Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.357
Filtrar
1.
Chemosphere ; 238: 124602, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31545211

RESUMO

Polybrominated diphenyl ethers (PBDEs) have been known to exhibit neurotoxicity in rats; however, the underlying mechanism remains unknown and there is no available intervention. In this study, we aimed to investigate the role of oxidative and nitrosative stress in the neurotoxicity in the cerebral cortex and primary neurons in rats following the BDE-153 treatment. Compared to the untreated group, BDE-153 treatment significantly induced the neurotoxic effects in rats, as manifested by the increased lactate dehydrogenase (LDH) activities and cell apoptosis rates, and the decreased neurotrophic factor contents and cholinergic enzyme activities in rats' cerebral cortices and primary neurons. When compared to the untreated group, the oxidative and nitrosative stress had occurred in the cerebral cortex or primary neurons in rats following the BDE-153 treatment, as manifested by the increments in levels of reactive oxygenspecies (ROS), malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric oxide synthase (nNOS) mRNA and protein expressions, along with the decline in levels of superoxide dismutase (SOD) activity, glutathione (GSH) content, and peroxiredoxin I (Prx I) and Prx II mRNA and protein expressions. In addition, the ROS scavenger N-acetyl-l-cysteine (NAC) or NO scavenger NG-Nitro-l-arginine (L-NNA) significantly rescued the LDH leakage and cell survival, reversed the neurotrophin contents and cholinergic enzymes, mainly via regaining balance between oxidation/nitrosation and antioxidation. Overall, our findings suggested that oxidative and nitrosative stresses are involved in the neurotoxicity induced by BDE-153, and that the antioxidation is a potential targeted intervention.


Assuntos
Córtex Cerebral/patologia , Éteres Difenil Halogenados/toxicidade , Síndromes Neurotóxicas/patologia , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Bifenil Polibromatos/toxicidade , Acetilcisteína/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Glutationa/metabolismo , Éteres Difenil Halogenados/metabolismo , Masculino , Malondialdeído/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/efeitos dos fármacos , Neurotrofina 3/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
2.
Folia Histochem Cytobiol ; 57(4): 179-187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840794

RESUMO

INTRODUCTION: Stomach hyperacidity leads to damage of the mucus/bicarbonate barrier, ulcerations and the development of stomach cancer. Key regulators of the mucosal barrier/luminal acid balance are neurotransmitters secreted by intramural neurons. The aim of the current study was to determine the expression of gastric neuropeptides and nNOS in the porcine stomach following hydrochloric acid instillation. We report on increased expression of enteric neurotransmitters involved in adaptive reaction to an experimentally-induced hyperacidity state. MATERIAL AND METHODS: The investigation was conducted on eight 12-18 kg pigs. The influence of intragastric infusion of hydrochloric acid on the expression of cocaine- and amphetamine-regulated transcript peptide (CART), neuronal nitric oxide synthase (nNOS), vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), substance P (SP) and galanin (GAL) in the submucous and myenteric gastric neurons of the pig has been studied with double immunofluorescence. RESULTS: A mimicked hyperacidity state significantly increased the proportion of enteric neurons immunoreactive to CART, nNOS, VIP, PACAP, SP and GAL in the submucous gastric neurons. In the myenteric plexus, a significant increase of the number of VIP-, CART- and GAL-immunoreactive (IR) neurons was found. Similarly, the percentage of myenteric nNOS-IR and PACAP-IR neurons tended to increase, while the fraction of SP-IR cells did not change. CONCLUSIONS: Stomach hyperacidity modifies the expression of the studied neurotransmitters in a specific way depending on the location of the neurons in particular plexuses of the stomach. Increased numbers of neurons expressing CART, nNOS, VIP, PACAP, SP and GAL clearly indicate their regulatory engagement in the restoration of the physiological gastric balance following hyperacidity.


Assuntos
Ácido Clorídrico/farmacologia , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Estômago/inervação , Plexo Submucoso/metabolismo , Animais , Feminino , Ácido Clorídrico/administração & dosagem , Infusões Parenterais , Plexo Mientérico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/metabolismo , Estômago/efeitos dos fármacos , Plexo Submucoso/efeitos dos fármacos , Suínos
3.
Life Sci ; 238: 116922, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634463

RESUMO

AIMS: Nitric oxide (NO) has a critical, but not well understood, influence in the physiology of the lower urinary tract. We evaluated the effect of NO/phosphodiesterase (PDE)5 signaling in voiding dysfunction in the sickle cell disease (SCD) mouse, characterized by low NO bioavailability. MAIN METHODS: Adult SCD (Sickle) and wild-type (WT) male mice were treated daily with sodium nitrate (10 mM) or vehicle. After 18 days, blood was obtained for nitrite measurement, urethra was collected for organ bath study, and bladder and urethra were collected for Western blot analysis of PDE5 phosphorylation (Ser-92) (activated form). Non-anesthetized mice underwent evaluation of urine volume by void spot assay. eNOS phosphorylation (Ser-1177) and nNOS phosphorylation (Ser-1412) (positive regulatory sites) were evaluated in the bladder and urethra of untreated mice. KEY FINDINGS: Sickle mice exhibited decreased eNOS, nNOS, and PDE5 phosphorylation in the bladder and urethra, decreased plasma nitrite levels, increased relaxation of phenylephrine-contracted urethral tissue to an NO donor sodium nitroprusside, and increased total urine volume, compared with WT mice. Nitrate treatment normalized plasma nitrite levels, relaxation of urethra to sodium nitroprusside, PDE5 phosphorylation in the urethra and bladder, and urine volume in Sickle mice. SIGNIFICANCE: Derangement in PDE5 activity associated with basally low NO bioavailability in the bladder and urethra contributes to the molecular basis for voiding abnormalities in Sickle mice. Inorganic nitrate supplementation normalized voiding in Sickle mice through mechanisms likely involving upregulation of PDE5 activity. These findings suggest that interventions targeting dysregulatory NO/PDE5 signaling may ameliorate overactive bladder in SCD.


Assuntos
Anemia Falciforme/fisiopatologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Nitratos/administração & dosagem , Óxido Nítrico/metabolismo , Uretra/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Administração Oral , Animais , Masculino , Camundongos , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Uretra/metabolismo , Uretra/patologia , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia
4.
BMC Vet Res ; 15(1): 323, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492189

RESUMO

BACKGROUND: Transport stress not only causes physiological changes but also induces behavioral responses, including anxiety-like and depression-like behavioral responses in animals. The neuronal nitric oxide synthase (nNOS) plays a pivotal role in transport stress. This study aimed to investigate the effects of acute transport stress on the expression of nNOS and the distribution of nNOS-positive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus in rats and to explore the neuroendocrine mechanism of transport stress. RESULTS: In this study, for the first time, we investigated the effects of transport stress on nitric oxide (NO)-NOS in the hypothalamus. After simulated stress, rats exhibited behavioral changes in the open field test (OFT), increased serum corticosterone (CORT) and norepinephrine (NE) levels, and increased NO content in the hypothalamus. In addition, nNOS expression in the hypothalamic PVN was upregulated, and its distribution was altered in stressed rats compared with that of unstressed rats. CONCLUSIONS: Our findings indicate that simulated transport stress increases nNOS expression and alters its distribution in the PVN of the rat hypothalamus.


Assuntos
Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Estresse Fisiológico , Animais , Corticosterona/sangue , Modelos Animais de Doenças , Masculino , Enjoo devido ao Movimento/sangue , Neurônios/enzimologia , Óxido Nítrico , Óxido Nítrico Sintase Tipo I/genética , Norepinefrina/sangue , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
5.
EBioMedicine ; 46: 431-443, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31401195

RESUMO

BACKGROUND: Pain due to pancreatic cancer/PCa or chronic pancreatitis/CP, is notoriously resistant to the strongest pain medications. Here, we aimed at deciphering the specific molecular mediators of pain at surgical-stage pancreatic disease and to discover novel translational targets. METHODS: We performed a systematic, quantitative analysis of the neurotransmitter/neuroenzmye profile within intrapancreatic nerves of CP and PCa patients. Ex vivo neuronal cultures treated with human pancreatic extracts, conditional genetically engineered knockout mouse models of PCa and CP, and the cerulein-induced CP model were employed to explore the therapeutic potential of the identified targets. FINDINGS: We identified a unique enrichment of neuronal nitric-oxide-synthase (nNOS) in the pancreatic nerves of CP patients with increasing pain severity. Employment of ex vivo neuronal cultures treated with pancreatic tissue extracts of CP patients, and brain-derived-neurotrophic-factor-deficient (BDNF+/-) mice revealed neuronal enrichment of nNOS to be a consequence of BDNF loss in the progressively destroyed pancreatic tissue. Mechanistically, nNOS upregulation in sensory neurons was induced by tryptase secreted from perineural mast cells. In a head-to-head comparison of several genetically induced, painless mouse models of PCa (KPC, KC mice) or CP (Ptf1a-Cre;Atg5fl/fl) against the hypersecretion/cerulein-induced, painful CP mouse model, we show that a similar nNOS enrichment is present in the painful cerulein-CP model, but absent in painless genetic models. Consequently, mice afflicted with painful cerulein-induced CP could be significantly relieved upon treatment with the specific nNOS inhibitor NPLA. INTERPRETATION: We propose nNOS inhibition as a novel strategy to treat the unbearable pain in CP. FUND: Deutsche Forschungsgemeinschaft/DFG (DE2428/3-1 and 3-2).


Assuntos
Neuralgia/diagnóstico , Neuralgia/etiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Pancreatite Crônica/complicações , Pancreatite Crônica/metabolismo , Adulto , Animais , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neuralgia/tratamento farmacológico , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/cirurgia , Pancreatite Crônica/cirurgia
6.
Arq Gastroenterol ; 56(2): 113-117, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31460572

RESUMO

BACKGROUND: Few studies regarding arthritic diseases have been performed to verify the presence of the neurodegeneration. Given the increased oxidative stress and extra-articular effects of the rheumatoid arthritis, the gastrointestinal studies should be further investigated aiming a better understanding of the systemic effects the disease on enteric nervous system. OBJECTIVE: To determine whether the rheumatoid arthritis affects the nitrergic density and somatic area of the nNOS- immunoreactive (IR) myenteric neurons, as well as the morphometric areas of CGRP and VIP-IR varicosities of the ileum of arthritic rats. METHODS: Twenty 58-day-old male Holtzmann rats were distributed in two groups: control and arthritic. The arthritic group received a single injection of the Freund's Complete Adjuvant in order to induce arthritis model. The whole-mount preparations of ileum were processed for immunohistochemistry to VIP, CGRP and nNOS. Quantification was used for the nitrergic neurons and morphometric analyses were performed for the three markers. RESULTS: The arthritic disease induced a reduction 6% in ileal area compared to control group. No significant differences were observed in nitrergic density comparing both groups. However, arthritic group yielded a reduction of the nitrergic neuronal somatic area and VIP-IR varicosity areas. However, an increase of varicosity CGRP-IR areas was also observed. CONCLUSION: Despite arthritis resulted in no alterations in the number of nitrergic neurons, the retraction of ileal area and reduction of nitrergic somatic and VIP-IR varicosity areas may suggest a negative impact the disease on the ENS.


Assuntos
Artrite Reumatoide/fisiopatologia , Sistema Nervoso Entérico/fisiopatologia , Neurônios Nitrérgicos/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Plexo Mientérico/metabolismo , Plexo Mientérico/fisiopatologia , Neurônios Nitrérgicos/metabolismo , Óxido Nítrico Sintase Tipo I/fisiologia , Ratos , Ratos Sprague-Dawley
7.
J Immunol Res ; 2019: 8535273, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467935

RESUMO

Background: Age-related macular degeneration (AMD), the most common cause of blindness in the developed world, usually affects individuals older than 60 years of age. The majority of visual loss in this disease is attributable to the development of choroidal neovascularization (CNV). Mononuclear phagocytes, including monocytes and their tissue descendants, macrophages, have long been implicated in the pathogenesis of neovascular AMD (nvAMD). Current therapies for nvAMD are based on targeting vascular endothelial growth factor (VEGF). This study is aimed at assessing if perturbation of chemokine signaling and mononuclear cell recruitment may serve as novel complementary therapeutic targets for nvAMD. Methods: A promiscuous chemokine antagonist (BKT130), aflibercept treatment, or combined BKT130+aflibercept treatment was tested in an in vivo laser-induced model of choroidal neovascularization (LI-CNV) and in an ex vivo choroidal sprouting assay (CSA). Quantification of CD11b+ cell in the CNV area was performed, and mRNA levels of genes implicated in CNV growth were measured in the retina and RPE-choroid. Results: BKT130 reduced the CNV area and recruitment of CD11b+ cells by 30-35%. No effect of BKT130 on macrophages' proangiogenic phenotype was demonstrated ex vivo, but a lower VEGFA and CCR2 expression was found in the RPE-choroid and a lower expression of TNFα and NOS1 was found in both RPE-choroid and retinal tissues in the LI-CNV model under treatment with BKT130. Conclusions: Targeting monocyte recruitment via perturbation of chemokine signaling can reduce the size of experimental CNV and should be evaluated as a potential novel therapeutic modality for nvAMD.


Assuntos
Quimiocinas/antagonistas & inibidores , Neovascularização de Coroide/tratamento farmacológico , Monócitos/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Animais , Antígeno CD11b/metabolismo , Movimento Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Feminino , Humanos , Lasers , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos , Ratos Long-Evans , Receptores CCR2/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Retina/metabolismo , Retina/patologia , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Hypertension ; 74(4): 864-871, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31422689

RESUMO

It is well known that high protein intake increases glomerular filtration rate. Evidence from several studies indicated that NO and tubuloglomerular feedback (TGF) mediate the effect. However, a recent study with a neuronal NO synthase-α knockout model refuted this mechanism and concluded that neither neuronal NO synthase nor TGF response is involved in the protein-induced hyperfiltration. To examine the discrepancy, this study tested a hypothesis that neuronal NO synthase-ß in the macula densa mediates the high-protein diet-induced glomerular hyperfiltration via TGF mechanism. We examined the effects of high protein intake on NO generation at the macula densa, TGF response, and glomerular filtration rate in wild-type and macula densa-specific neuronal NO synthase KO mice. In wild-type mice, high-protein diet increased kidney weight, glomerular filtration rate, and renal blood flow, while reduced renal vascular resistance. TGF response in vivo and in vitro was blunted, and NO generation in the macula densa was increased following high-protein diet, associated with upregulations of neuronal NO synthase-ß expression and phosphorylation at Ser1417. In contrast, these high-protein diet-induced changes in NO generation at the macula densa, TGF response, renal blood flow, and glomerular filtration rate in wild-type mice were largely attenuated in macula densa-specific neuronal NO synthase KO mice. In conclusion, we demonstrated that high-protein diet-induced glomerular hyperfiltration is dependent on neuronal NO synthase ß in the macula densa via TGF response.


Assuntos
Retroalimentação Fisiológica/fisiologia , Taxa de Filtração Glomerular/fisiologia , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Rim/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Dieta Rica em Proteínas , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo I/genética
9.
Food Chem Toxicol ; 132: 110673, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302221

RESUMO

The present study was designed to assess the influence of acrylamide supplementation, in tolerable daily intake (TDI) dose and a dose ten times higher than TDI, on the neurochemical phenotype of the ENS neurons and synthesis of proinflammatory cytokines in the wall of the porcine ileum. The study was performed on 15 juvenile female Danish Landrace pigs, divided into three groups: C group- animals receiving empty gelatine capsules, LD group- animals receiving capsules with the TDI dose (0.5 µg/kg b.w./day) of acrylamide and HD group- animals receiving acrylamide in a dose ten times higher than the TDI (5 µg/kg b.w./day) in a morning meal for 28 days. It was established that supplementation of acrylamide led to an increase in substance P (SP)-, calcitonin gene-related peptide (CGRP)-, galanin (GAL)- and vesicular acetylcholine transporter (VAChT)-like immunoreactive (LI) neurons as well as a decrease in neuronal nitric oxide synthase (nNOS) -like immunoreactivity in all types of ileum intramural plexuses. Moreover, using ELISA method, an increase in the level of proinflammatory cytokines (IL-1ß, IL-6 and TNF- α) was noted in the ileum wall. The results suggest that SP, CGRP, GAL, nNOS and VACHT participate in the regulation of inflammatory conditions induced by acrylamide supplementation.


Assuntos
Acrilamida/administração & dosagem , Íleo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Acrilamida/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Galanina/metabolismo , Íleo/patologia , Mediadores da Inflamação/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Substância P/metabolismo , Suínos , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
10.
Neuron ; 103(2): 242-249.e4, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31153646

RESUMO

For thirsty animals, fluid intake provides both satiation and pleasure of drinking. How the brain processes these factors is currently unknown. Here, we identified neural circuits underlying thirst satiation and examined their contribution to reward signals. We show that thirst-driving neurons receive temporally distinct satiation signals by liquid-gulping-induced oropharyngeal stimuli and gut osmolality sensing. We demonstrate that individual thirst satiation signals are mediated by anatomically distinct inhibitory neural circuits in the lamina terminalis. Moreover, we used an ultrafast dopamine (DA) sensor to examine whether thirst satiation itself stimulates the reward-related circuits. Interestingly, spontaneous drinking behavior but not thirst drive reduction triggered DA release. Importantly, chemogenetic stimulation of thirst satiation neurons did not activate DA neurons under water-restricted conditions. Together, this study dissected the thirst satiation circuit, the activity of which is functionally separable from reward-related brain activity.


Assuntos
Neurônios GABAérgicos/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Saciação/fisiologia , Estômago/inervação , Órgão Subfornical/citologia , Animais , Cálcio/metabolismo , Dopamina/metabolismo , Ingestão de Líquidos/fisiologia , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Optogenética , Concentração Osmolar , Fragmentos de Peptídeos/metabolismo , Estimulação Física
11.
Life Sci ; 231: 116581, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31220524

RESUMO

AIMS: The aims of this study were to investigate the effect of colonic electrical stimulation (CES) on delayed colonic transit in Parkinson's disease (PD) model induced by rotenone and its possible mechanisms. MAIN METHODS: Sprague-Dawley male rats were implanted with a pair of electrodes on the serosa at the proximal colon and rotenone was subcutaneously injected for 6 weeks to induce the PD model. Behavior activity, stool volume and open-field test were recorded during the injection. Colonic propulsion rate was measured 6 weeks after rotenone injection. Colon samples of all rats were collected for the measurement of phosphorylated alpha-synuclein, choline acetyltransferase (CHAT), neuronal nitric oxide synthase (nNOS), and tyrosine hydroxylase (TH). The protocols of control rats were the same as the PD rats except that no electrodes were implanted and no rotenone was injected. KEY FINDINGS: (1) Rotenone-induced PD rats demonstrated weight loss, significant decrease of the dopaminergic neurons in substantia nigra, and impairment of colon movement. (2) CES significantly accelerated the delayed colonic transmit (91.67 ±â€¯5.58% vs 51.33 ±â€¯4.18%), superior to Macrogol-4000. (3) CES significantly upregulated the expression of CHAT, nNOS and TH protein in colon of PD rats. (4) In colon of PD rats, the phosphorylated alpha-synuclein was significantly upregulated, but CES had no significant effect on phosphorylated alpha-synuclein. SIGNIFICANCE: Our data show that CES can normalize the delayed colonic transit and this normalization may attribute to affecting enteric excitatory and inhibitory neurons.


Assuntos
Colo/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Doença de Parkinson/fisiopatologia , Animais , Colina O-Acetiltransferase/metabolismo , Colo/fisiopatologia , Constipação Intestinal/fisiopatologia , Modelos Animais de Doenças , Estimulação Elétrica , Motilidade Gastrointestinal/efeitos dos fármacos , Intestino Delgado/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos , Ratos Sprague-Dawley , Rotenona/metabolismo , Rotenona/farmacologia , Substância Negra/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
12.
Neurotox Res ; 36(1): 117-131, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31041676

RESUMO

Nitric oxide (NO) has chemical properties that make it uniquely suitable as an intracellular and intercellular messenger. NO is produced by the activity of the enzyme nitric oxide synthases (NOS). There is substantial and mounting evidence that slight abnormalities of NO may underlie a wide range of neurodegenerative disorders. NO participates of the oxidative stress and inflammatory processes that contribute to the progressive dopaminergic loss in Parkinson's disease (PD). The present study aimed to evaluate in vitro and in vivo the effects of neuronal NOS-targeted siRNAs on the injury caused in dopaminergic neurons by the toxin 6-hidroxydopamine (6-OHDA). First, we confirmed (immunohistochemistry and Western blotting) that SH-SY5Y cell lineage expresses the dopaminergic marker tyrosine hydroxylase (TH) and the protein under analysis, neuronal NOS (nNOS). We designed four siRNAs by using the BIOPREDsi algorithm choosing the one providing the highest knockdown of nNOS mRNA in SH-SY5Y cells, as determined by qPCR. siRNA 4400 carried by liposomes was internalized into cells, caused a concentration-dependent knockdown on nNOS, and reduced the toxicity induced by 6-OHDA (p < 0.05). Regarding in vivo action in the dopamine-depleted animals, intra-striatal injection of siRNA 4400 at 4 days prior 6-OHDA produced a decrease in the rotational behavior induced by apomorphine. Finally, siRNA 4400 mitigated the loss of TH(+) cells in substantia nigra dorsal and ventral part. In conclusion, the suppression of nNOS enzyme by targeted siRNAs modified the progressive death of dopaminergic cells induced by 6-OHDA and merits further pre-clinical investigations as a neuroprotective approach for PD.


Assuntos
Neurônios Dopaminérgicos/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/enzimologia , RNA Interferente Pequeno/administração & dosagem , Substância Negra/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Transtornos Parkinsonianos/induzido quimicamente , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
13.
J Physiol Sci ; 69(5): 711-722, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31124076

RESUMO

A high-fat diet (HFD) and overweight status can induce hippocampal dysfunction, leading to depression and anxiety. Exercise has beneficial effects on emotional behaviors. We previously reported that exercise training rescues HFD-induced excess hippocampal neuronal nitric oxide synthase (nNOS) expression, which is a key regulator of anxiety. Here, we investigated anxiety-like behaviors and hippocampal nNOS expression in response to HFD combined with exercise. Mice were assigned to standard diet, HFD, or HFD with exercise groups for 12 weeks. We found that exercise during the final 6 weeks of the HFD regime improved 12 weeks of HFD-induced defecation, accompanied by rescue of excess nNOS expression. However, anxiety indicators in the elevated plus maze were unchanged. These effects were not apparent after only 1 week of exercise. In conclusion, 6 weeks of exercise training reduced HFD-related anxiety according to one of our measures (defecation), and reversed changes in the hippocampal nNOS/NO pathway.


Assuntos
Ansiedade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Depressão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
14.
Chemosphere ; 229: 618-630, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31102917

RESUMO

Bisphenol-A (BPA) is a representative exogenous endocrine disruptor, which is extensively composed in plastic products. Due to the capability of passing through the blood-brain barrier, evidence has linked BPA exposure with multiple neuropsychological dysfunctions, neurobehavioral disorders and neurodegenerative diseases. However, the underlying mechanism by which BPA induces neurodegeneration still remains unclear. Our study used human embryonic stem cells-derived human cortical neurons (hCNs) as a cellular model to investigate the adverse neurotoxic effects of BPA. hCNs were treated with 0, 0.1, 1 and 10 µM BPA for 14 days. Impacts of BPA exposure on cell morphology, cell viability and neural marker (MAP2) were measured for evaluating the neurodegeneration. The intracellular calcium homeostasis, reactive oxygen species (ROS) generation and organelle functions were also taken into consideration. Results revealed that chronic exposure of BPA damaged the neural morphology, induced neuronal apoptosis and decreased MAP2 expression at the level of both transcription and translation. The intracellular calcium levels were elevated in hCNs after BPA exposure through NMDARs-nNOS-PSD-95 mediating. Meanwhile, BPA led to oxidative stress by raising the ROS generation and attenuating the antioxidant defense in hCNs. Furthermore, BPA triggered ER stress and increased cytochrome c release by impairing the mitochondrial function. Ultimately, BPA triggered the cell apoptosis by regulating Bcl-2 family and caspase-dependent signaling pathway. Taken together, BPA exerted neurotoxic effects on hCNs by eliciting apoptosis, which might due to the intracellular calcium homeostasis perturbation and cell organellar dysfunction.


Assuntos
Compostos Benzidrílicos/toxicidade , Cálcio/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Neurônios/efeitos dos fármacos , Fenóis/toxicidade , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Neurosci Lett ; 705: 33-38, 2019 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31004707

RESUMO

Noradrenergic projections from the nucleus tractus solitarius (NTS) to the hypothalamic paraventricular nucleus (PVN) are involved in nicotine (Nic) dependence. Nic induces hypothalamic norepinephrine (NE) release through N-methyl-d-aspartate receptors (NMDARs) and nitric oxide in the NTS. However, acupuncture attenuates Nic withdrawal-induced anxiety. Therefore, this study investigated the effects of acupuncture on Nic-induced hypothalamic NE release. Rats received an intravenous infusion of Nic (90 µg/kg, over 60 s) and extracellular NE levels in the PVN were determined by in vivo microdialysis. Immediately after Nic administration, the rats were bilaterally treated with acupuncture at acupoint HT7 (Shen-Men) or PC6 (Nei-Guan), or a non-acupoint (tail) for 60 s. Acupuncture at HT7, but not at PC6 or the tail, significantly reduced Nic-induced NE release. However, this was abolished by a post-acupuncture infusion of either NMDA or sodium nitroprusside into the NTS. Additionally, acupuncture at HT7, but not the control points, prevented Nic-induced plasma corticosterone secretion and inhibited Nic-induced increases in the phosphorylation of neuronal nitric oxide synthase (nNOS) and endothelial NOS in the NTS. These findings suggest that acupuncture at HT7 reduces Nic-induced NE release in the PVN via inhibition of the solitary NMDAR/NOS pathway.


Assuntos
Terapia por Acupuntura , Nicotina/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Norepinefrina/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Corticosterona/sangue , Infusões Intravenosas , Masculino , Microdiálise , N-Metilaspartato/administração & dosagem , N-Metilaspartato/farmacologia , Nicotina/administração & dosagem , Nicotina/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Nitroprussiato/administração & dosagem , Nitroprussiato/farmacologia , Fosforilação/efeitos dos fármacos , Ratos
16.
Int J Mol Sci ; 20(8)2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31010057

RESUMO

The interactions between neuronal, glial, and vascular cells play a key role in regulating blood flow in the retina. In the present study, we examined the role of the interactions between neuronal and glial cells in regulating the retinal vascular tone in rats upon stimulation of retinal neuronal cells by intravitreal injection of N-methyl-d-aspartic acid (NMDA). The retinal vascular response was assessed by measuring the diameter of the retinal arterioles in the in vivo fundus images. Intravitreal injection of NMDA produced retinal vasodilation that was significantly diminished following the pharmacological inhibition of nitric oxide (NO) synthase (nNOS), loss of inner retinal neurons, or intravitreal injection of glial toxins. Immunohistochemistry revealed the expression of nNOS in ganglion and calretinin-positive amacrine cells. Moreover, glial toxins significantly prevented the retinal vasodilator response induced by intravitreal injection of NOR3, an NO donor. Mechanistic analysis revealed that NO enhanced the production of vasodilatory prostanoids and epoxyeicosatrienoic acids in glial cells in a ryanodine receptor type 1-dependent manner, subsequently inducing the retinal vasodilator response. These results suggest that the NO released from stimulated neuronal cells acts as a key messenger in neuron-glia signaling, thereby causing neuronal activity-dependent and glial cell-mediated vasodilation in the retina.


Assuntos
Neuroglia/metabolismo , Neurônios/metabolismo , Vasos Retinianos/metabolismo , Transdução de Sinais , Animais , Gangliosídeos/metabolismo , Hidroxilaminas , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Modelos Biológicos , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/metabolismo , Prostaglandinas/metabolismo , Ratos Wistar , Vasos Retinianos/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
17.
Int J Mol Sci ; 20(7)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987291

RESUMO

Diabetic autonomic peripheral neuropathy (PN) involves a broad spectrum of organs. One of them is the gastrointestinal (GI) tract. The molecular mechanisms underlying the pathogenesis of digestive complications are not yet fully understood. Digestion is controlled by the central nervous system (CNS) and the enteric nervous system (ENS) within the wall of the GI tract. Enteric neurons exert regulatory effects due to the many biologically active substances secreted and released by enteric nervous system (ENS) structures. These include nitric oxide (NO), produced by the neural nitric oxide synthase enzyme (nNOS). It is a very important inhibitory factor, necessary for smooth muscle relaxation. Moreover, it was noted that nitrergic innervation can undergo adaptive changes during pathological processes. Additionally, nitrergic neurons function may be regulated through the synthesis of other active neuropeptides. Therefore, in the present study, using the immunofluorescence technique, we first examined the influence of hyperglycemia on the NOS- containing neurons in the porcine small intestine and secondly the co-localization of nNOS with vasoactive intestinal polypeptide (VIP), galanin (GAL) and substance P (SP) in all plexuses studied. Following chronic hyperglycaemia, we observed a reduction in the number of the NOS-positive neurons in all intestinal segments studied, as well as an increased in investigated substances in nNOS positive neurons. This observation confirmed that diabetic hyperglycaemia can cause changes in the neurochemical characteristics of enteric neurons, which can lead to numerous disturbances in gastrointestinal tract functions. Moreover, can be the basis of an elaboration of these peptides analogues utilized as therapeutic agents in the treatment of GI complications.


Assuntos
Intestino Delgado/citologia , Intestino Delgado/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/metabolismo , Feminino , Galanina/metabolismo , Hiperglicemia/metabolismo , Substância P/metabolismo , Suínos , Peptídeo Intestinal Vasoativo/metabolismo
18.
Pol J Vet Sci ; 22(1): 101-107, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30997779

RESUMO

European beaver (Castor fiber), the largest rodent species inhabiting a wide area of Eurasia, feeds mainly on dry parts of plants, bark or wood. Such kind of nourishment needs to be properly digested in each part of the gastrointestinal tract. The time of stomach digestion, which directly influences all the following steps of the digestion process, is precisely controlled by the pylorus and its innervation. However, virtually no data is available on the organization of the enteric nervous system in most of the wild animal species, including beavers. On the other hand, a pecu- liar diet consumed by beavers, suggests that the arrangement of their stomach intramural nerve elements can be atypical. Therefore, the present study investigated the distribution and chemical coding of neurons and nerve fibers in the pylorus of the European beaver. The experiment was performed on stomachs obtained from a group of 6 beavers caught in Northeastern region of Poland (due to beaver overpopulation). Pyloric wall tissue cryosections were double immunostained with a mixture of antibodies against pan-neuronal marker PGP 9.5 (to visualize enteric neurons) and ChAT (cholinergic marker), nNOS (nitrergic marker), SP, CGRP, Gal (peptidergic markers). Confocal microscopy analysis revealed that the majority of enteric nerve cells were clustered forming submucosal and myenteric ganglia and all the studied substances were expressed (in various amounts) in these neurons. We conclude, that the anatomical arrangement and chemical coding of intramural nerve elements in the beaver pylorus resemble those found in other mammalian species.


Assuntos
Imuno-Histoquímica , Piloro/inervação , Roedores/anatomia & histologia , Animais , Biomarcadores , Fatores de Crescimento Neural/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ubiquitina Tiolesterase/metabolismo
19.
Environ Int ; 127: 324-332, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30953815

RESUMO

Bisphenol-A (BPA) is a lipophilic, organic, synthetic compound that has been used as an additive in polycarbonate plastics manufacturing since 1957. Studies have shown that BPA interferes with the development and functions of the brain, but little is known about the effects of BPA on human glutamatergic neurons (hGNs) at the molecular and cellular levels. We investigated the impact of chronic exposure to BPA to hGNs derived from human embryonic stem cells (hESCs). The results showed that chronic exposure of different concentrations of BPA (0, 0.1, 1.0 and 10 µM) to hGNs for 14 days reduced neurite outgrowth in a concentration-dependent manner. Using presynaptic protein synaptophysin and postsynaptic protein PSD-95 antibodies, immunofluorescence staining and western blotting results indicated that BPA exposure altered the morphology of dendritic spines and increased synaptophysin and PSD-95 expression. Furthermore, BPA exposure at concentrations higher than 1.0 µM resulted in the increase of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) expression and deterioration of dendritic spines. In addition, our results suggested that these BPA mediated neurotoxicity effects were due to an increased production of reactive nitrogen species (RNS) and reactive oxygen species (ROS) via increased nitric oxide synthase (iNOS), neuronal nitric oxide synthase (nNOS), 3-nitrotyrosine expression and Ca2+ influx. These results imply that hESC-based neuronal differentiation is an excellent cellular model to examine BPA-induced neurotoxicity on human neurons at the cellular and molecular level.


Assuntos
Compostos Benzidrílicos/farmacologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Fenóis/farmacologia , Humanos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas , Óxido Nítrico Sintase Tipo I/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
J Ethnopharmacol ; 238: 111834, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30940567

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Banha-sasim-tang (BST; Hange-shashin-to in Kampo medicine; Banxia xiexin tang in traditional Chinese medicine) is a traditional Chinese harbal medicine that has been commonly used for gastrointestinal disorders. AIM OF THE STUDY: To investigate the pharmacological effects of BST, a standardized herbal drug, on main symptoms of functional dyspepsia including delayed gastric emptying, and underlying mechanisms of action in mouse model. METHODS AND MATERIALS: Balb/C mice were pretreated with BST (25, 50, 100 mg/kg, po) or mosapride (3 mg/kg, po) for 3 days, and then treated with loperamide (10 mg/kg, ip) after 19 h fasting. A solution of 0.05% phenol red (500 µL) or 5% charcoal diet (200 µL) was orally administered, followed by scarifying and assessment of gastric emptying or gastro-intestinal motility. C-kit (immunofluorescence), nNOS (western blot) and gastric contraction-related gene expression were examined in stomach tissue. RESULTS: The loperamide injection substantially delayed gastric emptying, while the BST pretreatment significantly attenuated this peristaltic dysfunction, as evidenced by the quantity of stomach-retained phenol red (p < 0.05 or 0.01) and stomach weight (p < 0.05 or 0.01). The BST pretreatment significantly tempered the loperamide-induced inactivation of c-kit and nNOS (p < 0.05 or 0.01) as well as the contraction-related gene expression, such as the 5HT4 receptor (5HT4R), anoctamin-1 (ANO1), ryanodine receptor 3 (RYR3) and smooth muscle myosin light chain kinase (smMLCK). The BST pretreatment also significantly attenuated the alterations in gastro-intestinal motility (p < 0.01). CONCLUSION: Our results are the first evidence of the prokinetic agent effects of Banha-sasim-tang in a loperamide-induced FD animal model. The underlying mechanisms of action may involve the modulation of peristalsis via activation of the interstitial cells of Cajal and the smooth muscle cells in the stomach.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Dispepsia/tratamento farmacológico , Animais , Anoctamina-1/genética , Medicamentos de Ervas Chinesas/farmacologia , Dispepsia/induzido quimicamente , Dispepsia/genética , Dispepsia/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Motilidade Gastrointestinal/efeitos dos fármacos , Loperamida , Masculino , Camundongos Endogâmicos BALB C , Quinase de Cadeia Leve de Miosina/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores 5-HT4 de Serotonina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Estômago/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA