Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 100(3): 1350-1357, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31617215

RESUMO

BACKGROUND: Non-conventional water sources and water-saving techniques can be valuable in semi-arid regions, although their long-term effects on citrus quality are little known. This study evaluated the effects of irrigation with two sources, transfer water (TW) and reclaimed water (RW), combined with two irrigation strategies, full irrigation (FI) and regulated deficit irrigation (RDI), on fruit quality of mandarins and grapefruits during eight growth seasons. RESULTS: Reclaimed water irrigation in mandarin, without water restriction, influenced maturity index (MI) less than TW-FI, because titratable acidity (TA) increased to a greater degree than soluble solid contents (SSC). Nevertheless, juice quality standards were satisfied. Regardless of the irrigation treatment (FI or RDI), a trend towards increasing fruit weight was also detected with RW. In grapefruit, its rootstock (Citrus macrophylla) enhanced salinity resilience with respect to the rootstock of mandarin ('Carrizo' citrange) and, hence, MI was not affected by RW. The RDI strategy, without saline stress (TW-RDI), increased, to a similar degree, both SSC and TA in mandarin fruit, not affecting the MI. In grapefruit, the water stress of RDI did improve the MI due to the TA did not change and SSC increased significantly, the TA did not change. The combination of both strategies, RW-RDI, decreased the MI only in some years because TA increased proportionally more than SSC in mandarin. CONCLUSIONS: The medium- and long-term feasibility of using RW and RDI to irrigate citrus was demonstrated. However, they must be performed cautiously and with appropriate management to avoid damaging fruit quality as a result of phytotoxic elements. © 2019 Society of Chemical Industry.


Assuntos
Irrigação Agrícola/métodos , Citrus/crescimento & desenvolvimento , Frutas/química , Água/metabolismo , Citrus/química , Citrus/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Águas Salinas/análise , Águas Salinas/metabolismo , Água/análise
2.
J Sci Food Agric ; 99(13): 5842-5851, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31206706

RESUMO

BACKGROUND: The current need to produce food for a growing population, from diminishing natural resources, such as water and energy, and with minimum environmental degradation, demands the optimization of production. We compare the economic feasibility of tomato production in an open system with a perlite substrate, a closed system with the nutrient film technique (NFT), and a hydroponic crop (deep flow technique, DFT) using three levels of salinity that are found within the normal range for irrigation water quality in southeastern Spain. RESULTS: Production with DFT resulted in an increase in the cost of phytosanitary treatments and the cost of maintenance. Production with perlite resulted in an increase in the cost of irrigation water and fertilization, and the use of NFT resulted in an increase in energy costs. The point of price equilibrium was exceeded in the three soilless systems when using low salinity water, and in perlite, with intermediate salinity water. CONCLUSION: Profitability was reduced in the following order: perlite > NFT > DFT. There were positive results when using irrigation water with low salinity, and in the case of perlite, with intermediate salinity. In every case, salinity reduced the profitability of the operation, and this was greater when NFT was employed. The analysis of these soilless systems should be continued to determine the possibility of reducing cultivation costs. © 2019 Society of Chemical Industry.


Assuntos
Irrigação Agrícola/economia , Produção Agrícola/economia , Produção Agrícola/métodos , Lycopersicon esculentum/economia , Lycopersicon esculentum/crescimento & desenvolvimento , Águas Salinas/economia , Irrigação Agrícola/métodos , Análise Custo-Benefício , Lycopersicon esculentum/metabolismo , Águas Salinas/análise , Águas Salinas/metabolismo , Salinidade , Cloreto de Sódio/análise
3.
J Sci Food Agric ; 98(3): 1071-1078, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28722753

RESUMO

BACKGROUND: Sweet pepper fruit quality disorders have been related mainly to an unbalanced nutrient supply and non-optimal growth conditions. Increases in the atmospheric CO2 concentration ([CO2 ]) have been associated with a reduction of transpiration, which can affect calcium (Ca) uptake as it is linked closely to water uptake. We investigated whether foliar application of Ca can counterbalance the effects of saline water and elevated [CO2 ]. RESULTS: High CO2 favoured generative growth instead of vegetative growth. Foliar Ca supply did not affect the marketable yield, but reduced the total yield when combined with salinity and 400 µmol mol-1 CO2 . Salinity affected negatively the total yield but this was overcome when CO2 was applied. The B and K concentrations were reduced by foliar Ca application, while Ca and Mn were increased at 400 µmol mol-1 CO2 . Salinity increased the Mn, Cl, and Na concentrations, regardless of the [CO2 ], and decreased K at 800 µmol mol-1 CO2 . The total protein was affected negatively only by elevated [CO2 ], and the total free amino acid concentration was reduced by all treatments. CONCLUSION: The effect of Ca application differed according to the other treatments applied. This procedure should be optimised to overcome future climate impacts on fruit quality. © 2017 Society of Chemical Industry.


Assuntos
Cálcio/metabolismo , Capsicum/metabolismo , Frutas/química , Águas Salinas/metabolismo , Cálcio/análise , Capsicum/química , Capsicum/crescimento & desenvolvimento , Dióxido de Carbono , Clorofila/metabolismo , Mudança Climática , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Fotossíntese , Águas Salinas/análise
4.
Bioelectrochemistry ; 120: 127-137, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29248860

RESUMO

This review is aimed to report the possibility to utilize microbial fuel cells for the treatment of saline and hypersaline solutions. An introduction to the issues related with the biological treatment of saline and hypersaline wastewater is reported, discussing the limitation that characterizes classical aerobic and anaerobic digestions. The microbial fuel cell (MFC) technology, and the possibility to be applied in the presence of high salinity, is discussed before reviewing the most recent advancements in the development of MFCs operating in saline and hypersaline conditions, with their different and interesting applications. Specifically, the research performed in the last 5years will be the main focus of this review. Finally, the future perspectives for this technology, together with the most urgent research needs, are presented.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Salinidade , Desenho de Equipamento , Águas Salinas/metabolismo , Tolerância ao Sal , Sais/metabolismo , Águas Residuárias/microbiologia
5.
J Biotechnol ; 262: 56-59, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-28986293

RESUMO

Successful process development for the bioleaching of mineral ores, particularly the refractory copper sulfide ore chalcopyrite, remains a challenge in regions where freshwater is scarce and source water contains high concentrations of chloride ion. In this study, a pure isolate of Acidihalobacter prosperus strain F5 was characterized for its ability to leach base metals from sulfide ores (pyrite, chalcopyrite and pentlandite) at increasing chloride ion concentrations. F5 successfully released base metals from ores including pyrite and pentlandite at up to 30gL-1 chloride ion and chalcopyrite up to 18gL-1 chloride ion. In order to understand the genetic mechanisms of tolerance to high acid, saline and heavy metal stress the genome of F5 was sequenced and analysed. As well as being the first strain of Ac. prosperus to be isolated from Australia it is also the first complete genome of the Ac. prosperus species to be sequenced. The F5 genome contains genes involved in the biosynthesis of compatible solutes and genes encoding monovalent cation/proton antiporters and heavy metal transporters which could explain its abilities to tolerate high salinity, acidity and heavy metal stress. Genome analysis also confirmed the presence of genes involved in copper tolerance. The study demonstrates the potential biotechnological applicability of Ac. prosperus strain F5 for saline water bioleaching of mineral ores.


Assuntos
Cobre/metabolismo , Ectothiorhodospiraceae/genética , Ectothiorhodospiraceae/metabolismo , Compostos Ferrosos/metabolismo , Águas Salinas/metabolismo , Enxofre/metabolismo , Sequenciamento Completo do Genoma , Ácidos , Ligas/metabolismo , Austrália , Biotecnologia , DNA Bacteriano , Ectothiorhodospiraceae/isolamento & purificação , Microbiologia Ambiental , Genes Bacterianos/genética , Microbiologia Industrial , Ferro/metabolismo , Metais Pesados/metabolismo , Oxirredução , Especificidade da Espécie , Sulfetos/metabolismo
6.
Res Microbiol ; 167(7): 546-54, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27212381

RESUMO

The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water.


Assuntos
Cobre/metabolismo , Microbiologia Ambiental , Compostos Ferrosos/metabolismo , Mineração/métodos , Águas Salinas/metabolismo , Enxofre/metabolismo , Oxirredução
7.
PLoS One ; 10(11): e0142204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26540394

RESUMO

Saline water resources are abundant in the coastal areas of south China. Most of these resources still have not been effectively utilized. A 3-year study on the effects of saline water irrigation on tomato yield, quality and blossom-end rot (BER) was conducted at different lower limits of soil matric potential (-10 kPa, -20 kPa, -30 kPa, -40 kPa and -50 kPa). Saline water differing in electrical conductivity (EC) (3 dS/m, 4 dS/m, 4.5 dS/m, 5 dS/m and 5.5 dS/m) was supplied to the plant after the seedling establishment. In all three years, irrigation water with 5.5 dS/m salinity reduced the maximum leaf area index (LAIm) and chlorophyll content the most significantly when compared with other salinity treatments. However, compared with the control treatment (CK), a slight increase in LAIm and chlorophyll content was observed with 3~4 dS/m salinity. Saline water improved tomato quality, including fruit density, soluble solid, total acid, vitamin C and the sugar-acid ratio. There was a positive relationship between the overall tomato quality and salinity of irrigation water, as analyzed by principal component analysis (PCA). The tomato yield decreased with increased salinity. The 5.5 dS/m treatment reduced the tomato yield (Yt) by 22.4~31.1%, 12.6~28.0% and 11.7~27.3%, respectively in 2012, 2013 and 2014, compared with CK. Moreover, a significant (P≤0.01) coupling effect of salinity and soil matric potential on Yt was detected. Saline water caused Yt to increase more markedly when the lower limit of soil matric potential was controlled at a relatively lower level. The critical salinity level that produced significant increases in the BERi was 3 dS/m~4 dS/m. Following the increase in BERi under saline water irrigation, marketable tomato yield (Ym) decreased by 8.9%~33.8% in 2012, 5.1%~30.4% in 2013 and 10.1%~32.3% in 2014 compared with CK. In terms of maintaining the Yt and Ym, the salinity of irrigation water should be controlled under 4 dS/m, and the lower limit of soil matric potential should be greater than -20 kPa.


Assuntos
Lycopersicon esculentum/metabolismo , Lycopersicon esculentum/fisiologia , Águas Salinas/metabolismo , Irrigação Agrícola/métodos , China , Flores/metabolismo , Flores/fisiologia , Incidência , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Salinidade , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA