Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.060
Filtrar
1.
Chemosphere ; 254: 126899, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957294

RESUMO

In this study, the reduction of iron-carbon internal electrolysis was reinforced by persulfate for p-nitrophenol removal. The effects of persulfate dosage, initial pH and iron-carbon mass ratio were comprehensively studied in batch experiments. In the system of iron-carbon internal electrolysis coupled with persulfate, the iron-carbon internal electrolysis and persulfate had a significant mutual influence, exhibiting a wide range of pH in the treatment process. Moreover, the coupled system also showed the remarkable removal and degradation efficiency of p-nitrophenol according to the contrast experiments. The satisfactory results should be attributed to the potential reduction of iron-carbon internal electrolysis, which was stimulated by persulfate to transform the nitro group to the amine group, accompanying the subsequent oxidation. Furthermore, persulfate possessed the ability that the dynamically destructive effect on external and internal of Fe0 and the scavenging action on activated carbon, effectively strengthening the potential energy for release and transfer of reductive substances. Both HO• and SO4•- as the main free radicals were formed to mineralize the intermediates in the coupled system. These findings indicate that the system of iron-carbon internal electrolysis coupled with persulfate can be a promising strategy for the treatment of the toxic and refractory wastewater.


Assuntos
Carvão Vegetal/química , Eletrólise/métodos , Ferro/química , Nitrofenóis/análise , Sulfatos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Modelos Teóricos , Nitrofenóis/química , Oxirredução , Águas Residuárias/química , Poluentes Químicos da Água/química
2.
Aquat Toxicol ; 227: 105615, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32932041

RESUMO

Chemical contaminants can be discharged by vessel hull cleaning processes, such as scraping, jet spraying, and painting, all of which produce readily transportable contaminants into the marine environment, where they are referred to as 'hotspots' of contamination in coastal areas. However, many countries have not yet established effective evaluation methods for disposal of waste mixtures or management guidelines for areas of hull cleaning. To define the toxic effects of wastewater from vessel hull cleaning in dry docks on resident non-target organisms, we investigated the chemical concentrations and developmental toxicity on embryonic flounder, which is an organism sensitive to chemical contamination. In this study, the dominant inorganic metal discharged was zinc when cleaning Ship A (300 tons) and copper for Ship B (5,000 tons). The wastewater from high-pressure water blasting (WHPB) of Ship A (300 tons) and Ship B (5,000 tons) produced a largely overlapping suite of developmental malformations including pericardial edema, spinal curvature, and tail fin defects. Forty-eight hours after exposure, the frequency percentage of malformation began to increase in embryos exposed to a 500-fold dilution of WHPB from Ships A and B. We performed transcriptome sequencing to characterize the toxicological developmental effects of WHPB exposure at the molecular level. The results of the analysis revealed significantly altered expression of genes associated with muscle cell differentiation, actin-mediated cell contraction, and nervous system development (cutoff P < 0.01) in embryonic flounder exposed to high-pressure cleaning effluent from Ship A. Genes associated with chromatin remodeling, cell cycling, and insulin receptor signaling pathways were significantly altered in embryonic flounder exposed to WHPB of Ship B (cutoff P < 0.01). These findings provide a greater understanding of the developmental toxicity and potential effects of WHPB effluent on coastal embryonic fish. Furthermore, our results could inform WHPB effluent management practices to reduce impacts on non-target coastal organisms.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/toxicidade , Animais , Incrustação Biológica , Peixes , Linguado , Metais , Navios , Águas Residuárias/química
3.
Ecotoxicol Environ Saf ; 203: 111026, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888594

RESUMO

The detection of phenolic compounds, i.e. resorcinol (RC) catechol (CC) and hydroquinone (HQ) are important due to their extremely hazardous impact and poor environmental degradation. In this work, a novel and sensitive composite of electrochemically reduced graphene oxide-poly(Procion Red MX-5B)/gold nanoparticles modified glassy carbon electrode (GCE/ERGO-poly(PR)/AuNPs) was assembled for voltammetric detection of benzenediol isomers (RC, CC, and HQ). The nanocomposite displayed high peak currents towards the oxidation of RC, HQ, and CC compared to non-modified GCE. The peak-to-peak separations were 0.44 and 0.10 V for RC-CC and CC-HQ, respectively. The limit of detections were 53, 53, and 79 nM for HQ, CC, and RC with sensitivities of 4.61, 4.38, and 0.56 µA/µM (S/N = 3), respectively. The nanocomposite displayed adequate reproducibility, besides good stability and acceptable recoveries for wastewater and cosmetic samples analyses.


Assuntos
Compostos Azo/química , Derivados de Benzeno/análise , Técnicas Eletroquímicas/métodos , Ouro/química , Grafite/química , Nanocompostos/química , Poluentes Químicos da Água/análise , Cosméticos/química , Eletrodos , Nanopartículas Metálicas/química , Oxirredução , Reprodutibilidade dos Testes , Águas Residuárias/química
4.
PLoS One ; 15(9): e0237839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936800

RESUMO

Synthetic microfibers are found virtually everywhere in the environment, but emission pathways and quantities are poorly understood. By connecting regionalized global datasets on apparel production, use, and washing with emission and retention rates during washing, wastewater treatment, and sludge management, we estimate that 5.6 Mt of synthetic microfibers were emitted from apparel washing between 1950 and 2016. Half of this amount was emitted during the last decade, with a compound annual growth rate of 12.9%. Waterbodies received 2.9 Mt, while combined emissions to terrestrial environments (1.9 Mt) and landfill (0.6 Mt) were almost as large and are growing. Annual emissions to terrestrial environments (141.9 kt yr-1) and landfill (34.6 kt yr-1) combined are now exceeding those to waterbodies (167.2 kt yr-1). Improving access to wastewater treatment is expected to further shift synthetic microfiber emissions from waterbodies to terrestrial environments. Preventing emissions at the source would therefore be a more effective mitigation measure.


Assuntos
Plásticos/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Têxteis , Águas Residuárias/química
5.
Ecotoxicol Environ Saf ; 205: 111317, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950807

RESUMO

Electrolytic manganese residue (EMR) is a solid waste remained in filters after using sulfuric acid to leaching manganese carbonate ore. EMR contains high concentration of soluble manganese (Mn2+) and ammonia nitrogen (NH4+-N), which seriously pollutes the environment. In this study, a low cost of phosphate based binder for Mn2+ and NH4+-N stabilization in EMR by low grade-MgO (LG-MgO) and superphosphate was studied. The effects of different types of stabilizing agent on the concentrations of NH4+-N and Mn2+, the pH of the EMR leaching solution, stabilizing mechanisms of NH4+-N and Mn2+, leaching test and economic analysis were investigated. The results shown that the pH of the EMR leaching solution was 8.07, and the concentration of Mn2+ was 1.58 mg/L, both of which met the integrated wastewater discharge standard (GB8978-1996), as well as the concentration of NH4+-N decreased from 523.46 mg/L to 32 mg/L, when 4.5 wt.% LG-MgO and 8 wt.% superphosphate dosage were simultaneously used for the stabilization of EMR for 50 d Mn2+ and NH4+-N were mainly stabilized by Mn3(PO4)2·2H2O, MnOOH, Mn3O4, Mn(H2PO4)2·2H2O and NH4MgPO4·6H2O. Economic evaluation revealed that the treatment cost of EMR was $ 11.89/t. This study provides a low-cost materials for NH4+-N and Mn2+ stabilization in EMR.


Assuntos
Amônia/química , Manganês/química , Amônia/análise , Carbonatos , Eletrólise , Eletrólitos/química , Poluentes Ambientais/análise , Manganês/análise , Nitrogênio/análise , Fosfatos/química , Resíduos Sólidos/análise , Águas Residuárias/química
6.
Ecotoxicol Environ Saf ; 205: 111347, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961489

RESUMO

The soil cadmium (Cd) contamination is a ubiquitous environmental problem that has resulted from intense irrigation with wastewater. This pot trial was conducted with aim to produce safe food with Cd tolerant wheat cultivar in wastewater irrigated soils. For this purpose, two wheat cultivars NARC-2011 (Cd tolerant) and Shafaq-2006 (Cd sensitive) were screened out and selected, after conducting a pilot trial of twelve local wheat cultivars against Cd stress. Both cultivars were grown in naturally contaminated soils with Cd concentrations (4.18, 3.23, 2.29 and 1.25 mg kg-1). After harvesting, NARC-2011 showed significant photosynthetic attributes, grain biochemical parameters and yield. Additionally, Cd concentrations in edible grains of NARC-2011 cultivars were found within standard limits (200 mg kg-1), in all contaminated soils. Furthermore, a marked decrease in Cd bioavailability was noted with cultivar NARC-2011, where contribution of mobile Cd fractions (exchangeable and reducible) percentage was decreased, while immobile Cd fractions percentage increased (oxidizable and residual). Fourier transform infrared (FTIR) spectroscopy reflects the maturity and stability of humic and fulvic like acid fractions and revealed that humification of these compounds after prolonged sludge enriched wastewater irrigation lowered the Cd availability. The wheat cultivar NARC-2011 (Cd tolerant) could be opted to grow on soils irrigated with wastewater for a long time, as Cd bioavailability decreased with ageing due to stabilized humic substances and varietal tolerance.


Assuntos
Irrigação Agrícola , Cádmio/análise , Poluentes do Solo/análise , Triticum/química , Benzopiranos , Disponibilidade Biológica , Grão Comestível/química , Substâncias Húmicas/análise , Esgotos/análise , Solo/química , Eliminação de Resíduos Líquidos , Águas Residuárias/química
7.
Ecotoxicol Environ Saf ; 205: 111330, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977288

RESUMO

Constructed wetland has attracted more and more attention for wastewater purification due to its low construction cost and convenient operation recently. However, the unique waterflooding structure of constructed wetland makes the low dissolved oxygen level, which limits the effect of nitrogen removal in the system. Therefore, it is necessary to develop the oxygen-increasing technology to overcome the drawback in constructed wetlands. In this review, the mechanism of nitrogen removal in constructed wetland is discussed and oxygen is main influence factor is concluded. In addition, oxygen-increasing technologies in recent advances which improve the nitrogen removal efficiency greatly, are emphatically introduced. Finally, some future perspectives about oxygen-increasing techniques are also put forward in order to provide reference for further research and engineering application.


Assuntos
Nitrogênio/análise , Oxigênio/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Desnitrificação , Águas Residuárias/química
8.
Chemosphere ; 258: 127388, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947665

RESUMO

Microplastics enter natural water bodies by a variety of pathways, one of them being wastewater streams. The role of industrial wastewater in overall microplastic emissions has so far only been estimated, because access is usually restricted. This is the first report providing quantitative data on microplastics in industrial wastewaters. The wastewater discharge of three different industrial sites was sampled in the size ranges of small microplastics (10-1000 µm) and large microplastics (1000-5000 µm). Differential scanning calorimetry (DSC) was used to detect and quantify semi-crystalline thermoplastics. Polyethylene (PE) and polypropylene (PP) were the most abundant polymers, but polyamide (PA) and polyethylene terephthalate (PET) were also found. As all three industrial sites had wastewater treatment plants (WWTP), the total concentrations were in the µg L-1 range, comparable to organic micropollutants in municipal WWTP effluents. At one industrial site, the removal capacity of the WWTP was evaluated by sampling and analyzing the influent as well as the effluent. The total microplastics concentration in the influent was in the g L-1 range, yielding a removal capacity of the industrial WWTP of >99.99 %.


Assuntos
Monitoramento Ambiental , Microplásticos/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Varredura Diferencial de Calorimetria , Resíduos Industriais/análise , Indústrias , Plásticos , Polietileno , Polímeros , Polipropilenos
9.
Chemosphere ; 254: 126827, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957271

RESUMO

Herein, ultrasonication (US)-assisted novel nanomaterial Ti3C2Tx MXene was utilized as a selective adsorbent for treatment of synthetic dyes in model wastewater. Two types of US frequencies, 28 and 580 kHz, were applied to disperse MXene to evaluate the feasibility of US-assisted MXene for wastewater treatment. The physico-chemical properties of MXene after US were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and zeta potential. According to FTIR and XPS, 28 kHz US-assisted MXene had a greater amount of oxygenated functional groups and dispersion compared to 580 kHz US-assisted and pristine MXene. Subsequently, US-assisted MXene was utilized as an adsorbent for the removal of positively charged methylene blue (MB) and negatively charged methyl orange. Both 28 and 580 kHz US-assisted MXene showed better adsorption performance for only MB compared to stirring-assisted MXene based on kinetics, isotherms, and several water chemistry factors including solution pH, temperature, ionic strength, and humic acid. Advantages of US-assisted MXene for water treatment are its fast kinetics at low dose and high selectivity for positively charged target compounds (i.e., MB). The main adsorption mechanism between MXene and MB was electrostatic interaction (attraction); however, physical properties (i.e., aggregation kinetics and hydrodynamic diameter), measured via dynamic light scattering, were also found to be critical factors in controlling the adsorption performance of the system. Lastly, US-assisted MXene exhibited a high regeneration property, based on 4th adsorption-desorption cycles.


Assuntos
Corantes/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Compostos Azo , Corantes/química , Difusão Dinâmica da Luz , Cinética , Azul de Metileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/análise , Águas Residuárias/química
10.
Chemosphere ; 260: 127600, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32758769

RESUMO

Granules initiation and development is the backbone of aerobic granular sludge technology. Feed composition can notably affect initiation and development of aerobic granules, and yield aerobic granules with distinct microbial community, morphology and structure. This paper reports an unexpected formation of aerobic granules in an aspartic acid fed SBR under unfavorable hydrodynamic selection conditions. Detailed characteristics of these aerobic granules were investigated in terms of morphology, structure, bioactivity and EPS. The results showed that due to the absence of favorable hydrodynamic selection pressure, the formed aerobic granules had an irregular shape with a rough outline and loose internal structure, which was quite different from mature aerobic granules. Bacteria in these aerobic granules were mainly presented in the form of microcolony with calcium and ß-polysaccharides responsible for its mechanical stability. The high N/C ratio of aspartic acid enabled the enrichment of significant amount of nitrifiers within aerobic granules and thus resulted in high nitrification activity of these aerobic granules. The negatively charged and hydrophilic aspartic acid also induced the bacteria to secrete more exopolysaccharides for contributing to more neutral and hydrophilic surface of the aerobic granules, which was beneficial for aspartic acid capture. As a result, polysaccharides, rather than proteins, became the major components of EPS in these aerobic granules. This paper provides us a foundation to better understand the granulation potential of proteinaceous substrates that is frequently encountered in industrial wastewaters.


Assuntos
Ácido Aspártico/química , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Purificação da Água/métodos , Aerobiose , Análise da Demanda Biológica de Oxigênio , China , Matriz Extracelular de Substâncias Poliméricas/química , Hidrodinâmica , Microbiota , Modelos Teóricos , Nitrificação , Proteobactérias/isolamento & purificação , Esgotos/química , Propriedades de Superfície , Águas Residuárias/química
11.
Chemosphere ; 260: 127581, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32758787

RESUMO

Forward osmosis membrane bioreactor (FOMBR) is an integrated physical-biological treatment process that has received increased awareness in treating municipal wastewater for its potential to produce high effluent quality coupled with its low propensity for fouling formation. However, reverse salt diffusion (RSD) is a major issue and so far limited studies have reported long-term FOMBR operation under the elevated salinity conditions induced by RSD. This study investigated the performance of a FOMBR in treating municipal wastewater under a controlled saline environment (6-8 g L-1 NaCl) using two separate sodium chloride draw solution (NaCl DS) concentrations (35 and 70 g L-1) over 243 days. At 35 g L-1 NaCl DS, the water flux performance dropped from 6.75 L m-2 h-1 (LMH) to 2.07 LMH after 72 days of operation in the first experimental stage, when no cleaning procedure was implemented. In the subsequent stage, the DS concentration was increased to 70 g L-1 and a weekly physical cleaning regime introduced. Under stable operation, the water flux performance recovery was 67% after 21 cycles of physical cleaning. For the first time in FOMBR studies, a shortcut nitrogen removal via the nitrite pathway was also achieved under the elevated salinity conditions. At the end of operation (day 243), the ammonia-oxidising bacteria (Nitrosomonas sp.) was the only nitrifier species in the system and no nitrite oxidising bacteria was detected. The above study proves that a FOMBR system is a feasible process for treating municipal wastewater.


Assuntos
Membranas Artificiais , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Reatores Biológicos/microbiologia , Desnitrificação , Desenho de Equipamento , Nitrificação , Nitritos/metabolismo , Nitrosomonas/metabolismo , Osmose , Salinidade , Águas Residuárias/química
12.
Ecotoxicol Environ Saf ; 204: 111073, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32755736

RESUMO

The high pH and salinity of textile wastewater is a major hindrance to azo dye decolorization. In this study, a mixed bacterial consortium ZW1 was enriched under saline (10% salinity) and alkaline (pH 10.0) conditions to decolorize Methanil Yellow G (MY-G). Consortium ZW1 was mainly composed of Halomonas (49.8%), Marinobacter (30.7%) and Clostridiisalibacter (19.2%). The effects of physicochemical factors were systematically investigated, along with the degradation pathway and metagenome analysis. The co-carbon source was found to be necessary, and the addition of yeast extract led to 93.3% decolorization of 100 mg/L MY-G within 16 h (compared with 1.12% for control). The optimum pH, salinity, temperature and initial dye concentration were 8.0, 5-10%, 40 °C and 100 mg/L, respectively. The typical dye-related degradation enzymes were most effective at 10% salinity. Consortium ZW1 was also able to differentially decolorize five other direct and acidic dyes in a short period. Phototoxicity tests revealed the detoxification of MY-G degradation products. Combining UV-vis, FTIR and GC-MS detection, the MY-G degradation pathway by consortium ZW1 was proposed. Furthermore, metagenomic approach was used to elucidate the functional potential of genes in MY-G biodegradation. These results signify the broad potential application of halo-alkaliphilic consortia in the bioremediation of dyeing wastewater.


Assuntos
Compostos Azo/toxicidade , Corantes/toxicidade , Metagenoma , Microbiota/efeitos dos fármacos , Águas Residuárias , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Compostos Azo/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Corantes/metabolismo , Microbiota/genética , Salinidade , Temperatura , Indústria Têxtil , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo
13.
Ecotoxicol Environ Saf ; 202: 110939, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800222

RESUMO

Pulp and paper mill wastewater (PPMWW) contains high concentrations of recalcitrant compounds that cause toxicity to organisms. Advanced oxidation processes (AOPs) have the ability to degrade these compounds and reduce overall toxicity. Physicochemical characterization and Lactuca sativa toxicity test were conducted to compare the effectiveness of two post-treatments: UV/H2O2 and photo-Fenton. A comparison of four phytotoxicity indexes was carried out. PPMWW from a Brazilian treatment plant was characterized by high values of phenols, color, integrated spectral area (ISA), and chemical oxygen demand (COD), and caused significant inhibition to seedling development. The use of both post-treatments allowed the removal of over 75% of phenols, color, ISA, and COD. Although UV/H2O2 was more effective in removing phenols and ISA, photo-Fenton better reduced phytotoxicity. The most sensitive phytotoxicity indexes were RGIC0.8 and GIC80%, whereas SGC0, REC-0.25 and REC-0.50 better showed the effectiveness of the post-treatments. We suggest the combined use of two phytotoxicity indexes: one that evaluates the effects on seed germination and, another, on root elongation, e.g., SGC0 and RGIC0.8. Additionally, we recommend the use of ISA for monitoring programs of wastewater treatments because it is a cost-effective approach that allows narrowing down the search and identification of compounds present in complex mixtures.


Assuntos
Papel , Fenóis/toxicidade , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Brasil , Cor , Corantes/toxicidade , Peróxido de Hidrogênio/química , Resíduos Industriais/análise , Oxirredução , Fenóis/análise , Plantas/efeitos dos fármacos , Águas Residuárias/química
14.
Ecotoxicol Environ Saf ; 205: 111174, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853867

RESUMO

Smelting wastewater is characterized with high concentration of toxic heavy metals and high acidity, which must be properly treated before discharge. Here, bioelectrochemical system (BES) coupled with thermoelectric generator (TEG) was first demonstrated to simultaneously treat organic wastewater and smelting wastewater by utilizing the simulated waste heat that was abundant in smelting factories. By modulating the input voltage generated from simulated waste heat via TEG to 0, 1.0 and 2.0 V, almost all the Cu2+, Cd2+ and Co2+ in smelting wastewater were sequentially recovered with a respective rate of 121.17, 158.20 and 193.87 mg L-1 d-1. Cu2+ was bioelectrochemically recovered as Cu0. While, Cd2+ and Co2+ were recovered by electrodeposition as Cd(OH)2, CdCO3 or Co(OH)2 on cathodic surface. High throughput sequencing analysis showed that the microbial community of anodic biofilm was greatly shifted after successive treatment by batch-mode. Desulfovibrio (17.00%), Megasphaera (11.81%), Geobacter (10.36%) and Propionibacterium (8.64%) were predominant genera in anodic biofilm enriched from activated sludge in BES before treatment. After successive treatment by batch-mode, Geobacter (34.76%), Microbacter (8.60%) and Desulfovibrio (5.33%) were shifted as the major genera. Economic analysis revealed that it was feasible to use TEG to substitute electrical grid energy to integrate with BES for wastewater treatment. In addition, literature review indicated that it was not uncommon for the coexistence of waste heat with typical pollutants (e.g. heavy metal ions and various biodegradation-resistant organic wastes) that could be treated by BES in different kinds of factories or geothermal sites. This study provides novel insights to expand the application potentials of BES by integrating with TEG to utilize widespread waste heat.


Assuntos
Reatores Biológicos/microbiologia , Técnicas Eletroquímicas/métodos , Metais Pesados/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Fontes de Energia Bioelétrica , Biofilmes/crescimento & desenvolvimento , Eletrodos , Geobacter/crescimento & desenvolvimento , Temperatura Alta , Esgotos/microbiologia
15.
J Chromatogr A ; 1626: 461348, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32797828

RESUMO

Solid-phase extraction (SPE) is a widely-used and very well-established sample preparation technique for liquid samples. An area of on-going focus for innovation in this field concerns the development of new and improved SPE sorbents that can enhance the sensitivity and/or the selectivity of SPE processes. In this context, mixed-mode ion-exchange sorbents have been developed and commercialised, thereby allowing enhanced capacity and selectivity to be offered by one single material. The ion-selectivity of these materials is such that either anion-exchange or cation-exchange is possible, however one limitation to their use is that more than one sorbent type is required to capture both anions and cations. In this paper, we disclose the design, synthesis and exploitation of a novel SPE sorbent based on microporous polymer microspheres with amphoteric character. We show that it is possible to switch the ion-exchange retention mechanism of the sorbent simply by changing the pH of the loading solution; anion-exchange dominates at low pH, cation-exchange dominates at high pH, and both mechanisms can contribute to retention when the polymer-bound amphoteric species, which are based on the α-amino acid sarcosine (N-methylglycine), are in a zwitterionic state. This is an interesting and useful feature, since it allows distinctly different groups of analytes (acids and bases) to be fractionated using one single amphoteric sorbent with dual-functionality. The sarcosine-based sorbent was applied to the SPE of acidic, basic and amphoteric analytes from ultrapure water, river water and effluent wastewater samples. Under optimised conditions (loading 100 mL of sample at pH 6, washing with 1 mL of MeOH and eluting with an acidic or basic additive in MeOH) the recoveries for most of the compounds were from 57% to 87% for river water and from 61% to 88% for effluent wastewater. We anticipate that these results will lay the basis for the development of a new family of multifunctional sorbents, where two or more separation mechanisms can be embedded within one single, bespoke material optimised for application to challenging chemical separations to give significant selectivity advantages over essentially all other state-of-the-art SPE sorbents.


Assuntos
Ácidos/química , Microesferas , Polímeros/química , Extração em Fase Sólida/métodos , Adsorção , Cátions , Concentração de Íons de Hidrogênio , Troca Iônica , Porosidade , Rios/química , Solventes/química , Águas Residuárias/química , Poluentes Químicos da Água/análise
16.
J Chromatogr A ; 1626: 461359, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32797838

RESUMO

The enantiomeric determination of chiral drugs in the environment is of emerging concern since their enantiomers often exhibit stereoselectivity in environmental occurrence, fate and toxicity. In this study a method based on solid-phase extraction followed by chiral liquid chromatography and high-resolution mass spectrometry has been developed for the enantiomeric determination of a group of cathinones in river water and effluent wastewater. The enantioseparation was carried out using a Chiralpak CBH column in reversed-phase mode, and optimised by evaluating the effects of flow rate, buffer concentration and organic modifier. Under optimal conditions, good enantioseparations (Rs ≥1.2) were achieved for all the analytes. Two mixed-mode cation-exchange sorbents (Oasis WCX and Oasis MCX) in solid-phase extraction were evaluated in river water. Oasis MCX sorbent showed better performance with apparent recoveries ranging from 57 to 91% and matrix effect ranging from -10 to 15%. It is worth noting that a shifting of retention times and loss of enantioresolutions in environmental water samples was observed for all the analytes when the Oasis WCX sorbent was used. The method was validated with river water and effluent wastewater samples and its overall performance was satisfactory. The method quantification limits for all the analyte enantiomers ranged from 1.0 to 2.9 ng/L in river water, and from 2.3 to 6.0 ng/L in effluent wastewater. The repeatability and reproducibility values, expressed as% relative standard deviation (n = 5) were less than 15%. The method was then applied to the analysis of river water and effluent wastewater. The racemic methylone and methedrone (EF=0.49 and 0.46, respectively) were detected at low ng/L in some of the river water samples.


Assuntos
Alcaloides/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Alcaloides/química , Alcaloides/isolamento & purificação , Reprodutibilidade dos Testes , Rios/química , Extração em Fase Sólida/métodos , Estereoisomerismo , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
17.
Chemosphere ; 255: 127014, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32679632

RESUMO

This study presents the removal of thiocyanate (SCN-) from coke oven wastewater by the electrooxidation (EO) process. Initially, the performances boron-doped diamond (BDD) and different DSA (Dimensionally stable anode) electrodes including Ti/IrO2, Ti/IrO2-RuO2, and Ti/IrO2-RuO2-TiO2 in SCN- removal were compared. BDD anode outperformed the Ti-based mixed metal oxide (MMO) anodes achieving 96.51% SCN- removal efficiency. The most favorable conditions for the removal of SCN- using BDD anode were determined as follows: pH = 9, current density = 43.10 A m-2, and the electrolyte concentration (Na2SO4) = 2.5 g L-1. The strong role of ⦁OH in the removal of SCN- was confirmed by the addition of radical quenching agents. The evolution of the intermediates as a result of the EO of SCN- was determined. Under the determined conditions, the EO process could remove 84.13% of SCN- and 94.67% of phenol from a real coke oven wastewater, which was comparable to that of the simulated solution. The electrical energy consumption cost of the process to remove 1 kg of SCN- was calculated as 0.208 US $. Overall, the study showed the EO using BDD anode is a cost-effective method for the removal of SCN- from a coke oven wastewater.


Assuntos
Coque , Tiocianatos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Boro , Diamante , Eletrodos , Oxirredução , Óxidos , Fenol , Fenóis , Titânio , Águas Residuárias/química , Poluentes Químicos da Água/análise
18.
Chemosphere ; 260: 127590, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32679376

RESUMO

A new treatment method using a deep eutectic solvent embedded melamine sponge (DES-MS) was studied for the removal of organic pollutants from water and soil samples. Five organophosphorus pesticides (OPPs) consisting of azinphos-methyl (AZP), parathion-methyl (PRT), fenitrothion (FNT), diazinon (DIZ) and chlorpyrifos (CPF), and two dyes including acid blue 29 (AB29) and malachite green (MG) were used as the model pollutants. DESs were easily prepared from tetrabutylammonium bromide (TBABr) and various fatty acids. The synthesised DESs were loaded into the sponge before being utilized for the removal of the studied pollutants. After the removal, the residual OPPs or dyes in the supernatant was quantified by high performance liquid chromatography or derivative spectrophotometry, respectively. The proposed method was simple, rapid, environmentally friendly and effective with the removal efficiency higher than 70% for various samples. Moreover, the removal of various dyes was successfully achieved with the efficiency greater than 65% under the optimum condition.


Assuntos
Corantes/análise , Praguicidas/análise , Resinas Sintéticas/química , Poluentes do Solo/análise , Solventes/química , Triazinas/química , Poluentes Químicos da Água/análise , Recuperação e Remediação Ambiental/métodos , Limite de Detecção , Solo/química , Águas Residuárias/química , Purificação da Água/métodos
19.
Chemosphere ; 260: 127586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32693257

RESUMO

Removing contaminants from wastewater is critical towards resolving global water pollution problems. However, the variety of oily contaminants composition, and the unsatisfactory performance and efficiency of current separation systems are still big challenges, thus developing efficient and scalable oil-water separation (OWS) methods is needed. Here, the performance of a novel pilot-scale oil-water separator skimmer (OWSS) prototype is fully investigated using an upflow fixed bed column system packed with polypropylene (PP) fibrous sorbent materials for dual continuous OWS and in situ oils/organic solvents recovery. The mechanism of oil sorption by the PP fibrous sorbents, as well as capillary and vacuum assisted oil flow within the inter-fiber voids is fully explored. A series of pilot-scale column experiments were performed with different bed heights (7.5-30 cm) and using different types of oil/solvent in order to determine their influence on the oil flux, OWS efficiency and recovered organic solvent purity. The OWSS provided excellent and stable performance. A trade-off relationship between oil flux and OWS efficiency can be obtained: The maximum flux was attained at the lowest sorbent bed height (7.5 cm), while the maximum OWS efficiency (>99%) was achieved at the highest sorbent bed height (30 cm). The materials' morphology and wettability were examined showing outstanding stability and recyclability, which demonstrates their efficient integration into the overall OWSS. This study is expected to provide significant insights into the feasibility and scalability of an advanced, environmentally friendly, and relatively cost-effective OWS system, towards promising industrial implementation to overcome large-scale oil spill cleanup and oily wastewater treatment shortcomings.


Assuntos
Poluição por Petróleo/análise , Polipropilenos/química , Solventes/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desenho de Equipamento , Interações Hidrofóbicas e Hidrofílicas , Projetos Piloto , Purificação da Água/instrumentação , Molhabilidade
20.
Chemosphere ; 260: 127598, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32693258

RESUMO

Cork boiling wastewaters (CBW) are strongly coloured complex aqueous solutions with high organic load of biorecalcitrant and toxic nature. The feasibility and efficiency of a CBW treatment process combining ozonation as pre- and post-treatment of a horizontal subsurface flow constructed wetland (HSFCW) was assessed. Over an extended monitoring period of 390 days, two lab-scale HSFCW units were tested; one planted with P. australis (CWP) and one unplanted-control (CWC) operated at average organic loads rates (OLR) of 5 and 10 g COD/m2/d. CWP always outperformed the control unit. The ozonation trials were run at pH values of 8.15-8.21 and 5.39-5.45 (without adjustment) at ozone to COD ratios of 0.25-0.29 and 0.24-0.59 when implemented as pre- and post-treatment, respectively. Average removals (calculated through mass balance basis) were 78-88%, 86-91%, 71-89% and 43-89% for COD, BOD5, Total Phenols (TPh) and colour when ozonation was implemented as post-treatment. For ozonation as pre-treatment, respective figures were 77-80%, 79-92%, 78-85% and 19-73%. Regardless of the treatment scheme and OLR, ozonation was very effective in biodegradability increase (i.e., BOD5/COD) from 0.18 to 0.42 when applied as pre-treatment, and decolourization after the HSFCW increased from 21% to 91% (post-treatment) with respective ozone consumed yields of 67-69% and 72-85%. The best results were obtained for the scheme CWP + Ozonation at OLR of 5.33 g COD/m2/d with COD reductions from 1950 mg/L to 81-88 mg/L in the effluent and TPh from 125 mg/L to 5-6 mg/L at limited ozone amounts of 0.21-0.45 g O3/m2/d.


Assuntos
Ozônio/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos , Áreas Alagadas , Biodegradação Ambiental , Estudos de Viabilidade , Oxirredução , Casca de Planta/química , Poaceae/crescimento & desenvolvimento , Quercus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA