Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.932
Filtrar
1.
Analyst ; 146(18): 5747-5755, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515708

RESUMO

A super simple ratiometric fluorescence nanosensor has been fabricated by controlling the ligands of CdZnTe quantum dots (QDs), allowing the sensitive and visual detection of silver ions (Ag+). The green-emitting L-cysteine-protected CdZnTe QDs (Lcys-CdZnTe QDs) had a specific response to Ag+ and were used as the reporting probe, while the red-emitting N-acetyl-L-cysteine-protected CdZnTe QDs (NAC-CdZnTe QDs) showed no obvious response to all tested metal ions and were selected as the reference probe. Simply mixing them without any encapsulated synthesis ultimately produced a time-saving, low-cost detection method, allowing the sensitive and visual detection of Ag+ in samples. The proposed nanosensor exhibited a linear range of 0.5-4.0 µM along with a detection limit of 0.17 µM, and has been successfully applied in real tap water and lake water samples. This nanosensor also showed obvious color changes in the detection process and has potential in visual semi-quantitative detection. Our approach may provide a general and feasible strategy for designing ratiometric fluorescence nanosensors, which will attract a wide range of interest in sensing-related fields.


Assuntos
Pontos Quânticos , Cádmio , Corantes Fluorescentes , Íons , Ligantes , Prata , Espectrometria de Fluorescência , Telúrio , Zinco
2.
Talanta ; 235: 122715, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517583

RESUMO

A total integrated electrocolorimetric sensing approach consisting of gel-based electromembrane extraction and colorimetric detection in a one-step process was developed. This system was designed using colorimetric reagents preadded to the agarose gel for the determination of the following two model analytes: iodide and hexavalent chromium [Cr(VI)]. In this system, when a voltage was applied, the analytes were extracted and transferred from the sample solution (donor phase) to the gel (acceptor phase). The analytes then simultaneously reacted with the colorimetric reagents inside the gel, yielding blue and violet colors for iodide and Cr(VI), respectively. These colors were then analyzed using a portable spectrometer and could also be distinguished with the naked eye. Parameters affecting the extraction efficiency were studied and optimized for both analytes. The gel composition for iodide detection was 4% (w/v) agarose, 5% (v/v) H2O2, and 1% (w/v) starch in 2 mM HCl. The gel composition for Cr(VI) detection was 2% (w/v) agarose and 1% (w/v) DPC in 0.5 mM HNO3. Both analytes were extracted at an applied potential of 50 V, an extraction time of 15 min and a stirring rate of 600 rpm. Under the optimized conditions, the developed systems provided linear responses within 15 min for iodide concentrations ranging from 50 to 250 µg L-1 with a detection limit of 18 µg L-1 and for Cr(VI) concentrations ranging from 30 to 125 µg L-1 with a detection limit of 5 µg L-1. Finally, these systems were successfully applied to the determination of iodide in iodide food supplement samples and Cr(VI) in drinking water samples, showing a negligible matrix effect. This integration could also be extended to other analytes and detection systems to develop sensitive, on-site, and environmentally friendly sensing approaches.


Assuntos
Peróxido de Hidrogênio , Iodetos , Cromo , Concentração de Íons de Hidrogênio , Íons
3.
Talanta ; 235: 122808, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517665

