Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.217
Filtrar
1.
Ecotoxicol Environ Saf ; 205: 111187, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853869

RESUMO

Ionic liquids have been becoming new 'green solvent' because of the low saturation vapor pressure, less volatilization and more recycling utilization. Since most ILs are soluble in water, it should be indispensable to evaluate the ecotoxicology effect of ILs on aquatic environment before using them widely. Based on the concept of norm index, a set of norm descriptors were proposed for anions, cations and ILs. The whole IL structure optimization method has been used to build a predictive norm index-based quantitative structure-toxicity relationship model for the toxicity of ILs on Vibrio fischeri. Statistical results indicated that norm descriptors were reliable and robust in expressing the relationship between structural information and toxicity of ILs. Meanwhile, a series of ILs without experimental values were predicted based on this stable QSTR model. The results indicated that for imidazole-based ILs, an increase in the length of substituent in the branch could enhance the toxicity of ILs on Vibrio fischeri, and the branch contains hydroxyl group, double bond or triple bonds might reduce the toxicity of ILs. Results obtained in this present work would be valuable for the molecular design and the toxicity evaluation toward aquatic organism of ILs.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Imidazóis , Líquidos Iônicos , Modelos Teóricos , Solventes , Ânions/química , Cátions/química , Ecotoxicologia/métodos , Imidazóis/química , Imidazóis/toxicidade , Líquidos Iônicos/química , Líquidos Iônicos/toxicidade , Valor Preditivo dos Testes , Relação Quantitativa Estrutura-Atividade , Solventes/química , Solventes/toxicidade
2.
J Chromatogr A ; 1628: 461444, 2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32822983

RESUMO

The effect of bead and ligand structure on protein adsorption was investigated for multimodal anion exchangers combining a quaternary ammonium ion group with hydrophobic moieties: Nuvia aPrime 1 and aPrime 2, based on a 54 µm diameter polymeric bead, and Capto Adhere ImpRes and Capto Adhere, based on agarose beads 51 and 78 µm diameter, respectively. Bovine serum albumin (BSA) monomer, BSA dimer, and thyroglobulin (Tg) were used as model proteins. Based on TEM imaging and iSEC, the Nuvia resins have a microgranular structure and large pores (110 nm radius), while the Capto resins have a fibrous structure and smaller pores (32-36 nm radius). Comparable binding capacities (80-110 mg/mL), decreasing as salt is added, are observed for all three proteins on the Nuvia resins. Higher capacities (110-130 mg/mL), also decreasing as salt is added, are observed for BSA monomer and dimer on the Capto resins. However, the Tg binding capacity is very low in this case and increases as salt is added. Confocal laser scanning microscopy show that the kinetics are controlled by pore diffusion for all four resins, but with diffusivities that decrease as the protein size increases especially for the Capto resins. For Tg at low salt, binding is restricted to a thin shell close to the bead surface for both Capto resins. The ratio of effective and free diffusivity is about 0.30, 0.18, and 0.08 for BSA monomer, BSA dimer, and Tg, respectively, on the Nuvia resin. These values decrease to about 0.11, 0.04, and 0.01, respectively, for the Capto resins as a result of diffusional hindrance. Dynamic binding capacities are consistent with the equilibrium and rate behaviors.


Assuntos
Resinas de Troca de Ânions/química , Cromatografia por Troca Iônica , Proteínas/metabolismo , Adsorção , Ânions/química , Difusão , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Polímeros/química , Sefarose/química , Soroalbumina Bovina/química
3.
J Chromatogr A ; 1625: 461226, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32709310

