture of 27 micropollutants (pharmaceuticals, pesticides, herbicides, fungicides and others) and its removal from aqueous solution by phytoremediation. Phytoremediation belongs to technologies, which are contributing on removal of micropollutants from wastewater in constructed wetlands. Constructed wetlands can be used as an additional step for elimination of micropollutants from municipal medium-sized wastewater treatment plants. To our knowledge, such a broad variety of micropollutants was never targeted for removal by phytoremediation before. In this work, we carry out experiments with 3 emergent macrophytes: Phragmites australis, Iris pseudacorus and Lythrum salicaria in hydroponic conditions. The selected plants are exposed to mixture of micropollutants in concentrations 1-14 mg/l for a time period of 30 days. The highest affinity for phytoremediation is detected at groups of fluorosurfactants (removal rate up to 30%), beta-blockers (removal rate up to 50%) and antibiotics (removal rate up to 90%). The leading capability for micropollutant uptake is detected at Lythrum salicaria, where 25 out of 27 compounds are removed with more than 20% efficiency. The results demonstrate well usefulness of this technology e.g. in an additional treatment step, because the mentioned groups of micropollutants are removed with comparable or even higher effectivity, than it is in case of conventional wastewater treatment plants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Biodegradação Ambiental , Hidroponia , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise , Áreas Alagadas
11.
Chemosphere ; 281: 131001, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289638

RESUMO

Studies on the symbiosis of microalgae-bacteria have been accelerating as a mean for wastewater remediation. However, there were few reports about the microalgae-bacteria consortia for chemical wastewater treatment. The aim of the present study is to develop an autotrophic and heterotrophic consortium for chemical wastewater treatment and probe whether and how bacteria could benefit from the microalgae during the treatment process, using PTA wastewater as an approach. A process-dependent strategy was applied. First of all, the results showed that the sludge beads with the sludge concentration of 30 g/L were the optimal one with the COD removal rate at 84.8% but the ceiling effect occurred (COD removal rate < 90%) even several common reinforcement methods were applied. Additionally, by adding the microalgae Chlorella vulgaris, a microalgae-activated sludge consortium was formed inside the immobilized beads, which provided better performance to shatter the ceiling effect. The COD remove rate was higher than 90%, regardless of the activated sludge was pre-culture or not. COD removal capacity could also be improved (COD removal rate > 92%) when LEDs light belt was offered as an advanced light condition. Biochemical assay and DNA analysis indicated that the microalgae could form an internal circulation of substances within the activated sludge and drove the microbial community to success and the corresponding gene functions, like metabolism and.


Assuntos
Chlorella vulgaris , Microalgas , Purificação da Água , Biomassa , Nitrogênio , Águas Residuárias
12.
Chemosphere ; 281: 130735, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289640

RESUMO

In many parts of the world, clean water has become increasingly scarce. Irrigation of agricultural land with treated wastewater is commonly used in response to water shortages but there is concern about the environmental fate and transport of contaminants present in the irrigation wastewater. This study aimed to examine the presence of wastewater sourced contaminants in soil and field grown corn (Zea mays) crops spray irrigated with treated wastewater. Soil, corn grain, leaves, and roots were sampled and tested from a long-term wastewater irrigation site as well as a non-irrigated control site in close geographic proximity. Samples were analyzed using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC-TOFMS) and both targeted and non-targeted analyses were conducted to determine chemical differences between the wastewater irrigated and control samples. Target compounds detected and quantified in the samples include herbicides, phthalates, and polycyclic aromatic hydrocarbons. Non-targeted analysis showed chemical differences between each the wastewater irrigated and control samples. Furthermore, new chloro-dimethyl-benzotriazole compounds, which are suspected to be transformation products created by the chlorine disinfection process of the wastewater treatment plant, were tentatively identified in the wastewater effluent. Twenty of these new benzotriazoles were detected and semi-quantified in the wastewater irrigated soil samples at a maximum concentration of 472 ng/g. Eight of the most abundant benzotriazoles were also detected in the corn roots at concentrations up to 56 ng/g.


Assuntos
Poluentes do Solo , Águas Residuárias , Irrigação Agrícola , Produtos Agrícolas , Solo , Poluentes do Solo/análise , Águas Residuárias/análise , Zea mays
13.
Chemosphere ; 281: 130796, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289641

RESUMO

This paper describes the fabrication, modification, and evaluation of the performance of thin-film composite (TFC) forward osmosis (FO) membranes for lab-scale aquaculture wastewater recovery using various fumed silica (SiO2) nanoparticles. The active polyamide (PA) layers of these membranes were novelly modified using different types of pretreated SiO2 nanoparticles [virgin SiO2, dried SiO2, and 3-aminopropyltriethoxysilane (APTES)-modified SiO2] and concentrations (0.05, 0,1, 0,2, and 0.4 wt%) to improve the membrane hydrophilicity with minimum particle agglomeration. Results show that the APTES-SiO2 modified membrane had the highest water flux and selectivity, followed by the dried-SiO2 modified membrane. The APTES coupling agent notably reduced the SiO2 aggregation on the membrane surface and improved membrane hydrophilicity. Consequently, high permeate flux and an acceptable reverse solute flux were observed. The optimal SiO2 concentration for PA modification was 0.1 wt% for all the nanoparticle types. The virgin and APTES-SiO2 modified membranes were used for aquaculture wastewater recovery. The water recovery rate reached 47% in 84 h when using the APTES-SiO2 modified membrane, while it reached only 26% in 108 h when using the virgin membrane. With a suitable design of the filtration apparatus and choice of draw solution (DS), the prepared novel TFC-FO membrane containing APTES-modified SiO2 can be used for recycling aquaculture wastewater into the DS, which can then be reused for other purposes.


Assuntos
Nanopartículas , Purificação da Água , Aquicultura , Membranas Artificiais , Osmose , Dióxido de Silício , Águas Residuárias
14.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199768

RESUMO

Single mutations can confer resistance to antibiotics. Identifying such mutations can help to develop and improve drugs. Here, we systematically screen for candidate quinolone resistance-conferring mutations. We sequenced highly diverse wastewater E. coli and performed a genome-wide association study (GWAS) to determine associations between over 200,000 mutations and quinolone resistance phenotypes. We uncovered 13 statistically significant mutations including 1 located at the active site of the biofilm dispersal gene bdcA and 6 silent mutations in the aminoacyl-tRNA synthetase valS. The study also recovered the known mutations in the topoisomerases gyrase (gyrA) and topoisomerase IV (parC). In summary, we demonstrate that GWAS effectively and comprehensively identifies resistance mutations without a priori knowledge of targets and mode of action. The results suggest that mutations in the bdcA and valS genes, which are involved in biofilm dispersal and translation, may lead to novel resistance mechanisms.


Assuntos
Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Mutação/genética , Quinolonas/farmacologia , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Loci Gênicos , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Modelos Moleculares , Fenótipo , Filogenia
15.
Environ Pollut ; 284: 117492, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261213

RESUMO

Spirulina biomass accounts for 30% of the total algae biomass production globally. In conventional process of Spirulina biomass production, cultivation using chemical-based culture medium contributes 35% of the total production cost. Moreover, the environmental impact of cultivation stage is the highest among all the production stages which resulted from the extensive usage of chemicals and nutrients. Thus, various types of culture medium such as chemical-based, modified, and alternative culture medium with highlights on wastewater medium is reviewed on the recent advances of culture media for Spirulina cultivation. Further study is needed in modifying or exploring alternative culture media utilising waste, wastewater, or by-products from industrial processes to ensure the sustainability of environment and nutrients source for cultivation in the long term. Moreover, the current development of utilising wastewater medium only support the growth of Spirulina however it cannot eliminate the negative impacts of wastewater. In fact, the recent developments in coupling with wastewater treatment technology can eradicate the negative impacts of wastewater while supporting the growth of Spirulina. The application of Spirulina cultivation in wastewater able to resolve the global environmental pollution issues, produce value added product and even generate green electricity. This would benefit the society, business, and environment in achieving a sustainable circular bioeconomy.


Assuntos
Microalgas , Spirulina , Biomassa , Meios de Cultura , Águas Residuárias
16.
Environ Pollut ; 284: 117495, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261215

RESUMO

One of the strategies to realize a nitrogen cycle society, we attempted to recover ammonium ions from industrial wastewater, especially sewage water with adsorbent materials. We have developed an adsorbent with high ammonium selectivity based on copper hexacyanoferrate and granulated it as pellets. Using a compact column system filled with this granule adsorbent, ammonium ions were recovered from sewage containing 1000-1500 mg-NH4+/L ammonium ions. Despite the coexistence of many metal ions, the adsorbent selectively and stably adsorbed ammonium ions. Furthermore, it was shown that the saturated adsorbent can be regenerated by flowing a potassium ion solution through a column adsorbent to desorb ammonium ions. In other words, the column can be used repeatedly, and there was almost little deterioration in adsorption even after 250 cycles. In addition, it was shown that by increasing the number of stages of this column, it is possible to sufficiently reduce the ammonium in the adsorbent solution and recover the concentrated ammonium solution.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Esgotos , Águas Residuárias , Água , Poluentes Químicos da Água/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-34200308

RESUMO

Water pollution caused by excessive nutrient and biological invasion is increasingly widespread in China, which can lead to problems with drinking water as well as serious damage to the ecosystem if not be properly treated. Aquatic plant restoration (phytoremediation) has become a promising and increasingly popular solution. In this study, eight native species of low-temperature-tolerant aquatic macrophytes were chosen to construct three combinations of aquatic macrophytes to study their purification efficiency on eutrophic water in large open tanks during autumn in Guangzhou City. The total nitrogen (TN) removal rates of group A (Vallisneria natans + Ludwigia adscendens + Monochoria vaginalis + Saururus chinensis), group B (V. natans + Ipomoea aquatica + Acorus calamus + Typha orientalis), and group C (V. natans + L. adscendens + Schoenoplectus juncoides + T. orientalis) were 79.10%, 46.39%, and 67.46%, respectively. The total phosphorus (TP) removal rates were 89.39%, 88.37%, and 91.96% in groups A, B, and C, respectively, while the chemical oxygen demand (COD) removal rates were 93.91%, 96.48%, and 92.78%, respectively. In the control group (CK), the removal rates of TN, TP, and COD were 70.42%, 86.59%, and 87.94%, respectively. The overall removal rates of TN, TP, and COD in the plant groups were only slightly higher than that in CK group, which did not show a significant advantage. This may be related to the leaf decay of some aquatic plants during the experiment, whereby the decay of V. natans was the most obvious. The results suggest that a proper amount of plant residue will not lead to a significant deterioration of water quality.


Assuntos
Águas Residuárias , Purificação da Água , China , Ecossistema , Nitrogênio/análise , Fósforo/análise
18.
Molecules ; 26(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207072

RESUMO

The aim of the research was to prepare low-cost adsorbents, including raw date pits and chemically treated date pits, and to apply these materials to investigate the adsorption behavior of Cr(III) and Cd(II) ions from wastewater. The prepared materials were characterized using SEM, FT-IR and BET surface analysis techniques for investigating the surface morphology, particle size, pore size and surface functionalities of the materials. A series of adsorption processes was conducted in a batch system and optimized by investigating various parameters such as solution pH, contact time, initial metal concentrations and adsorbent dosage. The optimum pH for achieving maximum adsorption capacity was found to be approximately 7.8. The determination of metal ions was conducted using atomic adsorption spectrometry. The experimental results were fitted using isotherm Langmuir and Freundlich equations, and maximum monolayer adsorption capacities for Cr(III) and Cd(II) at 323 K were 1428.5 and 1302.0 mg/g (treated majdool date pits adsorbent) and 1228.5 and 1182.0 mg/g (treated sagai date pits adsorbent), respectively. It was found that the adsorption capacity of H2O2-treated date pits was higher than that of untreated DP. Recovery studies showed maximal metal elution with 0.1 M HCl for all the adsorbents. An 83.3-88.2% and 81.8-86.8% drop in Cr(III) and Cd(II) adsorption, respectively, were found after the five regeneration cycles. The results showed that the Langmuir model gave slightly better results than the Freundlich model for the untreated and treated date pits. Hence, the results demonstrated that the prepared materials could be a low-cost and eco-friendly choice for the remediation of Cr(III) and Cd(II) contaminants from an aqueous solution.


Assuntos
Cádmio/química , Cromo/química , Metais Pesados/química , Phoeniceae/química , Sementes/química , Água/química , Adsorção , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
19.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206669

RESUMO

The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.


Assuntos
Corantes/química , Proteínas Fúngicas/química , Lacase/química , Águas Residuárias/química , Purificação da Água , Biodegradação Ambiental , Cor
20.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198752

RESUMO

In recent years, many studies have reported the frequent detection of antihypertensive agents such as sartans (olmesartan, valsartan, irbesartan and candesartan) in the influents and effluents of wastewater treatment plants (WWTPs) and in the superficial waters of rivers and lakes in both Europe and North America. In this paper, the degradation pathway for candesartan (CAN) was investigated by simulating the chlorination process that is normally used to reduce microbial contamination in a WWTP. Twelve isolated degradation byproducts (DPs), four of which were isolated for the first time, were separated on a C-18 column by employing a gradient HPLC method, and their structures were identified by combining nuclear magnetic resonance and mass spectrometry and comparing the results with commercial standards. On the basis of these results, a mechanism of formation starting from the parent drug is proposed. The ecotoxicity of CAN and its DPs was studied by conducting a battery of ecotoxicity tests; bioassays were performed using Aliivibrio fischeri (bacterium), Daphnia magna (planktonic crustacean) and Raphidocelis subcapitata (alga). The ecotoxicity results shed new light on the increased toxicity of DPs compared with the parent compound.


Assuntos
Benzimidazóis/análise , Compostos de Bifenilo/análise , Ácido Hipocloroso/química , Tetrazóis/análise , Poluentes Químicos da Água/análise , Aliivibrio fischeri/efeitos dos fármacos , Animais , Benzimidazóis/toxicidade , Compostos de Bifenilo/toxicidade , Clorofíceas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Europa (Continente) , Lagos/química , América do Norte , Rios/química , Tetrazóis/toxicidade , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...