RESUMO

Analytical methods to evaluate the lipidome of biological samples need to provide high data quality to ensure comprehensive profiling and reliable structural elucidation. In this perspective, liquid chromatography-high resolution mass spectrometry (LC-HRMS) is the state-of-the-art technique for lipidomic analysis of biological samples. There are thousands of lipids in most biological samples, and therefore separation methods before introduction to the mass spectrometer is key for relative quantitation and identification. Chromatographic methods differ across laboratories, without any consensus on the best methodologies. Therefore, we designed an experiment to determine the optimal LC methodology, and assessed the value of ion mobility for an additional dimension of separation. To apply an untargeted method for hypothesis generation focused on lipidomics, LC-HRMS parameters were optimized based on the measurement of 50 panel lipids covering key human metabolic pathways. Reversed-phase liquid chromatography columns were compared based on a quality scoring system considering the signal-to-noise ratio, peak shape, and retention factor. Furthermore, drift tube ion mobility spectrometry (DTIMS) was implemented to increase peak capacity and confidence during annotation by providing collision cross section (CCS) values for the analytes under investigation. However, hyphenating DTIMS to LC-HRMS may result in a reduced sensitivity due to impaired duty cycles. To increase the signal intensity, a Box-Behnken design (BBD) was used to optimize four key factors, i.e. drift entrance voltage, drift exit voltage, rear funnel entrance, and rear funnel exit voltages. Application of a maximized desirability function provided voltages for the above-mentioned parameters resulting in higher signal intensity compared to each combination of parameters used during the BBD. In addition, the influence of single pulse and Hadamard 4-bit multiplexed modes on signal intensity was explored and different trap filling and release times of ions were evaluated. The optimized LC-DTIM-HRMS platform was applied to extracts from HepaRG cells and resulted in 3912 high-quality features (<30% median relative standard deviation; n = 6, t = 24 h). From these features, 436 lipid species could be annotated (i.e., matching based on accurate mass <5 ppm, isotopic pattern, in-silico MS/MS fragmentation, and in-silico CCS database matching <3%). The application of LC-DTIM-HRMS for untargeted analysis workflows is growing and the platform optimization, as described here, can be used to guide the method development and CCS database comparison for high confidence lipid annotation.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Extratos Celulares , Cromatografia Líquida , Humanos , Íons
4.
Mater Sci Eng C Mater Biol Appl ; 128: 112322, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474873

RESUMO

Many studies were conducted to change the surface morphology and chemical composition of Ti implants for the improvement of antibacterial ability and osseointegration between medical Ti and surrounding bone tissue. In this study, we successfully prepared a novel dual-function coating on pure Ti surface, i.e. Cu and Mg-co-doped TiO2 nanotube (TN) coating, by combining anodisation and hydrothermal treatment (HT), which could act as a delivery platform for the sustained release of Cu and Mg ions. Results showed that the amounts of Cu and Mg were about 5.43 wt%-6.55 wt% and 0.69 wt%-0.73 wt%, respectively. In addition, the surface morphology of Cu and Mg-co-doped TN (CuMTN) coatings transformed into nanoneedles after HT for 1 h. Compared with TN, CuMTN had no change in roughness and remarkable improved hydrophilicity. Antibacterial tests revealed that CuMTN had an antibacterial rate of more than 93% against Escherichia coli and Staphylococcus aureus, thereby showing excellent antibacterial properties. In addition, CuMTN could induce the formation of apatite well after being immersed in simulated body fluid, showing good biological activity. Preosteoblasts (MC3T3-E1) cultured on CuMTN-coated Ti demonstrated better proliferation and osteogenic differentiation than pristine and as-anodised specimens. To the best of our best knowledge, this study had successfully attempted to combine anodisation and HT, introduce Cu/Mg elements and functionalise Ti-based implant surfaces with enhanced hydrophilicity, osteogenesis and antimicrobial properties that can meet clinical needs for the first time.


Assuntos
Nanotubos , Osteogênese , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Íons/farmacologia , Propriedades de Superfície , Titânio/farmacologia
5.
Mater Sci Eng C Mater Biol Appl ; 128: 112347, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474897

RESUMO

Although the use of bioactive ions and proteins are crucial for bone defect repair, delivering them in a stable and controlled manner remains challenging. To achieve controlled delivery of osteogenic active factor, we developed a novel double network (DN) hydrogel capable of co-delivering Mg2+ ions and BMP2 in a controlled localized manner. This DN hydrogel was composed of poly (acrylamide) and chitosan, in which the poly (acrylamide) was cross-linked via covalent bond and the chitosan was grafted using bisphosphonate (BP) to form metal coordination bonds with Mg2+ ions. Due to this dynamic dissociation and re-association of the "BP-Mg2+" coordination bond, it was possible to deliver Mg2+ ions in a stable and controlled manner. Additionally, the obtained DN hydrogel exhibited an effective tensile strength (0.62 MPa), perfect stretchability (973% fracture strain), and good creep and recovery properties due to the dynamic cross-linking effect of "BP-Mg2+". Additionally, the hydrogel could synergistically promote the proliferation and differentiation of mouse embryo osteoblast precursor cells (MC3T3-E1 cells) in vitro via the BMP2/Wnt pathway. In the skull defect rat model, this positive delivery government of Mg2+ ions and BMP2 synergistically accelerated bone regeneration. In conclusion, this dynamic cross-linked hydrogel containing Mg2+ ions established a new platform for the sustained release of osteogenesis factor and accelerated the bone regeneration process.


Assuntos
Hidrogéis , Magnésio , Animais , Proteína Morfogenética Óssea 2 , Regeneração Óssea , Diferenciação Celular , Íons , Camundongos , Osteogênese , Ratos
6.
Anal Chem ; 93(36): 12480-12486, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34474566

RESUMO

Fingerprinting spectra of polymer materials containing information of monomers' molecular weight and detailed structure, constituents, and sequences were obtained by a direct analytical process using arc plasma-based dissociation (APD)-mass spectrometry. The thermal arc plasma generated using a simple arc discharge device induces the dissociation of the polymeric backbone, producing mass spectra with strong regularity within seconds. The molecular weight of the repeating unit was revealed by equal intervals between peak series and protonated monomer ions in the mass spectra. Meanwhile, lots of secondary fragment ions were produced to provide abundant structural information. For polyethers, it is even possible to decipher (read) the "sequence" directly from their spectra. Polymers composed of isomers or only differing in their initiator moieties were easily distinguished with their characteristic APD mass spectra. The spectra were highly reproducible according to the results of similarity calculation. Unlike pyrolysis mass spectrometry, in the APD device, polymers in liquid, solid, powder, and crude samples can be analyzed directly without any pretreatment, and the regular spectra are easier to interpret. Compared with other direct analytical methods, more structural informative spectra can be acquired owing to the high energy, high temperature, and unique chemical reactivity of arc plasma. Thus, this technique is promising to be a valuable tool in rapid elucidation of polymer materials.


Assuntos
Polímeros , Íons , Isomerismo , Espectrometria de Massas , Peso Molecular
7.
Nanoscale ; 13(30): 13057-13064, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477789

RESUMO

We developed a water-soluble, stable and selective "turn-on" fluorescence sensing platform based on carbon quantum dots (CQDs) for rapid determination of phosphate (Pi) in aqueous solutions and for visualization of latent fingerprints on paper. The hydroxyl groups on the surface of the synthesized CQDs can be deprotonated by Pi to trigger the intramolecular charge transfer (ICT) process and the inhibition of excited-state proton transfer (ESPT), achieving a turn-on emission response. CQDs demonstrated the capability to selectively detect Pi over other common ions and biomolecules with the linear fluorescence intensity change in the range from 0 to 100 µM. Moreover, the paper sprayed with the CQD solution showed a remarkable blue emission speckle and a fingerprint upon addition of Pi solution and finger touching, respectively. Notably, the fingerprint images including level 3 details (crossover, bifurcation, termination, and island and sweat pores) are also clearly identified and distinguished, indicating their potential application in document security. We believe that the as-synthesized CQDs will provide a new tool for Pi detection in aqueous media and paper document security.


Assuntos
Pontos Quânticos , Carbono , Fluorescência , Íons , Fosfatos
8.
Se Pu ; 39(9): 941-949, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34486833

RESUMO

Sample pretreatment technology plays a vital role throughout the analysis of complex samples. Sample pretreatment can not only increase the concentration of trace targets in the sample, but also effectively eliminate interference from the sample matrix in instrumental analysis. Adsorbent materials are a key component of sample pretreatment technology. Therefore, the development of efficient and stable new adsorbent materials has acquired significance in research on pretreatment technology. Porous materials are advantageous for use in diverse applications, such as in adsorbents, when they possess controllable nanostructures, a tailored pore surface chemistry, and abundant porosity, and are inexpensive. Particularly in recent years, porous materials derived from metal-organic frameworks (MOFs) feature excellent properties, such as diverse morphology and structure, adjustable pore size, high specific surface area, good thermal stability, and chemical resistance. MOF-derived materials, when used as adsorbents for sample pretreatment, offer the following advantages: (1) The porous materials derived from MOFs typically possess a larger specific surface area than other porous materials. This characteristic is beneficial to improve the extraction capacity and extraction efficiency via an increase in the contact area between the materials and targets; (2) The microscopic porous structure of MOF-derived materials can be easily tuned (by controlling the temperature and time during pyrolysis, gas atmosphere, and heating rate), which is conducive to improve the selectivity of sample pretreatment methods; (3) The metal active sites can be evenly distributed. Owing to the ordered distribution of metal ions in the precursor MOFs and a good periodic framework structure, the metal active sites of the derivatives formed can still maintain a corresponding distance. These metal active sites will not form agglomerates and affect the extraction performance; conversely, other porous materials often require extremely complicated processes to achieve a uniform distribution; (4) Heteroatoms such as nitrogen and sulfur can be easily doped on the framework of MOF-derived porous materials. This doping enables the materials to induce additional interactions such as hydrogen bonding and π-π stacking for adsorbing target analytes. The excellent properties of MOF-derived materials make them promising for use in sample pretreatment. Novel sample pretreatment methods that use MOF-derived materials are constantly being developed. However, the use of MOF-derived materials is limited by the complex preparation process and high production cost of MOF precursors, along with difficulties in mass production. Further, the precise design or functionalization of MOF-derived materials according to the characteristics of targets is a new direction with immense challenges as well as application potential. This review summarizes the application of MOF-derived materials in sample pretreatment methods, including dispersive solid phase extraction (dSPE), magnetic solid phase extraction (MSPE), solid phase microextraction (SPME), stir bar sorptive extraction (SBSE), and dispersive micro solid phase extraction (DMSPE). The preparation methods, functional control, and enrichment efficiencies of various MOF-derived materials are also reviewed. Finally, the application prospects of MOF-derived materials in sample pretreatment are discussed to provide a clear outlook and reference for further related research.


Assuntos
Estruturas Metalorgânicas , Íons , Metais , Extração em Fase Sólida , Microextração em Fase Sólida
9.
Se Pu ; 39(9): 1021-1029, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34486842

RESUMO

Ion-pair reversed-phase liquid chromatography (IP-RPLC) enhances separation by adding ion-pair reagents to the mobile phase, thereby improving the retention of oppositely charged solutes. IP-RPLC is primarily used for the separation and analysis of strongly ionized compounds. In IP-RPLC, researchers often focus more on the influence of the counter-ion type and concentration, buffer salt concentration and pH, and column temperature, on the retention behavior of solutes. However, the effects of the buffer salt type and non-counter ions in ion-pair reagents on the retention behavior of solutes have rarely been investigated. Accordingly, in this work, the effects of buffer salt types and non-counter ions on the retention behavior of strongly ionized compounds were investigated by IP-RPLC using 14 sulfonic acid compounds as model compounds. Experiments were performed using a silica-based C18 column with methanol as the organic modifier. In the first type of experiment, tetrabutylammonium bromide was kept unchanged as the ion-pair reagent in the mobile phase, and ammonium dihydrogen phosphate, ammonium chloride, and ammonium acetate were used as buffer salts, respectively. The retention factor (k) was obtained at different methanol ratios, and linear solvent strength (LSS) models were established to determine the log kw (logarithm of retention factors of solutes when 100% aqueous phases were used as the mobile phase) and S (intercept of the LSS model) values of each solute. All solutes exhibited the highest log kw with the ammonium chloride buffer system; most compounds also exhibited the highest S values with this system, except for 1,5-naphthalenedisulfonic acid, 4-methylbenzenesulfonic acid, 5-amino-2-nanphthalenesulfonic acid, and 4-hydroxybenzenesulfonic acid. However, the chromatographic hydrophobic indices (CHIs, log kw/S) of the solutes with different buffer salts were approximately equal. In the second type of experiment, ammonium dihydrogen phosphate was kept unchanged as the buffer salt in the mobile phase, and tetrabutylammonium bromide, tetrabutylammonium dihydrogen phosphate, tetrabutylammonium hydrogen sulfate, tetrabutylammonium nitrate, and tetrabutylammonium acetate were used as ion-pair reagents, respectively. Almost all solutes exhibited the highest S with the tetrabutylammonium acetate system, indicating that weakly ionized anions (such as acetate ions) in ion-pair reagents will improve the S values of sulfonic acid compounds. Interestingly, the CHIs of the solutes were almost the same for solutes with different non-counter ions. These results suggest that both, the buffer salt types and non-counter ions, influence the log kw and S values of sulfonic acid compounds. Comparison of the retention behavior of solutes with different mobile phases suggested ion-pair mechanisms as well as dynamic ion-exchange mechanisms plays role in the IP-RPLC retention of sulfonic acid compounds. In addition, with all the experimental mobile phases, the apparent n-octanol/water partition coefficient (log D) presented a good linear correlation with log kw, S, and CHI, respectively, by the introduction of structure-related descriptors such as charge (ne), Abraham solvation parameters (A and B), and the polar surface area (PSA). Considering the differences in the log kw and S values obtained with different buffer salts and non-counter ions, the CHIs were relatively stable; therefore, the CHI is more suitable for establishing a quantitative structure-retention relationship (QSRR) model in IP-RPLC, compared to log kw and S.


Assuntos
Cromatografia de Fase Reversa , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Íons
10.
Artigo em Chinês | MEDLINE | ID: mdl-34488272

RESUMO

Objective: To establish a direct dilution-inductively coupled plasma mass spectrometry method for the determination of manganese in urine. Methods: Using 1% nitric acid solution as diluent, the urine dilution factor and internal standard elements were determined by single factor rotation experiment. The linear range, correlation coefficient, precision, accuracy and detection limit of the direct dilution-inductively coupled plasma mass spectrometry for the determination of manganese in urine were evaluated. Results: The linear range of this method was 0.0-20 µg/L, the correlation coefficient was 0.999 9, the detection limit was 0.02 µg/L, the recoveries were 84.65%-103.40%, the relative standard deviations were 0.26%-8.17%. Conclusion: This method has the advantages of simple operation, high sensitivity and low detection limit. It can be used for the determination of urine manganese at the same time with other elements. It is suitable for the determination of urine manganese in workers and ordinary people.


Assuntos
Manganês , Ácido Nítrico , Humanos , Íons , Espectrometria de Massas , Análise Espectral
11.
Biomater Sci ; 9(18): 6098-6107, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34355714

RESUMO

Thrombin is a serine protease known as activated coagulation factor II and is primarily applied as an effective local hemostatic agent. However, its clinical application is hindered by drawbacks, such as high sensitivity to the surrounding environment, instability and poor storage stability, easy inactivation, and low bioavailability. The biological functions of biomacromolecules in harsh environments can be preserved through biomineralization. Despite the success of biomimetic mineralization, limited consideration has been given to the mineral-based methods and the effect of various metal ions on enzyme activity. To explore an efficient technique for biomimetic mineralized thrombin, six kinds of ion/thrombin hybrid microflowers and two kinds of thrombin/MOF were synthesized in this work. The results showed that Zn-HNFs-G exhibits good hemostatic effect and maintains high enzymatic activity when exposed to high-temperature conditions. Meanwhile, Fe-HNFs-G, Thrombin@ZIF-8-G and Thrombin@MAF-7-G possess negligible enzyme protection.


Assuntos
Hemostáticos , Trombina , Biomimética , Hemostasia , Íons
12.
Anal Methods ; 13(32): 3627-3631, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34378548

RESUMO

The analytical determination of lithium ions is usually performed by atomic absorption and X-ray fluorescence methods. Chemical analysis based on polyfluoroporphyrin chromogenic methods is also being employed, especially for biological samples. However, all existing methods are expensive and not suitable for routine work or field assays. The alternative method proposed here is based on the formation of a LiKFe(IO6) compound which is converted into a tris(1,10-phenanthroline)iron(ii) complex and monitored by spectrophotometric or colorimetric methods, the latter using a smartphone app. Under similar conditions, these two methods proved superior to the X-ray fluorescence method. A one pot analysis of lithium ions is also described, using an Eppendorf microtube previously modified for performing reaction, filtration and detection. This method is simple and very convenient for didactic and field assays.


Assuntos
Colorimetria , Lítio , Íons , Ferro , Espectrofotometria
13.
Fa Yi Xue Za Zhi ; 37(3): 378-381, 2021 Jun.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34379908

RESUMO

Abstract: Objective To establish a method for determination of the azide ions in blood by gas chromatography-mass spectrometry (GC-MS) following pentafluorobenzyl derivatization. Methods A blood sample of 0.2 mL was placed into a 10 mL glass test tube, and the internal standard sodium cyanide, derivatization reagent pentafluorobenzyl bromide and catalyst tetradecyl benzyl dimethyl ammonium chloride were added in turn. After vortex mixing, the mixture was heated with low-power microwave for 3 min. After centrifugation, the organic phase was taken for GC-MS analysis. Results The azide ions in blood had a good linear relationship in the mass concentration range of 0.5 to 20 µg/mL. The lowest detection limit was 0.25 µg/mL and the relative recovery was 91.36%-94.58%. The method was successfully applied to a case of death from sodium azide poisoning. The mass concentration of azide ions in the blood of the dead was 11.11 µg/mL. Conclusion The method developed in this paper has strong specificity and is easy to operate, which is suitable for the rapid detection of azide ions in blood.


Assuntos
Azidas , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Íons
14.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443499

RESUMO

Over the last years, diverse commercial resin-based composites have dominated as dental filling materials. The purpose of the present study was to determine organic and inorganic eluates from five restorative materials using GC/MS and ICP-OES and to compare the effect on cell survival of human gingival fibroblasts of a conventional and a bioactive resin. Five commercially available restorative materials were employed for this study: ActivaTM Bioactive Restorative, ENA HRi, Enamel plus HRi Biofunction, Fuji II LC Capsule, and Fuji IX Capsule. Disks that were polymerized with a curing LED light or left to set were immersed in: 1 mL methanol or artificial saliva for GC/MS analysis, 5mL deionized water for ICP-OES, and 5mL of culture medium for cell viability. Cell viability was investigated with a modified staining sulforhodamine B assay.The following organic substances were detected: ACP, BHT, BPA, 1,4-BDDMA, CQ, DBP, DMABEE, HEMA, MCE, MeHQ, MOPA, MS, TMPTMA, and TPSb and the ions silicon, aluminum, calcium, sodium, and barium. Activa Bioactive Restorative was found to be biocompatible. Elution of organic substances depended on material's composition, the nature of the solvent and the storage time. Ions' release depended on material's composition and storage time. The newly introduced bioactive restorative was found to be more biocompatible.


Assuntos
Restauração Dentária Permanente , Fibroblastos/citologia , Compostos Inorgânicos/toxicidade , Compostos Orgânicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Cimentos de Ionômeros de Vidro/análise , Humanos , Íons , Metanol , Resinas Sintéticas/análise , Saliva/química
15.
Molecules ; 26(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443543

RESUMO

The thermodynamic, kinetic, and structural properties of Ln3+ complexes with the bifunctional DO3A-ACE4- ligand and its amide derivative DO3A-BACE4- (modelling the case where DO3A-ACE4- ligand binds to vector molecules) have been studied in order to confirm the usefulness of the corresponding Gd3+ complexes as relaxation labels of targeted MRI contrast agents. The stability constants of the Mg2+ and Ca2+ complexes of DO3A-ACE4- and DO3A-BACE4- complexes are lower than for DOTA4- and DO3A3-, while the Zn2+ and Cu2+ complexes have similar and higher stability than for DOTA4- and DO3A3- complexes. The stability constants of the Ln(DO3A-BACE)- complexes increase from Ce3+ to Gd3+ but remain practically constant for the late Ln3+ ions (represented by Yb3+). The stability constants of the Ln(DO3A-ACE)4- and Ln(DO3A-BACE)4- complexes are several orders of magnitude lower than those of the corresponding DOTA4- and DO3A3- complexes. The formation rate of Eu(DO3A-ACE)- is one order of magnitude slower than for Eu(DOTA)-, due to the presence of the protonated amine group, which destabilizes the protonated intermediate complex. This protonated group causes the Ln(DO3A-ACE)- complexes to dissociate several orders of magnitude faster than Ln(DOTA)- and its absence in the Ln(DO3A-BACE)- complexes results in inertness similar to Ln(DOTA)- (as judged by the rate constants of acid assisted dissociation). The 1H NMR spectra of the diamagnetic Y(DO3A-ACE)- and Y(DO3A-BACE)- reflect the slow dynamics at low temperatures of the intramolecular isomerization process between the SA pair of enantiomers, R-Λ(λλλλ) and S-Δ(δδδδ). The conformation of the Cα-substituted pendant arm is different in the two complexes, where the bulky substituent is further away from the macrocyclic ring in Y(DO3A-BACE)- than the amino group in Y(DO3A-ACE)- to minimize steric hindrance. The temperature dependence of the spectra reflects slower ring motions than pendant arms rearrangements in both complexes. Although losing some thermodynamic stability relative to Gd(DOTA)-, Gd(DO3A-BACE)- is still quite inert, indicating the usefulness of the bifunctional DO3A-ACE4- in the design of GBCAs and Ln3+-based tags for protein structural NMR analysis.


Assuntos
Complexos de Coordenação/química , Espectroscopia de Ressonância Magnética , Propionatos/química , Ácidos/química , Catálise , Íons , Cinética , Ligantes , Prótons , Soluções , Termodinâmica
16.
Chem Pharm Bull (Tokyo) ; 69(8): 789-795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334523

RESUMO

In this study, the effect of contact time, temperature, pH, and coexistences on the adsorption of phosphate ions using the complex nickel-aluminum-zirconium hydroxide (NAZ) was evaluated. Moreover, the recovery of adsorbed phosphate ions from NAZ using desorption solution with different concentrations was demonstrated. The results showed that the quantity of phosphate ions adsorbed gradually increased with time, and the adsorption equilibrium was achieved within 24 h after adsorption. This kinetic data could be well described by the pseudo-second-order model with the correlation coefficient in the value of 0.997. Additionally, the quantity of phosphate which was adsorbed increased as temperature increased, and these results corresponded well with both the Langmuir, the correlation coefficient ranged from 0.920-0.949, and Freundlich models, the correlation coefficient ranged from 0.863-0.995. These results showed that the adsorption of phosphate ion was monolayer adsorption onto the NAZ surface. The optimal pH for removal of phosphate ions from aqueous media was during 4-8. In addition, chloride, nitrate, and sulfate ions did not significantly affect to the adsorption capability of phosphate ions in the complex solution system. Finally, the phosphate ions which were adsorbed onto NAZ could be recovered using sodium sulfate solution (recovery percentage: approx. 50% using sodium sulfate solution at 1000 mmol/L). These results highlight the potential of using NAZ as the cost-effectiveness adsorbent for phosphate ions removal from aqueous media.


Assuntos
Alumínio/química , Hidróxidos/química , Níquel/química , Fosfatos/química , Zircônio/química , Adsorção , Concentração de Íons de Hidrogênio , Íons/química , Tamanho da Partícula , Propriedades de Superfície , Termodinâmica
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120204, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34333401

RESUMO

Recent trends in nanotechnology paved a way for the development of detection systems for heavy metals, toxins and environmental pollutants. The present study focused on Hg2+ detection by a core shell Fe@Ag-starch nanosphere phenylalanine conjugate. The characterization of core shell Fe@Ag-starch nanosphere was performed by using TEM, zetasizer, particlesize analyzer, UV-visible absorption spectrophotometer, EDAX, FTIR and TGA. The NPs showed λmax at 408 nm. The effective diameter of synthesized nanosphere was 37 ± 2 nm and it possessed the surfaces charge of -36.12 ± 2.5 mV. The Fe@Ag-starch-phenylalanine conjugate reacted with Hg2+, the yellow colour of the nanosphere phenylalanine conjugate became colourless. The real water sample was collected and the amount of Hg2+ was calculated by using the prepared nanosphere. The detection of Hg2+ at different conditions including various saline concentrations, temperature and pH were also studied and the detection was found to be effective at 40 °C, pH 5 and 0.1% of saline concentration. The LOD of Hg2+ ions by Fe@Ag-starch nanosphere were calculated to be 1.84 nM. The influence of other metal ions present in the analyte did not show any interference on Hg2+ detection. In addition, the photocatalytic and antibacterial activities of Fe@Ag-starch nanosphere were also studied. The study confirmed that the core shell nanosphere can also be used for environmental cleanup and disinfection.


Assuntos
Mercúrio , Nanopartículas Metálicas , Nanosferas , Concentração de Íons de Hidrogênio , Íons , Prata , Amido , Ressonância de Plasmônio de Superfície , Água
18.
Langmuir ; 37(33): 10100-10114, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34370950

RESUMO

Due to its excellent chemical and mechanical properties, titanium has become the material of choice for orthopedic and dental implants to promote rehabilitation via bone anchorage and osseointegration. Titanium osseointegration is partially related to its capability to form a TiO2 surface layer and its ability to interact with key endogenous proteins immediately upon implantation, establishing the first bone-biomaterial interface. Surgical trauma caused by implantation results in the release of high-mobility group box 1 (HMGB1) protein, which is a prototypic DAMP (damage-associated molecular pattern) with multiple roles in inflammation and tissue healing. To develop different surface strategies that improve the clinical outcome of titanium-based implants by controlling their biological activity, a molecular-scale understanding of HMGB1-surface interactions is desired. Here, we use molecular dynamics (MD) computer simulations to provide direct insight into the HMGB1 interactions and the possible molecular arrangements of HMGB1 on fully hydroxylated and nonhydroxylated rutile (110) TiO2 surfaces. The results establish that HMGB1 is most likely to be adsorbed directly onto the surface regardless of surface hydroxylation, which is undesirable because it could affect its biological activity by causing structural changes to the protein. The hydroxylated TiO2 surface shows a greater affinity for HMGB1 than the nonhydroxylated surface. The water layer on the nonhydroxylated TiO2 surface prevents ions and the protein from directly contacting the surface. However, it was observed that if the ionic strength increases, the total number of ions adsorbed on the two surfaces increases and the protein's direct adsorption ability decreases. These findings will help to understand the HMGB1-TiO2 interactions upon implantation as well as the development of different surface strategies by introducing ions or ionic materials to the titanium implant surface to modulate its interactions with HMGB1 to preserve biological function.


Assuntos
Proteína HMGB1 , Titânio , Adsorção , Hidroxilação , Íons , Propriedades de Superfície , Água
19.
BMC Plant Biol ; 21(1): 372, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388971

RESUMO

BACKGROUND: Oilseed rape (B. napus L.) has great potential for phytoremediation of cadmium (Cd)-polluted soils due to its large plant biomass production and strong metal accumulation. Soil properties and the presence of other soluble compounds or ions, cause a heterogeneous distribution of Cd. RESULTS: The aim of our study was to reveal the differential responses of B. napus to different Cd abundances. Herein, we found that high Cd (50 µM) severely inhibited the growth of B. napus, which was not repressed by low Cd (0.50 µM) under hydroponic culture system. ICP-MS assays showed that the Cd2+ concentrations in both shoots and roots under 50 µM Cd were over 10 times higher than those under 0.50 µM Cd. Under low Cd, the concentrations of only shoot Ca2+/Mn2+ and root Mn2+ were obviously changed (both reduced); under high Cd, the concentrations of most cations assayed were significantly altered in both shoots and roots except root Ca2+ and Mg2+. High-throughput transcriptomic profiling revealed a total of 18,021 and 1408 differentially expressed genes under high Cd and low Cd conditions, respectively. The biological categories related to the biosynthesis of plant cell wall components and response to external stimulus were over-accumulated under low Cd, whereas the terms involving photosynthesis, nitrogen transport and response, and cellular metal ion homeostasis were highly enriched under high Cd. Differential expression of the transporters responsible for Cd uptake (NRAMPs), transport (IRTs and ZIPs), sequestration (HMAs, ABCs, and CAXs), and detoxification (MTPs, PCR, MTs, and PCSs), and some other essential nutrient transporters were investigated, and gene co-expression network analysis revealed the core members of these Cd transporters. Some Cd transporter genes, especially NRAMPs and IRTs, showed opposite responsive patterns between high Cd and low Cd conditions. CONCLUSIONS: Our findings would enrich our understanding of the interaction between essential nutrients and Cd, and might also provide suitable gene resources and important implications for the genetic improvement of plant Cd accumulation and resistance through molecular engineering of these core genes under varying Cd abundances in soils.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Cádmio/metabolismo , Transporte Biológico , Brassica napus/crescimento & desenvolvimento , Quelantes/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íons/metabolismo , Solo/química , Tetraploidia , Transcriptoma
20.
Talanta ; 234: 122604, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364418

RESUMO

A growing number of pesticides are being used around the world necessitating strict regulatory policies to guarantee consumer safety. Liquid Chromatography - Mass Spectrometry (LC-MS) is a highly sensitive method for pesticide screening, which provides retention time, mass/charge ratios and the relative abundances of characteristic product ions. Variability in the latter necessitates relatively large tolerances (±30%, SANCO/12682/2019, current EU regulation). One cause of this variability may stem from the presence of different charge-site isomers (charge carrier being a proton, sodium cation, potassium cation and alike); each yielding a set of different product ions, of which the relative ratios are influenced by solution and ion source conditions. Consequently, varying relative abundances may be observed for analyte ions produced from calibration standards, chemical residues in food matrices and across different instruments. Ion Mobility Spectrometry (IMS) is a fast, gas phase separation technique which can resolve charge-site isomers based on differences in their collisional cross sections (CCSs). We previously used the IM device embedded in LC-IM-MS geometry to generate a pesticide CCS database and subsequently focussed upon identification of pesticides which form charge-site isomers. Latterly, we applied this approach to screen food commodities for pesticide residues. In some instances, isomer separation was clear, however sometimes broad, unresolved distributions were observed. Using a high-resolution cyclic IM device (cIM) we resolved and determined CCS values of species of indoxacarb, spinosad, fenpyroximate, epoxiconazole, metaflumizone and avermectin. Furthermore, utilising novel cIM functionalities (tandem-IM) we discovered that two spinosyn sodimers can interconvert in the gas phase.


Assuntos
Praguicidas , Cromatografia Líquida , Espectrometria de Mobilidade Iônica , Íons , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...