RESUMO

In this work, an easy and fast procedure for the selective multiresidue determination of 14 highly polar pesticides (including glyphosate, glufosinate, ethephon and fosetyl) and metabolites in beverages is presented. After an initial sample dilution (1:1, v/v), the extract is shaken and centrifuged, further diluted and then injected directly into the LC-MS/MS system, using hydrophilic interaction liquid chromatography (HILIC) and tandem mass spectrometry. No clean-up procedure was needed. The method was validated according to the current European guidelines for pesticide residue analysis in food and feed and linearity, limits of detection and quantification, matrix effects, trueness and precision were assessed. For plant-based milk, wine and beer samples, 10, 11 and 12 analytes, respectively, out of 14 were fully validated at 10 µg kg-1, the lowest spike level tested. The matrix effect was negative in most of the cases, showing for some compounds, such as HEPA, up to 80% suppression when compared to the response from standards in solvent. The use of isotopically labelled internal standards is required for the optimal quantification, as it compensates for high and varying matrix effects and also for recovery losses during extraction.


Assuntos
Cerveja/análise , Cromatografia Líquida de Alta Pressão/métodos , Substitutos do Leite/química , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Vinho/análise , Animais , Ânions/química , Interações Hidrofóbicas e Hidrofílicas , Leite de Soja/química
4.
Food Chem ; 333: 127493, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659659

RESUMO

The effects of the addition of salt ions and molecular weights (Mw) of CH on Mesona chinensis polysaccharide (MCP)-chitosan (CH) hydrogel were investigated. Result indicated both low concentration of monovalent salt ions (Na+ and K+), divalent cations (Ca2+) and oxoanions (SO42-) could promote the gel properties of MCP-CH hydrogel. The Mw of CH has huge impact on the formation and properties of hydrogel. Combining the relationship between rheology and structural, monovalent salt ions such as Na+ and K+ affect gel formation and its properties by influencing electrostatic interaction and chain conformation. Both divalent cations (Ca2+) and oxoanions (SO42-) facilitated the formation of gel networks via electrostatic interaction, coordination bonds and hydrogen bonds. Moreover, Mw of CH influenced formation and texture of MCP-CH hydrogel via affecting the conformation of CH molecular chain. These findings will provide a few theoretical bases to understand the formation mechanism of MCP-CH hydrogel.


Assuntos
Quitosana/química , Hidrogéis/química , Lamiaceae/química , Extratos Vegetais/química , Polieletrólitos/química , Sais/química , Ânions/química , Cálcio/química , Hidrogéis/síntese química , Peso Molecular , Polissacarídeos/química , Potássio/química , Reologia , Sódio/química
5.
J Chromatogr A ; 1621: 461075, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32354558

RESUMO

The role of individual functional groups has been assessed with regard to surface charge and chromatographic retention. Coatings were prepared from various fragments of the chiral zwitterionic materials Chiralpak ZWIX(+) and ZWIX(-). The different chromatographic ligands allowed fine tuning of the surface charge. Chiralpak ZWIX phases showed strongly negative ζ-potentials over the entire pH-range. Zwitterionic congeners with quinuclidine and sulfonic acid moieties but lacking the quinolone ring in the ligand structure exhibited shifted ζ-potentials of around + 5 to 20 mV depending on the surrounding residues. Capillary electrophoretic mobilitiy measurements with the chromatographic ligands and molecular dynamics simulations were carried out to offer some explanation of these surface charge differences of the distinct zwitterionic stationary phases. The new mixed-mode phases were also chromatographically characterized by simple RP and HILIC tests. The results allowed their positioning within a large variety of different commercially available RP, HILIC and mixed-mode phases, which were evaluated as well, by multivariate data processing using principal component analysis. The new mixed-mode phases overall exhibit reasonable hydrophilicity-lipophilicity balance and enable retention of ionic compounds by additional ionic interactions through weak anion-exchange (WAX-type), strong cation-exchange (SCX-type) or both (RP/ZWIX-type). Hence, the new RP/ZWIX phases can be flexible tools for selectivity tuning in RP and HILIC separations.


Assuntos
Cromatografia por Troca Iônica/métodos , Ânions/química , Cátions/química , Eletroforese Capilar , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Dinâmica Molecular
6.
Nat Struct Mol Biol ; 27(6): 533-539, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451489

RESUMO

The Na+/I- symporter (NIS), the plasma membrane protein that actively transports I- (stoichiometry 2Na+:1I-) in thyroid physiology and radioiodide-based thyroid cancer treatment, also transports the environmental pollutant perchlorate (stoichiometry 1Na+:1ClO4-), which competes with I- for transport. Until now, the mechanism by which NIS transports different anion substrates with different stoichiometries has remained unelucidated. We carried out transport measurements and analyzed these using a statistical thermodynamics-based equation and electrophysiological experiments to show that the different stoichiometry of ClO4- transport is due to ClO4- binding to a high-affinity non-transport allosteric site that prevents Na+ from binding to one of its two sites. Furthermore, low concentrations of ClO4- inhibit I- transport not only by competition but also, critically, by changing the stoichiometry of I- transport to 1:1, which greatly reduces the driving force. The data reveal that ClO4- pollution in drinking water is more dangerous than previously thought.


Assuntos
Percloratos/metabolismo , Simportadores/química , Simportadores/metabolismo , Regulação Alostérica , Sítio Alostérico , Animais , Ânions/química , Ânions/metabolismo , Sítios de Ligação , Transporte Biológico , Cães , Eletrofisiologia/métodos , Feminino , Humanos , Iodo/metabolismo , Células Madin Darby de Rim Canino , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Percloratos/química , Ratos , Sódio/metabolismo , Simportadores/genética , Termodinâmica , Xenopus laevis
7.
Cancer Genomics Proteomics ; 17(3): 217-223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32345663

RESUMO

BACKGROUND/AIM: We have previously developed a novel bone-targeting platinum compound, 3Pt, and showed that it has strong inhibitory activity against osteosarcoma cells and orthotopic cell-line xenograft mouse models. In the present report, we compared the efficacy of 3Pt to cisplatinum (CDDP) in a CDDP-resistant relapsed osteosarcoma patient-derived orthotopic xenograft (PDOX) mouse model. PATIENTS AND METHODS: The tumor of a patient with osteosarcoma of the distal femur was treated with CDDP-based chemotherapy followed by surgery. The surgical specimen was used to establish a PDOX model. An osteosarcoma cell line was also established from the original patient tumor. Osteosarcoma cell viability was assessed with the WST-8 assay and the IC50 values were calculated. The PDOX models were randomized into three groups: untreated control, CDDP-treated group, and 3Pt-treated group. Tumor size and body weight were measured twice a week. RESULTS: 3Pt had a strong concentration-dependent cytocidal effect in vitro. The IC50 value of 3Pt was significantly lower than that of CDDP. On day 14 of the treatment, 3Pt caused a significantly greater tumor growth inhibition compared to the untreated control and CDDP-treated mice. CONCLUSION: 3Pt is a promising clinical candidate for the treatment of recalcitrant osteosarcoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Osteossarcoma/tratamento farmacológico , Adolescente , Animais , Ânions/química , Antineoplásicos/química , Neoplasias Ósseas/patologia , Sobrevivência Celular , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Camundongos Nus , Compostos Organoplatínicos/química , Osteossarcoma/patologia , Fosfatos/química , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Chromatogr A ; 1621: 461066, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32299623

RESUMO

The ion-exchange and complex forming equilibria were quantitatively described and demonstrated in order to understand major factors in the control of selectivity in the analytical separation of carboxylic acids and inorganic anions in cryptand based ion chromatography. A complex retention model has been developed for the separation on a non-conventional IC column. Changes in retention are treated both theoretically and experimentally. Retention mechanism is employed on a macrocycle-based (cryptand n-decyl-[2.2.2]) ion-exchange chromatographic phase to improve the selectivity for a mixture of model analytes. We introduced an alternative internal gradient method by mixed eluent (i.e. eluents formed by combination of two alkali hydroxide with different molar ratio). The effect of binary mixed eluent (Li/Na, Li/K) on the retention behavior and peak shape of carboxylic acids are also discussed in view of the proposed theory. It was shown that the effects of binary aqueous mobile phases, held isocratically behave very similar to the step gradient mode. The "internal gradient" separation system has advantages over traditional step gradient mode. Twenty-six anions of widely varying chemical character (mono-, di-, tri-valent inorganic anions, mono-, di-, tri-valent aliphatic carboxylic acids, aromatic- and haloacetic carboxylic acids) were investigated on the cryptand-based (D222) stationary phase using different methods by LiOH, NaOH and KOH eluent. The predicted vs measured retention data are in rather good agreement. High degree of linearity was obtained for inorganic anions, multivalent carboxylic acids, and for aromatic and haloacetic acids R2 = 0.992, 0.969, and 0.980, respectively.


Assuntos
Ácidos Carboxílicos/análise , Cromatografia por Troca Iônica/métodos , Éteres Cíclicos/química , Bases de Schiff/química , Ácidos/química , Ânions/química , Ácidos Carboxílicos/isolamento & purificação , Troca Iônica
9.
Phys Chem Chem Phys ; 22(14): 7193-7200, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32195495

RESUMO

We report a joint negative ion photoelectron spectroscopy (NIPES) and computational study on the electronic structures and noncovalent interactions of a series of cyclodextrin-closo-dodecaborate dianion complexes, χ-CD·B12X122- (χ = α, ß, γ; X = H, F). The measured vertical/adiabatic detachment energies (VDEs/ADEs) are 1.15/0.93, 3.55/3.20, 3.90/3.60, and 3.85/3.60 eV for B12H122- and its α-, ß-, γ-CD complexes, respectively; while the corresponding values are 1.90/1.70, 4.00/3.60, 4.33/3.95, and 4.30/3.85 eV for the X = F case. These results show that the inclusion of B12X122- into the CD cavities greatly increases the electronic stability of the dianions. The effect of electronic stabilization for ß-CD is roughly the same as for γ-CD, both being considerably stronger than that for α-CD. Density functional theory (DFT) based geometry optimization reveals that B12X122- are inserted into CDs increasingly deeper from α-CD to γ-CD. The calculated VDEs and ADEs agree with the experiments well, particularly, reproducing the electron binding energy (EBE) trends. The molecular orbital analyses indicate that the most loosely bound photodetached electrons originate from the guest B12X122- moieties. In addition to a shift of all signals to a larger EBE, significant changes in the signal patterns are observed. At low EBE, this is due to the splitting of highly degenerate B12X122- orbitals, while at high EBE, photodetachment from CD oxygens contributes to the new bands. The guest B12X122- and host CD noncovalent, size-specific interaction based on the independent gradient model (IGM) and energy decomposition analysis (EDA) is dominated by electrostatic interactions. The analysis further unravels unambiguously the existence of dihydrogen bonding and how it affects the total energy that stabilizes the host-guest complexes of CDs·B12H122- compared to the general hydrogen bonding interaction in CDs·B12F122-. This work clearly exhibits strong influences on the electronic structures of dodecaborates upon clustering with CDs, with both size (α-, ß-, and γ-) and molecular (X = H or F) specificities, thus providing critical molecular-level information on the cyclodextrin-closo-dodecaborate interactions of interest to medical applications, e.g., boron neutron capture therapy.


Assuntos
Ânions/química , Compostos de Boro/química , Espectroscopia Fotoeletrônica , Química Computacional , Estrutura Molecular
10.
Chemosphere ; 252: 126551, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32217412

RESUMO

This work reports the synthesis of a new adsorbent material (LaP-POT), synthesised by sol-gel polymerisation method from lanthanum phosphate (LaP) and poly o-toluidine (POT). The sustainability and selectivity of the material as a potential adsorbent is evaluated for the removal of fluoride from aqueous as well as real water samples using batch experimental techniques. FESEM and TEM images showed the successful incorporation of rod-shaped lanthanum phosphate into the poly o-toluidine polymer matrix. The increased degradation temperature of LaP-POT from TGA curve inferred a definite interaction between two. XPS study revealed the successful binding of fluoride onto LaP-POT. The selectivity of fluoride ion onto LaP-POT material was ascertained by the distribution coefficient value. The co-anions showed little effect on fluoride removal. Kinetic study suggested that intraparticle diffusion is not the only rate controlling step; the external mass transfer or chemical interaction also impacts the fluoride adsorption. The maximum adsorption was observed at room temperature with a maximum Langmuir uptake capacity of 10.94 mg g-1. The reusability of the material is tested up to 5 successive cycles for a workable commercial application purpose. The results showed that LaP-POT provides more active sites, thus making it a promising adsorbent for the removal of fluoride.


Assuntos
Fluoretos/química , Lantânio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Ânions/química , Concentração de Íons de Hidrogênio , Cinética , Nanocompostos , Fosfatos , Toluidinas , Água/química
11.
Chemistry ; 26(39): 8555-8566, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32203626

RESUMO

Diphenanthrioctaphyrin(1.1.1.0.1.1.1.0), an expanded carbaporphyrinoid incorporating two phenanthrenylene moieties, exists as two separate, yet interconvertible, locked stereoisomers. These species demonstrate complex dynamic behavior upon protonation, consisting in multiple conformational rearrangements and anion-binding events. The formation of one of the final dicationic forms is accompanied by the inclusion of a complex anion(s) within the macrocyclic cavity yielding a pseudorotaxane-like host-guest complex. Protonation with trifluoroacetic or dichloroacetic acids followed by neutralization afforded a conformation-switching cycle, which involves six structurally different species. Analogous acidification with chiral 10-camphorsulfonic acid and subsequent neutralization generated one of the free base stereoisomers with enantiomeric excess. Therefore, it was shown that the simple acid-base chemistry of diphenanthrioctaphyrin can act as stimulus, inducing chirality into the system, allowing for the manipulation of the stereochemical information imprinted into the enantiomers of the macrocycle.


Assuntos
Ânions/química , Rotaxanos/química , Hidrogenação , Conformação Molecular , Rotaxanos/síntese química , Estereoisomerismo
12.
Molecules ; 25(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046021

RESUMO

We review recent works for nucleophilic fluorination of organic compounds in which the Coulombic interactions between ionic species and/or hydrogen bonding affect the outcome of the reaction. SN2 fluorination of aliphatic compounds promoted by ionic liquids is first discussed, focusing on the mechanistic features for reaction using alkali metal fluorides. The influence of the interplay of ionic liquid cation, anion, nucleophile and counter-cation is treated in detail. The role of ionic liquid as bifunctional (both electrophilic and nucleophilic) activator is envisaged. We also review the SNAr fluorination of diaryliodonium salts from the same perspective. Nucleophilic fluorination of guanidine-containing of diaryliodonium salts, which are capable of forming hydrogen bonds with the nucleophile, is exemplified as an excellent case where ionic interactions and hydrogen bonding significantly affect the efficiency of reaction. The origin of experimental observation for the strong dependence of fluorination yields on the positions of -Boc protection is understood in terms of the location of the nucleophile with respect to the reaction center, being either close to far from it. Recent advances in the synthesis of [18F]F-dopa are also cited in relation to SNAr fluorination of diaryliodonium salts. Discussions are made with a focus on tailor-making promoters and solvent engineering based on ionic interactions and hydrogen bonding.


Assuntos
Fluoretos/química , Ligação de Hidrogênio , Líquidos Iônicos/química , Ânions/química , Cátions/química , Guanidina/química , Metais Alcalinos/química , Solventes/química
13.
Molecules ; 25(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012733

RESUMO

The aim of this study was to develop a prodrug of ubiquinol-10 (UqH-10), the active form of ubiquinone-10 (Uq-10), for oral delivery. Bioavailability of UqH-10 is hampered by its high susceptibility to oxidation and water-insolubility. We prepared three novel N,N-dimethylglycine ester derivatives of UqH-10, including a 1-monoester (UqH-1-DMG), 4-monoester (UqH-4-DMG), and 1,4-bis-ester (UqH-DMG), and assessed their physicochemical properties in vitro and in vivo. UqH-DMG spontaneously formed an aqueous micelle solution comprising 20 nm particles at 36.5 °C. Cationic UqH-DMG formed nano-sized (5 nm) mixed-micelles with taurocholic acid. Reconversion of the derivatives to UqH-10 was accelerated in human liver microsomes. The oral bioavailability of UqH-10 after administration of UqH-derivatives or Uq-10 was determined in fasted and postprandial rats secreting normal and high levels of bile, respectively. In fasted rats, plasma UqH-10 after UqH-derivatives administration reached Cmax at 2-3 h and after Uq-10 administration, it remained low. The AUC0-24h of UqH-10 after UqH-derivatives administration was 2-3-fold higher than that after Uq-10 administration. In postprandial rats, the Tmax of UqH-10 after UqH-derivatives administration was an hour earlier than after Uq-10 administration. In conclusion, cationic UqH-derivatives are convenient prodrugs that enhance UqH-10 bioavailability by forming nanosized mixed-micelles with intestinal bile acids.


Assuntos
Ânions/química , Ácidos e Sais Biliares/química , Cátions/química , Absorção Intestinal/efeitos dos fármacos , Micelas , Pró-Fármacos/administração & dosagem , Ubiquinona/administração & dosagem , Administração Oral , Animais , Ânions/metabolismo , Ácidos e Sais Biliares/metabolismo , Disponibilidade Biológica , Transporte Biológico , Masculino , Nanopartículas , Oxirredução , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Ratos , Ratos Sprague-Dawley , Ubiquinona/química , Ubiquinona/metabolismo
15.
Phys Chem Chem Phys ; 22(9): 4957-4966, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32073078

RESUMO

We analyzed the near-degenerate states of the firefly dioxetanone anion (FDO-) and its prototypes, especially in the biradical region, using multi-configurational approaches. The importance of utilizing full valence active spaces by means of density-matrix renormalization group self-consistent field (DMRG-SCF) calculations was described. Our results revealed that the neglect of some valence orbitals can affect the quantitative accuracy in later multi-reference calculations or the qualitative conclusion when optimizing conical intersections. Using all of the relevant valence orbitals of FDO-, we confirmed that there were two conical intersections, as reported in previous work, and that the intersecting states were changed when the active space was enlarged. Beyond these, we found that there were strong interactions between states in the biradical regions, in which the changes in entanglements can be used to visualize the interacting state evolution.


Assuntos
Vaga-Lumes/química , Compostos Heterocíclicos com 1 Anel/química , Animais , Ânions/química , Vaga-Lumes/metabolismo , Luminescência , Teoria Quântica , Tiazóis/química
16.
Chemosphere ; 250: 126219, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32105856

RESUMO

Ionic liquids (ILs (1-butyl-3-methylimidazolium chloride ([C4mim][Cl]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]))) were used as heat transfer fluids for solar thermal collectors. The additive of ILs was biochar containing copper and silver nanoparticles (Cu-Ag/biochar) to improve the adsorption of solar irradiation and thermal conductivities. After impregnation and reduction processes, nanoparticles such as Cu, CuO, Cu(OH)2, Ag, and Ag2O were found in the biochar by X-ray powder diffraction (XRD) spectroscopy. With adding 2% Cu-Ag/biochar into the ILs, the thermal conductivities of [C4mim][Cl] and [C4mim][BF4] containing 10% Cu-1% Ag/biochar were individually increased 9.2 and 6.6 times compared to the base ILs due to the high graphitization of biochar and metallic nanoparticles. The 1H NMR (nuclear magnetic resonance) features of the imidazole ring and methyl group in the ILs were highly disturbed due to the formation of weak or strong hydrogen bonds between the cations in ILs and Cu-Ag/biochar. The high hydrogen bond acceptance of anions in ILs also affected the thermal properties. The thermal properties of the metals/biochar [C4mim][Cl] were better than those of metals/biochar [C4mim][BF4] due to high hydrogen bond acceptance of [Cl]-. The strong hydrogen bonds between the Cu-Ag/biochar and the cations and anions in ILs result in thermal properties of heat transfer fluids. Under simulated sunlight, the temperatures of [C4mim][Cl] and [C4mim][BF4] containing 10% Cu-1% Ag/biochar rose from 304 to 345 and 340 K within 24 min, respectively. A novel heat transfer fluid was developed for high adsorption of irradiation, high thermal conductivities, and speedy transfer of heat.


Assuntos
Nanopartículas Metálicas/química , Modelos Químicos , Adsorção , Ânions/química , Cátions , Carvão Vegetal , Ligação de Hidrogênio , Imidazóis/química , Líquidos Iônicos/química , Prata
17.
Chemosphere ; 247: 125882, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069713

RESUMO

In this research, UiO-66 and its composite nanoparticles with thermally oxidized nanodiamond (OND) were synthesized via a simple solvothermal method and utilized as solid adsorbent for the removal of anionic methyl red (MR) dye and cationic malachite green (MG) dye from contaminated water. The synthesized adsorbents were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), N2 adsorption-desorption, and zeta potential analyzer. The influences of various factors such as initial concentrations of the dyes, adsorption process time, solution pH, solution temperature and ionic strength on adsorption behavior of MR dye onto OND-UiO hybrid nanoparticle were investigated. The adsorption of MR onto OND-UiO hybrid nanoparticle could be well described by Langmuir isotherm model. Meanwhile, pseudo-second order kinetic model was found to be suitable for illustration of adsorption kinetics of MR onto OND-UiO. Thermodynamic investigation suggested that the adsorption process was spontaneous and endothermic, and controlled by an entropy change instead of enthalpy effect. The experimental adsorption results indicated that OND-UiO hybrid nanoparticle could simultaneously adsorb 59% of MR and 43% of MG from the mixture of both dyes in only 2 min showing synergistic effect compared with single UiO-66 and OND nanoparticles in terms of adsorption rate and removal capacity of anionic dyes. The appropriate removal efficiency, rapid adsorption kinetic, high water stability, and good reusability make OND-UiO hybrid nanoparticle attractive candidate for simultaneously removal of both anionic MR and cationic MG dyes from wastewater.


Assuntos
Corantes/química , Nanodiamantes/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Ânions/química , Compostos Azo , Cátions , Cinética , Nanocompostos , Corantes de Rosanilina , Termodinâmica , Águas Residuárias , Água/química , Difração de Raios X
18.
Mar Drugs ; 18(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059424

RESUMO

One of the essential fatty acids with therapeutic impacts on human health is known to be omega-3 polyunsaturated fatty acids (PUFA). More lately, ionic liquids (ILs) have received significant attention among scientists in overcoming the disadvantages of traditional solvents in biomass lipid extraction. However, the large pool of cations and anions possibly accessible will lead to a growing number of innovatively synthesized ILs. Nevertheless, the exhaustive measurement of all these systems is economically impractical. The conductive screening model for real solvents (COSMO-RS) is considered a precious approach with the availability of a few models to predict the characteristics of ILs. This work introduces the estimate of capacity values at infinite dilution for a range of ILs using COSMO-RS software as part of solid-liquid extraction. This favorable outcome presented that the capacity values of the IL molecules are extremely dependent on both anions and cations. Among the 352 combinations of cation/anion tested, short alkyl chain cations coupled with inorganic anions were found to be most efficient and therefore superior in the extraction method. Sulphate-, chloride-, and bromide-based ILs were found to have higher extraction capacities in contrast with the remainders, while propanoate revealed an extraordinary capacity when combined with ethyl-based cations. Eventually, the predicted results from COSMO-RS were validated through the experimentally calculated extraction yield of alpha-linolenic acid (ALA) compound from Nannochloropsis sp. microalgae. Three selected ILs namely [EMIM][Cl], [TMAm][Cl], and [EMPyrro][Br] were selected from COSMO-RS for empirical extraction purpose and the validation results pinpointed the good prediction capability of COSMO-RS.


Assuntos
Líquidos Iônicos/química , Microalgas/química , Ácido alfa-Linoleico/química , Ânions/química , Cátions/química , Química Computacional , Íons/química , Modelos Moleculares , Estrutura Molecular , Temperatura , Termodinâmica
19.
J Chromatogr A ; 1619: 460914, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32008820

RESUMO

Recently, ion chromatography coupled with mass spectrometry has been used for the determination of anionic metabolites. However, connection with a mass spectrometer in this method is not straightforward because backpressure produced by the addition of a make-up solution often affects the peak resolutions of the target metabolites. To overcome this problem, we developed a capillary ion chromatography-mass spectrometry method utilizing a double coaxial electrospray ionization sprayer. This method was not affected by backpressure and the number of theoretical plates was about three times that of a conventional sprayer. Under optimized conditions, 44 anionic metabolites, including organic acids, sugar phosphates, nucleotides, and cofactors, were successfully separated and selectively detected with a Q Exactive mass spectrometer. The calibration curves of the tested metabolites showed excellent linearity within the range of 1-100,000 nmol/L and the correlation coefficient was greater than 0.991. The detection limits for these metabolites were between 1 and 500 nmol/L (0.4 and 200 fmol). The developed method was applied to the quantitation of anionic metabolites in cultured cancer cell samples with tumor necrosis factor (TNF)-α stimulation. This allowed for the successful determination of 105 metabolites. The levels of tricarboxylic acid cycle intermediates changed significantly after TNF-α stimulation. These results demonstrate that the developed method is a promising new tool for comprehensive analysis of anionic metabolites.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Ácidos/análise , Ácidos/isolamento & purificação , Ânions/química , Calibragem , Cromatografia/métodos , Humanos , Limite de Detecção , Neoplasias/metabolismo , Nucleotídeos/análise , Nucleotídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/normas , Fator de Necrose Tumoral alfa/farmacologia
20.
Chemistry ; 26(26): 5799-5809, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32104951

RESUMO

The influence of the composition of chaotropic polyoxometalate (POM) anions on their affinity to biological systems was studied by means of atomistic molecular dynamics (MD) simulations. The variations in the affinity to hen egg-white lysozyme (HEWL) were analyzed along two series of POMs whereby the charge or the size and shape of the metal cluster are modified systematically. Our simulations revealed a quadratic relationship between the charge of the POM and its affinity to HEWL as a consequence of the parabolic growth of POM⋅⋅⋅water interaction with the charge. As the charge increases, POMs become less chaotropic (more kosmotropic) increasing the number and the strength of POM-water hydrogen bonds and structuring the solvation shell around the POM. This atomistic description explains the proportionally larger desolvation energies and less protein affinity for highly charged POMs, and consequently, the preference for moderate charge densities (q/M=0.33). Also, our simulations suggest that POM⋅⋅⋅protein interactions are size-specific. The cationic pockets of HEWL protein show a preference for Keggin-like structures, which display the optimal dimensions (≈1 nm). Finally, we developed a quantitative multidimensional model for protein affinity with predictive ability (r2 =0.97; q2 =0.88) using two molecular descriptors that account for the charge density (charge per metal atom ratio; q/M) and the size and shape (shape weighted-volume; VS ).


Assuntos
Ânions/química , Cátions/química , Muramidase/química , Compostos de Tungstênio/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA